
Int J Software Informatics, Vol.3, No.4, December 2009, pp. 415–438 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics ISSN 1673-7288 http://www.ijsi.org
c©2009 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

Internetware Computing: Issues and Perspective∗

Wei-Tek Tsai1,3, Zhi Jin2, and Xiaoying Bai3

1 (Department of Computer Science and Engineering, Arizona State University, USA)

2 (Key Laboratory of High Confidence Software Technologies, Peking University, China)

3 (Department of Computer Science and Technology, Tsinghua University, China)

Abstract The Internetware addresses the unique challenges of software development and

maintenance in the open and dynamic Internet environment. The project identifies the four

major features as the vision of future Internetware including autonomous services, dynamic

collaboration, environment-aware evolution and adaptation, and verifiable and justifiable

trustworthiness. The paper discusses four key enabling techniques to achieve the above

Internetware capabilities. 1) The lifecycle model: it proposes the model-driven and reuse-

centric adaptive lifecycle of service software and the mashup approach for composition-based

application development. 2) The ontology system: it discusses a wide range of software

development ontology systems that can be used at various abstraction levels throughout all

the stages of software lifecycle, and the issues with ontology systems such as consistency

and completeness, dependency analysis, merging and change management. 3) Modeling

and simulation: it identifies the necessary characteristics of the modeling language in the

new paradigm such as the modeling of environment , system and environment interactions,

the environment-system co-engineering process, and the ontology support for modeling and

simulation. 4) Social ranking: it points out that social network will play an important role in

Internetware development framework. Traditional software activities such as requirements

solicitation and testing can be improved following this social approach. From these above

four perspectives, the paper gives an outlook to the emerging techniques and their potential

power in Internetware software engineering.

Key words: Internetware

Tsai WT, Jin Z, Bai XY. Internetware computing: Issues and perspective Int J Software

Informatics, 2009, 3(4): 415–438. http://www.ijsi.org/1673-7288/3/415.htm

1 Introduction

The Web is becoming the computing platform as claimed by the number one
principle of Web 2.0 “Web is the platform”[25]. This new Web platform will replace
traditional computing platforms such as PCs and mainframes. If the Web is indeed
the new platform and PCs or mobile devices are simply connection devices, software
development on this Web platform will be different from software development in
traditional platforms.

* This effort is sponsored by US Department of Education FIPSE project, Korean ETRI project,
National Natural Science Fund for Distinguished Young Scholars of China under Grant No. 60625204,

the Key Project of National Natural Science Foundation of China under Grant No. 90818026 and

the National Basic Research and Development 973 Program under Grant No. 2009CB320701.
Corresponding author: Wei-Tek Tsai, Email: wtsai@asu.edu

Manuscript received 2009-08-09; revised 2009-11-18; accepted 2009-11-30; published online 2009-12-

30.

416 International Journal of Software and Informatics, Vol.3, No.4, December 2009

In fact, the difference is already witnessed by the emerging techniques such
as Web services, Service-Oriented Computing (SOC), Service-Oriented Architecture
(SOA), and cloud computing[7]. Specifically, in cloud computing, software will be
treated as a service (Software as a Service or SaaS) that runs on top of a virtualized
environment of large number of resources. Cloud computing may involve virtualized
systems including network operating systems (such as the new Chrome OS just an-
nounced in November 2009), scalable databases such as Google’s BigTable, and ap-
plications that will run on top of significant computing capacity. With such vast
infrastructure resources, one needs new software design and development strategies.

Many organizations have initiated software development on the Web, including
those SaaS approaches. Some have even succeeded commercially, e.g., Salesforce.com
is an outstanding example. Google is another example as it provides desktop applica-
tions on the Web like Google Docs, Google Code and Google App Engine. Microsoft
also launched the Azure project to migrate their desktop applications like .NET and
its operating systems to the Web.

Researchers in China name such a software development and execution framework
Internetware[44]. The Internetware project studies, establishes, and applies scientific
and quantifiable methods for software development, execution, and maintenance on
the Web.

Essentially, Internetware emphasizes the open nature of Internet computing in-
cluding the openness of software as well as software development. In fact, one im-
portant lesson learned from Google is that software needs to be open to gain market
share[12], and if software development is indeed going to be open on the Web, related
software technologies and tools will be open, which is likely to include modeling, ar-
chitecture, design, code, test scripts/cases, and T&E (Test and Evaluation) results.
This may mean that not only software but also software development techniques and
tools will be available on the Web as services in the future. And they can be identified,
discovered and composed to form new applications in a service-oriented manner.

Internetware faces four challenges[44]: 1) the autonomy of software components;
2) the dynamics of collaboration among software components; 3) the environment-
aware evolution and adaptation; and 4) verifiable and justifiable system trustworthi-
ness.

Autonomous Software Components: Modeling individual software compo-
nents with their features forms the basis for the application development framework.
In traditional systems, software components are generally modeled from two per-
spectives: 1) the implementation model that represents the structure and behavior
of each component so that each component can be constructed, deployed, executed
and evolved independently; and 2) the interface model that represents the computa-
tional functionalities and capabilities the component provides to others so that it can
interoperate and collaborate with others.

However, for Internetware, as software components transform to services, they
need to collaborate with each other dynamically in an open environment. Hence,
autonomy becomes an important capability for loosely coupled yet dynamic composed
services, with a variety of self-healing and self-adaptive capabilities. Internetware
needs to sense the environment, accumulate knowledge via learning and reasoning, and
adapt behavior to the changes either reactively or proactively. Autonomy enhances

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 417

the flexibility of cooperation so that it allows Internetware to build collaborations
on-the-fly in an agile and cost-effective approach.

Dynamic Collaboration: In the Internetware framework, software components
and their collaborations can be modeled separately and they can be developed inde-
pendently. Software components can be developed using traditional techniques and
wrapped into autonomous components with standard interfaces exposed for public ac-
cess. Collaborations can be established on-demand by reusing components available
over the Internet. Requirements-driven on-demand collaboration and collaboration-
oriented coalition are two important issues.

Furthermore, as the software components are autonomous, they may change
their decisions along with the environment changes. Autonomous components make
decisions on-the-fly to join in or withdraw from the coalition and accept or refuse the
collaboration with a specific partner in the coalition. Hence, the collaboration model
changes along with the changing decisions of these autonomous software components.
In summary, the dynamic environment triggers changes in components’ decisions.
As a result, the coalition changes over time, including the participants and their
collaborations in the coalition.

Environment-Aware Evolution and Adaptation: Internetware are situated
in an open environment. Changes can come all the time from the physical environment
like unstable network connection, as well as business requirements like diversified user
preferences and expectations. Hence, both software components and application sys-
tems need to evolve and adapt their behavior in accordance to environment changes,
either reactively or proactively.

For this purpose, the context/environment of the systems should be modeled
separately as well, in addition to the system model. The environment model can fa-
cilitate the abstraction of the environment features and the detection of environment
changes. The Internetware can evolve and adapt with environment awareness by ana-
lyzing the environment models together with the system model. Context/environment
awareness and self-adaptation are two important issues.

Verifiable and Justifiable Trustworthiness: Software trustworthiness has
been recognized in safety-critical systems and fault-tolerant computing for a long
time. It has been gained attentions recently. The system trustworthiness should be
verifiable and justifiable.

Verifiable means that the system’s trustworthiness is measurable and testable.
Trustworthiness consists of many attributes such as correctness, performance, safety,
security, and privacy. The overall trustworthiness of the application cannot be verified
unless all the individual attributes are measurable and testable. However, isolated
investigation of individual attributes is far from sufficient for judging the system
trustworthiness. A holistic approach may be required.

Justifiable means that the system’s trustworthiness matches the application re-
quirements well. Internetware applications range over all kinds of applications such
as e-banking, online shopping, e-healthcare and e-government applications. These
applications demand a certain confidence level that the applications will function as
intended. The failures of these application systems may cause significant damages.
On the other hand, as higher confidence normally needs more efforts in system devel-
opment, for those non safety-critical applications such as on-line games, the economic

418 International Journal of Software and Informatics, Vol.3, No.4, December 2009

choice is to have a reasonable confidence instead to reduce the development effort.
A good example of Internetware is the recently announced Chrome OS, a network

OS developed from Linux, to be released in 2010. According to Ref.[24], Chrome OS
is a revolutionary software as it has the following key features:

• The Web browser Chrome is the OS: Using a Web browser as the network
operating system is not new as Netscape tried to do so about 15 years ago.
However, Netscape did not deliver, but Google delivered it this year.

• It is adaptive: Chrome OS has many self-adaptive features especially security
features. Applications run on Chrome OS are placed in “security sandboxes,”
like Jave security mechanism, and Chrome software checks the integrity of its
code, and if the code is compromised, it will reboot to fix the problems.

• All applications are Web applications without any installations: All
applications will be Web applications, and thus no installation, and this includes
most popular applications such as Microsoft Office, TweetDeck, or Digsby and
even Google’s own Android.

While the claims of the Chrome OS are yet to be validated until the system is
released in 2010, but the direction of Chrome OS represents a radical departure from
the current software design:

• Autonomy: It treats the Web as the platform as no application software is
installed, and every application need to be treated as a service, It has limited
autonomy capabilities as the system keeps on checking the integrity of its code
to ensure that nothing is compromised, and if compromised, it takes actions in
a pro-active manner to reboot the system.

• Dynamic collaboration: Currently, Chrome OS still follows the traditional
SOA framework and treat each software as a service. This is the simplest form
of dynamic collaboration.

• Environment-aware evolution and adaption: Its environment is the Web,
and it depends on search engines to identify the needed services. As the Web
is an open and changing environment, the system is thus open and dynamic as
one can view the system as “Chrome OS + the Web” instead just Chrome OS
only.

• Verifiable trustworthiness: The Chrome OS verifies the digital signatures of
application services all the time to ensure trustworthiness.

To address these issues, this paper presents four aspects of Internetware:

1. Lifecycle model for Internetware: Lifecycle is a fundamental issue that
will affect the related technologies such as modeling, architecture, design, code
generation, execution, monitoring, and evaluation. This will be discussed in
Section 2.

2. Ontology: As Internetware uses ontology extensively[17,42,43], but originally
ontology was designed for knowledge representation, sharing, classification, and

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 419

reasoning. To use an ontology system for software development, it needs to
address software engineering issues such as correctness, cross referencing, archi-
tecture, design, test, verification, and change management. These issues will be
dealt with in Section 3.

3. Modeling and simulation: As the Internet environment is open and dynamic,
modeling and simulation will be an important issue as both the system and
its environment[18,40] will be modeled using formal or semi-formal modeling
languages for analyses and simulation. Environment modeling is important
as the environment provides the context to evaluate the application objectively,
and as the environment evolves, the system may need to be evolved accordingly.
Furthermore, environment-system interaction needs to be modeled, evaluated,
and evolved. Section 4 will address these issues.

4. Social ranking for software evaluation: Social behavior can be useful for
many software development activities. This paper explores the possibility of
using social ranking to rank software services, and the social ranking can be
used either independently or together with physical evaluation and ranking.
Section 4 will discuss this issue.

2 Internetware Lifecycle Models

What is an appropriate software development lifecycle for Internetware? While
one may continue to practice traditional lifecycle models such as Waterfall, Spiral,
rapid prototyping, and agile methods, but other new models need to be explored.
Traditional lifecycle models often heavily depend on face-to-face meeting (such as ag-
ile methods) and documentation (such as Waterfall model). The differences between
these traditional processes are sequencing and work breakdowns of these activities.
For example, the Spiral process divides the software development into spirals, while
agile methods allow flexible sequencing. While the Web provides face-to-face meet-
ings via webcast and online documentation, it is not clear that they can be as effec-
tive as before if one uses traditional processes such as agile methods for developing
Internetware.

IBM’s SOA lifecycle model[10] is an interesting lifecycle model. This lifecycle,
showed in Figure 1, has a linear feedback loop of modeling, assembling, deploying, and
managing phases. The lifecycle is layered on a backdrop of governance and processes
which enforce compliance and operational policies, and ensure change occurs in a
controlled fashion with appropriate authority.

IBM SOA lifecycle begins with modeling: capturing business design from re-
quirements and objectives, translating that into a specification of business processes,
goals and assumptions, and creating a model. In the assemble phase, business de-
sign derived from model is converted to a set of business process definitions and
activities. Designs of services are derived from activity definitions. Existing asset in-
ventories which are artifacts to be assembled should be considered during design and
implementation of business processes and services. The deploy phase of the lifecycle
includes a combination of creating the hosting environment for applications and the
actual deployment of applications. This includes resolving the application’s resource

420 International Journal of Software and Informatics, Vol.3, No.4, December 2009

dependencies, operational conditions, capacity requirements, and integrity and access
constraints. The manage phase of the lifecycle maintains the operational environment
and enforces policies. This includes monitoring performance of service, maintaining
problem logs, detecting and localizing failures, routing and recovering work, correct-
ing problems, and restoring the operational state of the system. The manage phase
also includes managing the business model, that is tuning operational environment
to meet objectives expressed in business design, measuring success or failure to meet
those objectives, ensuring policies that express the operational requirements of the
business services and processes of the business design, and relating issues with that
enforcement back to the business design.

Figure 1. IBM SOA lifecycle

Another lifecycle model is Tsai’s Service-Oriented Computing lifecycle as shown
in Fig. 2[5]. In this lifecycle, reusability covers the entire lifecycle from identification
to modeling, from modeling to simulation, from architecture to components, from au-
tomated code generation using code templates to reuse software services, from testing
to verification, from monitoring to policy enforcement. For example, when a service
is submitted for publication, it can be evaluated by various parties including service
consumers, brokers and providers, using perhaps published evaluation mechanisms.
The results of evaluation will be published too to provide guidance for all parties:
service consumers may select better services, service providers can improve their ser-
vices, and service brokers may publish better ranking and evaluation mechanisms for
others to use. With appropriate support such as publishing, search, discovery, and
analysis, these reusable artifacts can greatly reduce the time and effort in constructing
software, and various lifecycle models can be developed by reusing these artifacts in
software development.

Another lifecycle model is the current Web-based software development approach.
One popular web method is mashup[5] where people uses a service and/or data pro-
vided by a service provider, and apply it in another application. A popular application
is the real estate listing, and this is done by mashing up the real estate listing service

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 421

with the Google Map service. This is a form of SOC composition. In this approach,
requirement analysis is relatively simple as users are familiar with this application
from the beginning, and there is no need for new specification or the specification is
already available with the associated specification analyses such as completeness and
consistency checking, simulation and model checking performed already. The design
is straightforward as it is a composition of two well-known services with a reliable
data source, and thus there is no need of new design specifications. Few new code
will be developed as the application is simply composed from two well-known services.
There is little need of code verification as the mashup code and service code may have
been verified and ranked by users before. However, users still need to be involved in
validation as they should examine the system output carefully to ensures that all the
houses in the listing are properly displayed, and whether the map provided by the
Google map accurately reflect the location of the properties listed.

Figure 2. Tsai’s service-oriented computing lifecycle

This mashup development process illustrates that a Web-based software devel-
opment process can be different from traditional lifecycle models. Some key steps in
traditional processes may be skipped, changed or even re-arranged.

First, knowledge, search, and discovery of existing reusable artifacts including
architecture, services, workflows and test scripts become important. This leads to
search-based software engineering[26]. This can be applied to requirements, de-
sign, services, tests, test results, oracles, monitors, and policies. For example, one can
search a requirement template in a given requirement repository to specify a given
problem. Once a requirement template is found, a search can be conducted to find de-
sign templates, design patterns, and design architecture in design repositories. Then
search can be conducted to find suitable code templates and associated test scripts
to implement and test the given software.

Second, once reusable items are identified, ability to reuse and modify these
reusable items to create applications is important. This leads to composition-based
(instead of construction-based) and modification-based software engineering. This

422 International Journal of Software and Informatics, Vol.3, No.4, December 2009

may require the need of composition algebra (interprocedural analysis, Petri net,
data abstraction, design patterns have their composition rules). Table 1 shows the
differences.

Table 1 Traditional software development vs. Web-based software development

Traditional development processes Web-based development processes

Activities

• Constructing all the artifacts.

• Performing all the software pro-

cess activities, e.g. requirement,

design, coding, and testing.

• Discovering existing reusable artifacts.

• Reusing already provided by artifacts.

• Composing new applications from

these existing artifacts.

Knowledge

of ex-

isting

artifacts

• Important in domain-specific

product-line development pro-

cesses.

• Mainly used to improve the

software development productivity

and quality.

• Important in most Web-based applica-

tion development.

• Search and discovery capabilities are

based on the knowledge about the exist-

ing artifacts.

Specifications

• A variety of specification lan-

guages such as UML are available.

• These language can be used

in most existing development pro-

cesses.

• Ontology may be used to specify var-

ious artifact properties including both

functional and nonfunctional attributes.

• Different kinds of specifications lan-

guages are available to address different

aspects in software development.

Verification

and val-

idation

(V&V)

• A variety of V&V techniques are

available, e.g. testing, simulation,

model checking, theorem proving,

and symbolic execution.

• The emphasis is on independent

verification & validation.

• Most traditional V&V techniques can

be used.

• The published artifacts may have been

pre-verified and ranked before and after

publication.

• Newly composed artifacts may need

on-demand integration with on-demand

V&V.

• The emphasis is more like collabora-

tive verification and validation as multi-

ple parties need to collaborate to com-

plete V&V.

Data

prove-

nance

• Important for applications where

data play a key role, e.g. data ware-

house or data center.

• Important for most Web-based appli-

cations as artifacts will be shared among

multiple parties and thus correctness

and accuracy of application will depend

on the data input.

What will be an appropriate lifecycle model for Internetware? Many web-based
applications will be developed in the traditional model and then the developed soft-
ware will be ported to the Web. This is the current approach. However, the following
factors will gradually move traditional software development towards web-based de-
velopment:

• More software artifacts will be available on the Web, and these artifacts will
become candidates for reuse in composition. Moreover, many software devel-
opment tools such as ontology editors, modeling tools, compilers, composition
tools, simulators, model checkers, testers, C&C checkers, and policy enforce-
ment tools, will be moved to the Web, and Web-based software development
will become common. Microsoft takes this approach as it is porting most of
her software development tools on the Web in the Azure project. The Azure
will have .NET services (with access control, service bus, and workflows), live
services, and SQL services.

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 423

• The mashup process is designed for end users who may not computer experts,
and this kind of development processes will become dominant as there will be
many end users who are not computer experts, but will use a variety of software
services provided on the Web for applications.

The evolution from platform-based software development to Web-based software
development or Internetware will take time, but as more software services and software
development services will be available in the future, Internetware will become popular.

Some trends can be derived for Internetware lifecycle model:

• An important trend in Internetware lifecycle model will be reusability. This can
be evidenced by the recent emphasis of publishing, search, discovery and mining
in software development, and they are all related to software reusability.

• The reuse in Internetware may take place at different abstraction levels of the
software models, e.g. the application framework, the business process model,
the collaboration model, and in the different stages of the software development,
e.g. assembling, testing, and evaluation. Publishing only makes reusable assets
available, but specific items selected for reuse still need to be searched and dis-
covered possibly by using data mining techniques. To facilitate the selection,
not only software services can be published and reused, many other software
artifacts can also be published and reused. In other words, reusability poten-
tially can cover the entire lifecycle[33]. Another important issue in the lifecycle
is the on-demand and adaptive nature of Internetware. An application may be
dynamically composed to meet the changing needs and environment. The appli-
cation may be re-composed fresh or can be developed by changing an existing
application composition. These may require changes in the current comput-
ing infrastructure, and require the newly composed application to be tested
and evaluated immediately during or after composition. Google’s Chrome OS
bypasses the test and evaluation by insisting on rebooting the system if it is
compromised, as the original system is believed to be trustworthy, the rebooted
system is thus trustworthy.

• As in this lifecycle model, everything is based on the model developed in the
modeling phase, it is highly desirable that the modeling language to be in sync
with the code. As such, the assembling phase will immediately follow the mod-
eling phase and it will be followed by the deploying phase. If the model is not
in sync with the code, when the development process enters the feedback loop,
the model at hand may be rather different from the existing code, and thus
making the next modeling phase difficult. Requiring model and code synchro-
nization has been an issue as some has observed that UML model is often not
in sync with the code. For example, Keith Short of Microsoft said[27]: “But for
whatever reasons, the existence of UML and UML-based tools, has not signif-
icantly changed the way developers build applications. Nor has it significantly
contributed to developer productivity. Since Microsoft ships one of the most-
used UML tools–those based on Visio in Visual Studio Enterprise Architect–we
anonymously survey developers (not just our customers) on tool usage. We
have discovered that it’s a very small population who claim to use UML tools in

424 International Journal of Software and Informatics, Vol.3, No.4, December 2009

support of their tasks, and most usage clusters around class diagrams and use
case diagrams. When we drill into those who claim to use class diagrams, it’s
a tiny fraction that actually uses them to generate code. In fact, at Microsoft
generally, we use UML for many purposes–mostly documentation or sharing of
conceptual ideas–but almost never for any purpose where those documents relate
to actual software development artifacts.”

• It is important that the software engineering community develops a modeling
language that is compatible with modern web-based software development or
Internetware, and the models specified will be in sync with the code so that
code can be automatically generated from the model.

3 Ontology Systems

Most Web-based technologies use ontology systems. They provide the definitions
and vocabulary for a given domain. This kind of vocabulary is important as the arti-
facts on the Web are provided by different providers and used by different consumers.
Many ontology languages are available with associated tools such as RDF, RDFs,
OWL (including OWL-lite, OWL-DL and OWL-Full), OWL-S, SWSL, WSMO, and
PSML-O.

When talking about the ontology-based approaches, one may ask questions, i.e.
ontology of what (what kinds of knowledge or information will be specified), when it
can be used (in what lifecycle process one can use the information specified in on-
tology), and how to organize it (what is the best way to represent the complex and
dynamic information in the system), and how to apply it (how can a person use the
information in ontology to create or understand software). A common way of apply-
ing ontology in current Web-based technologies is for service discovery for application
composition. That is, knowledge about a service can be specified using the terms
defined in an ontology system, and a service consumer can search the needed services
using the terms specified in the ontology. The knowledge specified may include inter-
face (including IOPE, or input, output, preconditions, and effects), internal process
description, grounding rules, external use scenarios[30], and nonfunctional attributes.

However, only languages as well as the ontology about services cannot provide
all the reusable artifacts in Web-based software development. While, what kinds
of ontology systems are needed in Web-based software development for meeting the
needs mentioned in last section? Our previous work[14,42,43] demonstrates that the
ontology languages plus the software services alone are not enough for supporting the
Internetware framework. Ontology for Web-based software development may need to
conform to the following properties:

• First, ontology in Internetware is used not only for knowledge representation,
sharing, classification and reasoning, but for software development. Software
development often involves application modeling, architecting, code generation,
test and evaluation, and software modification and maintenance. Thus these
need to be addressed by ontology systems, as ontology will be used to produce
software.

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 425

• Second, in accordance with the features of Internetware lifecycle model, the on-
tology for Internetware may be organized according to either software develop-
ment processes or artifacts generated during the process. Software development
often involves application modeling, test and evaluation (T&E), architecture,
code generation, policy enforcement. Thus, one may classify the ontology into
the following systems:

– Application ontology (AO): This specifies and classifies the software
applications and will be directly reused or be adapted in the stage of ap-
plication modeling;

– Collaboration ontology (CO): This defines various collaboration tem-
plates among different parties of an application and will facilitate the mod-
eling of the collaboration models;

– Workflow ontology (WO): This specifies and classifies information re-
lated to workflows used in an application. In WO, specific workflows from
different application domains are classified and relations are also speci-
fied facilitating collaboration. A domain-specific WO can be developed to
facilitate rapid workflow identification and reuse;

– Service ontology (SO): This specifies and classifies information related
to software services including its interfaces, and functionality description.
This ontology helps the identification and discovery of the software services.

– Test ontology (TO): This defines concepts and relationships of test
scripts and cases. It will help to conduct the ontology-based test case
generation[1] for testing the generated application system;

– Policy ontology (PO): This defines and classifies policies used in a given
application domain. It can be applied when deploying the generated ap-
plication systems.

The application will be refined from the application framework level, the col-
laboration models, the workflow models, to the service models and then be
automated generated by discovering and composing the available software ser-
vices.

• Third, instead of depending on keywords or feature matching when using an
ontology system, it is possible to use the cross references or the context of
specific items. For example, a given application in AO may reference several
collaboration templates in CO, and each collaboration template may reference
several services and workflows in SO and WO. In this way, a user may find the
context of a given service or workflow by tracing from SO and WO to CO, and
eventually to AO. Different from the current solution for service discovery, if
one uses the ontology systems above with items specified can cross reference
to each other, one can identify not only individual services, but also a cluster
of services together with related workflows. This extends the current service
discovery to cluster discovery where a cluster is a set of services, workflows,
and related items such as policies that can work together as a sub-system of
an application. This will expand service discovery algorithms from keywords

426 International Journal of Software and Informatics, Vol.3, No.4, December 2009

matching, semantic matching, and planning to include template matching, pol-
icy matching, workflow or algorithm matching.

• Finally, ontology systems may also be domain specific, i.e., the knowledge spec-
ified will be related to specific domains. The advantages of domain-specific
ontology are that more in-depth analysis and reasoning can be developed for
these ontology systems. For example, in Ref.[35], a set of ontology systems
for smart-home application include domain ontology information that includes
appliance devices, building facilities, and personal preference.

Furthermore, most of the above ontology systems are related to functional as-
pects, except TO and PO. These two may be related to constraints and verification
aspects and deal with both functional and nonfunctional aspects. However, not only
functional aspects can be specified and defined in ontology, nonfunctional properties
can also be specified using ontology. For example, a nonfunctional ontology system[28]

has been proposed to specify nonfunctional properties that is shown in Table 2:

Table 2 A list of non-functional properties

Name of Ontology Content of Ontology

Locative ontology address aspects of a service

Temporal ontology the temporal (timing) aspects of a service

Availability ontology information about service availability

Obligation ontology information about contracts and obligation of services

Price ontology information about pricing of services

Payment ontology information about customer payment

Discounts ontology information about customer discount

Right ontology rights and royalty of intellectual properties

Trust ontology various trusts of services

QoS ontology quality of service including benchmark and ranking schemes

Security ontology security properties about services and parties

IP ontology information about intellectual properties

Rewards ontology information about rewards of using services

Provider ontology information about service providers

Measures ontology information about measurement units

Currency ontology information about currency for payment

The list is by no means comprehensive or exhaustive. But this indicates that
nonfunctional aspects may have more things involved than functional aspects.

However, multiple ontology systems may arise some other issues such as consis-
tency, traceability, and dependency. It is highly desirable that these ontology systems
are specified using the same ontology languages so that consistency, traceability, and
dependency among elements and relationships specified in these ontology systems can
be maintained.

Ontology completeness and consistency: Is the concerned ontology com-
plete and consistent, both internally with respect to knowledge specified in the ontol-
ogy, and externally with respect to knowledge in other ontology systems? What are
the completeness and consistency algorithms for the semantic information specified
in these ontology systems? Note that many ontology systems will be used in Inter-
netware including all the functional and nonfunctional ontology systems mentioned in

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 427

this section. If these ontology systems use different ontology languages and/or tools,
the completeness and consistency issue may become problematic.

Dependency analysis: What are the dependency relationships among elements
in the concerned ontology as well as in related ontology systems? Again, Internetware
may involve many ontology systems, and they may depend on each other as they cross
reference each other. This is critical for supporting rapid software development.

Ontology merging: While ontology has been proposed to the heterogeneity of
different systems with different database design and concerns. As the Web will have
many diverse ontology systems developed by different groups, ontology merging will
become an important issue otherwise one cannot take advantages of those ontology
systems that are available.

Ontology change management: Ontology updating is an issue as ontology
systems need to be updated to include new knowledge and data, if the system is
fully cross referenced, indexed, and analyzed, adding any new items into the system
will require the system to re-analyze, re-reference, and re-index the updated ontology
system. Note as ontology systems are used in software development, any changes may
propagate to all the software programs developed using the changed ontology system.
One way to address this problem is that ontology entries cannot be changed or deleted,
and only new items can be added. This will minimize the change propagation. But
is this a practical solution? Can an ontology system not allow any update but allow
addition only in this open and dynamic Internet environment? If an ontology system
allows changes in its existing entries, various change propagation mechanisms should
be supported.

4 Modeling and Simulation

Note that the ontology systems are not application models or environment (or
context) models for applications. It just provides definitions and vocabulary that
can be used by software engineers to model applications and to mode environment
of applications. Because of the on-demand and adaptive nature of Internetware, the
development process in Internetware framework will be model driven and integrate
both development and execution processes. Thus, modeling applications is the key
issue in Internetware framework.

In fact, the service-oriented computing development lifecycle models, e.g., IBM
SOA lifecycle in Fig.1, are also centered by the modeling. However, some existing
SaaS applications do not follow this process yet. Instead, they follow the traditional
engineering process, except that they design a software evolution scheme for the soft-
ware to evolve after publication. In this way, the software design and implementation
processes is slightly more involved than the current software development, but the
kinds of evolution allowed will be decided at the design time.

To support a model driven and integrated development-execution process, one
important issue is the selection or design of a modeling language. Is UML a suit-
able language for Internetware? Many UML modeling diagrams are mostly neutral to
any software design or architecture, e.g., system sequence diagrams or system com-
ponent diagrams can be considered architecture-neutral as they can be applied to
OO application as well as SOC applications. However, some UML diagrams are de-
signed mainly for OO modeling only such as class diagrams. Many UML extensions

428 International Journal of Software and Informatics, Vol.3, No.4, December 2009

are available to specify SOC applications[3,9,13,23,39,41]. For example, OMG proposes
the SoaML (SOA Modeling Language)[23] to facilitate services modeling. SoaML is
a standard extension to UML 2, and it provides a standard way to architect and
model SOA solutions. It offers specification for the UML profile and metamodel for
services, and is integrated with OMG Business Motivation Model (BMM). For ex-
ample, the MUSIC approach[9] incorporates ontology and semantic web with UML
to specify requirements in a ubiquitous computing environment. Wirsing and others
proposed a semantic-based development of service-oriented systems, which includes
service-oriented extensions to the UML, a mathematical basis formed by a family
of process calculi, a language for expressing context-dependent soft constraints and
preferences, qualitative and quantitative analyses, and model transformations from
UML to process calculi[41].

However, it is important that the modeling language in Internetware framework
needs to support the whole Internetware lifecycle model, specifically a model-driven
process from modeling to assembling, from assembling to deploying, and from deploy-
ing to managing. Furthermore, the corresponding web-based infrastructure needs to
be developed to support ontology, modeling, publishing, discovery, composition, test-
ing, simulation, deployment, model checking, and evaluation based on the modeling
language chosen.

Moreover, to support these features, a modeling language need to have the fol-
lowing characteristics:

• Modeling Environments or Context: Modeling an environment can be
more difficult than modeling an application due to validation issues. About 10
years ago, an air-traffic control system falsely signaled an immediate danger as
numerous aircrafts appeared in a fly zone. It turns out that those aircrafts are
actually birds flying over the watched area, and the system mistakenly identified
those birds as aircrafts. This is an example of the black swan phenomenon[28]

as there was no record of that many flying birds can be detected by radar as air-
crafts, and no one has anticipated this context during system development and
even operation earlier. Thus, this example illustrates that environment mod-
eling is inherently difficult. Furthermore, a large system may have a complex
environment that includes external systems, operators, users, and intruders, and
each of these are actually autonomous agents with their own goals, processes,
and data. While significant progress has been made in modeling autonomous
agents such as AML (Agent Modeling Language), ADEM (Agent-Oriented De-
velopment Methodology), and agent computing infrastructure including meta
information, data storage, and execution engine, however, in general it is difficult
to model every external agents’ behavior, particularly those new and unexpected
behaviors.

In fact, any system can be considered as an environment for another system.
For example, with respect to a heart simulator, a pacemaker can be considered
as its environment, and vice versa. Thus, an environment needs to be modeled,
analyzed, evaluated, and simulated like a system. As the system design now
moves into the Web, the environment design also moves into the Web. In
other words, it is possible to publish an environment system or agent about its
interface (such as the traditional SOC interface IOPE), its internal process logic,

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 429

and its interaction with external systems. Once published, an environment can
be discovered and used in composition to form a large composite environment
just like a composite system can be composed using other subsystems as services.
In fact, the entire SOC development processes and activities can be applied to
develop an environment.

• Formalizing Environment-System Interaction in a Service-Oriented
Manner: The interactions between the environment and the system need to be
carefully designed, and evaluated during the environment design, monitoring,
and policy enforcement during execution. The system-environment interaction
can be formally specified, analyzed, simulated and even published, so that new
environment system or agents can be developed to meet the specification of
published interaction. Formal methods can also be used to model interactions to
ensure safe system operation. Several system-environment interaction schemes
have been proposed[30,40], and they can be further extended. These interactions,
once formalized, can also be published in CCSOA (Consumer-Centric SOA[33]).
For example, a user may want to publish a specification of system-environment
interaction, and request software developers to develop software to meet the
specification.

Figure 3. Environment and system

For example, as shown in Fig.3, the Vehicles system exposes its interactions
with its external environment as services, such as notification service and in-
formation service. The Policy system, also exposed as services, captures the
events in the interactions between the Vehicle system and its environment, de-
tects the anomalies, and triggers the enforcement of the governance rules. The
system workflow integrates the Vehicle system with the Policy system in specific
business processes. The service-based approach enables dynamic configuration,

430 International Journal of Software and Informatics, Vol.3, No.4, December 2009

composition and evolution of the Vehicle system and Policy system. The ser-
vicetized Vehicle functionalities can be bound to various Policy services with
different monitored events, detected fault models, regulation rules and enforce-
ment strategies. Once a change occurs in the Vehicle system, the policies can
be re-composed according to trace the changed interactions between the Vehicle
system and its environment.

• Integrated Environment-System Engineering Processes: An important
element of an environment is human. A human user may operate on the software
according to the specified rules, and the person may use a completely different
process. Fault-tolerant computing has learned that human operators are one of
the major sources for system failures, and thus recently the human operation
process and even the cognitive processes are modeled as a part of system mod-
eling, and the human operation process can be treated as a part of integrated
system engineering process. For example, MIT Engineering Systems Division
now offers a track on human-systems engineering[21], and US government also
started a human-centered system engineering process[22] where human operation
processes are considered as an integral part of system processes during system
development. In fact, if one considers other external systems as an integral
part of the system, one can also propose an integrated environment-system sys-
tem engineering processes where environment processes including autonomous
human operation processes are considered. This system engineering process is
different from traditional human factors or human engineering. Human factor
engineering focuses on designing a system interface that will be easy to use and
operate; however, human-system engineering is an engineering process where hu-
man processes are considered an integral part of the system processes including
those fault-tolerant human operation processes and human cognitive aspects,
and these processes are specified and analyzed during system requirement, de-
sign, coding and testing phases of system development. Thus, human-system
engineering is a much broader process as it goes beyond user interface design.

Figure 4. Environment-System co-engineering

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 431

For example, as shown in Fig.4, the Vehicle system is modeled as system A
while its environment is modeled as system B. Each system can have its internal
processes which can be built, and evolved as well, independently and in parallel.
The workflow system serves as a glue between the two through their exposed
service interfaces. In this way, each system is the environment of the other and
each system can be built with awareness of the other. Intelligent mechanism can
be built into each system to extend the functionalities so that the system can
recieve/detect the events from its environment system and react to the events.

• Environment-Based Security and Safety Issues: For Internetware, the
environment will be complex as it is an open system as new users may join
after system operation, and system may be open too as new services may be
available to be integrated into the system after deployment. Thus, it may be
not possible to predict who will be involved and the kind of processes will be
used during operation. The open Internet environment, together with new busi-
ness and organizational practices, has increased the complexity of security and
safety considerations dramatically. In such a setting, a system can potentially
be interacting and sharing information with a large number of other systems,
often on ad-hoc and dynamically negotiated configurations. Traditional models
and techniques for characterizing and analyzing security and privacy may not
be sufficient. Ref.[16] proposes an approach for quantitatively evaluating the
security requirements based on an environment model.

In general, any system modeling languages can be used to model an environ-
ment, e.g., some used state-transition diagrams[40,43], agents and agencies, UML,
rules, and logic. In general, if the environment is modeled (possibly using vo-
cabulary from a domain ontology), the environment model needs to be verified
and validated. In some sense, any faults in the environment model and the
mis-matching in the environment-system interaction may arise the safety and
security issues[15].

• Integrated System-Environment Engineering with Ontology: Once sys-
tem components and environment components can be formalized and published,
they can also be composed to form larger systems and/or environments. Before
a service can be published, it must be rigorously evaluated by service providers,
and once published, it may be extensively evaluated and ranked by users, and
evaluation may be based on test or evaluation ontology. Also, the evaluation
methods and results can be published[31]. In this way, system and environment
evaluation mechanisms and artifacts can be published (and composed like a
system) using evaluation and test ontology systems. For example, individual
test scripts for services can be composed to form an integration test script for
a composed application.

The design of such a modeling language as well as corresponding modeling ap-
proach are an important issue for Internetware. Furthermore, Internetware will face
additional issues: simulation and policy enforcement. Once a system and its envi-
ronment have been modeled, they need to be evaluated including static and dynamic
analysis. Two important dynamic analysis are simulation and policy enforcement.

432 International Journal of Software and Informatics, Vol.3, No.4, December 2009

If Internetware needs to be carried out rapidly, a simulation infrastructure needs to
be developed and such simulation infrastructure is still at the beginning stage of
development[33,34].

Table 3 summarizes the issues concerning the modeling and simulation.

Table 3 Modeling and simulation issues

Activities and Issues

Modeling

• System modeling using original system requirements, ontology, and

various published items such as services, workflows, and application

templates.

• Design of modeling languages that can specify services, workflows,

system architecture, and is compatible with ontology and software

development.

Assembling

• Software is designed by composition using discovered services, work-

flows, collaboration templates, and application templates.

• Various software evaluations need to be conducted including simu-

lation, model checking, completeness and consistency checking, and

system integration testing.

• As system may be just composed, these activities need to be per-

formed on-demand immediately after composition.

Deploying

• Software deployment to an execution environment on the Web, so the

execution environment needs to allow new software to be integrated

in existing running software.

Managing

• Software execution will be monitored, so the modeling language

needs to allow application execution to be observed.

• various runtime policies will be enforced at runtime, so the execution

environment needs to support police enforcement at runtime.

5 Social Ranking for Software Evaluation

As Internetware assets will be published in Internet and these assets will be reused
in the future software development. Social networking will play a role in Internetware
software development framework, social networking can be used in developing require-
ments, specifications, workflows, software services, test cases, test scripts, inspection
and policies in a wiki manner. In this way, people collaborate using a wiki program
to develop a software artifact over the Internet. That will become a typical scenario
in Internetware software development framework.

An experiment has been done to the ranking based software testing in service-
oriented manner[37]. It assumes that there are plenty of available test services and
test scripts distributed over Internet. These test services and test scripts have been
ranked for helping the selection for reusing. The ranking can be based on physical
ranking, e.g., the number of failure found, or social ranking, e.g., the review by the
community participants.

On the one hand, before a test service or test script is published and checked
out from the repository, it should be verified to ensure its quality. This can be done
by a service broker, and it can verify any service or test scripts submitted. Most
of these ranking are based on test results (for example, those potent test cases will

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 433

be ranked high), coverage (certain coverage criteria may be ranked high for certain
testing applications), or component tested (for example, the test cases that execute a
modified section will have a high priority during regression testing). In other words,
these are often based on physical items such as the test cases, test results, or software
components. That is the physical ranking.

Suppose that there is a group of services S = {si} of the the same type. We can
use the Bayesian ranking method[1] to evaluate the relative ranking of a service s in
the group as follows:

WR(s) =
(1

n

∑
Ni)× (1

n

∑
Ri) + Ns ×Rs

(1
n

∑
Ni) + Ns

(5.1)

Where WR(s) is the ranking of service s; N is the total number of test runs
of each service si in the group; Ri is the pass rate of each service si; Ns is the test
runs of the evaluated service s; Rs is the pass rate of s; and n is the total number of
services in the group, that is the size of S. Taking P as the number of passes of a
service, it can be simplified as follows:

WR(s) =
(1

n

∑
Pi) + Ps

(1
n

∑
Ni) + Ns

(5.2)

In the formula above, all of the test results are treated equally. However, many
factors may affect the pass rate of a service, such as the goodness of test cases and the
skill of testers. For example, an experienced tester may select more suitable test cases
with higher credibility to validate the service functional and non-functional proper-
ties, compared with the inexperienced testers. Hence, we can introduce “credibility”
attribute to each test execution. In the formula below, the pass number of each ser-
vice is revised with a weight k to indicate the credibility of each test run and the
confidence of each test result[45].

WR(s) =
(1

n

∑
kj × Pi,j) +

∑
kj × Ps,j

(1
n

∑
kj ×Ni,j) +

∑
kj ×Ns,j

(5.3)

In addition, one can also use a social process, i.e., opinions and comments by peers
and/or participants. In fact, while physical T&E has been the principal approach for
software development organizations, end users often use software due to social eval-
uation and ranking. For example, few people test office software before application,
and they use the software because it has been ranked high socially. Similarly, people
seldom perform extensive T&E before they purchase a car, and they often buy a car
due to social ranking (for example, they read user feedback and ranking on the Web).

Thirteen factors are identified in social ranking[38], the following list show those
related to testing services:

• Author rank: An item produced by a high-ranking author will have a high
rank.

• Usage rank: An item used extensively will have a high rank, and the usage
data will be contributed by participants.

• Application rank: An item used in critical applications will have a high rank.

434 International Journal of Software and Informatics, Vol.3, No.4, December 2009

• User rank: A service used by important organizations or groups will have a
high rank. For example, a service used by a government agency will have a
higher rank than a service used by an unknown organization.

• User feedback rank: A service can be directly ranked by users. Note that a
user is also ranked, and thus a highly ranked user will have more weight.

• Release time rank: Recently released software may serve current needs, and
thus it may be placed in a high priority list for discovery if it has other attributes
such as developed by highly ranked authors or organizations.

All the physical and social items will be ranked to ensure that the best assets will
be used first. Physical ranking and social ranking on the same assets have different
meanings and both of them may contribute to the final ranking. While social ranking
does not provide physical evaluation, it reflects the consumer sentiment. Thus, social
ranking may represent extensive experience or practice. For example, a software
program is ranked because it has been used extensive by a large number of users for an
extended period of time, and thus it is likely that it will be a quality product. However,
no software with low physical or social ranking can be used. For example, a software
program with high physical ranking but low social ranking may indicate issues not
addressed by common T&E activities such as low usability. Table 4 summarizes the
discussion.

Also, rankings can be continuously updated as more data are collected. In this
way, Internet software will be evaluated continuously updated.

Table 4 Physical and social ranking

Physical ranking Social ranking Recommendation

Not available High Use only for non-critical applications.

Low High Not recommended.

Low or not available Low or not available Not recommended.

High High Good for application.

High Not available
Recommended, but it will be

better if it is also socially ranked.

High Low Not recommended.

Another experiment has been done to the trust ranking of the software services[46].
This experiment assumes that the published software services are service agents.
These agents have goals and intentions and can perform actions to supply services for
achieving the goals. Furthermore, they show sociality by making commitment so that
the service selectors can choose them and delegate tasks to them. When a service
selector (normally the software developers) tries to select an agent to delegate it a
task, the service selector need to inference the trust value based on its knowledge on
this agent.

This experiment also takes Castelfranchi’s view[4] on social trust beliefs for con-
ceptualizing the trust-related information. It combines also the objective criteria and
the subjective or social criteria. It classifies the information that can be used in trust
measurement into six dimensions: the competence belief, the intention belief, the in-
tegrity belief, the persistence belief, the predictable belief and the reputation belief.

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 435

Among them, the first five are physical criteria that can be inferred from the descrip-
tion of the agent (the competence belief and the intention belief) or the history of
the services the agent has offered (the integrity belief, the persistence belief and the
predictable belief). While, the sixth criterion i.e. the reputation belief, is the social
ranking of the service supplied by the agent.

Efforts are taken on relating those physical trust beliefs with the capability de-
scription of agents and the historic information about the service. Different from the
physical ranking in the first experiment, the physical trust beliefs are inferred results
by using some inference rules rather than by some physical measurement. These rules
can be described informally as follows.

• Competence rule 1: If an agent knows how to perform an action and it has the
resource for performing the action, then it can perform the action.

• Competence rule 2: If an agent knows that supplying a service needs performing
a set of actions and it can perorm all the actions, then it can supply the service.

• Intention rule 1: If an agent wants a consequence and it knows that performing
an action can result in the consequence, then it intends to perform the action.

• Intention rule 2: If an agent commits to supply a service and the service means
a set of actions, then the agent commits to perform all of the actions and intends
to perform all of the actions.

• Integrity rule 1: If an agent commits to supply a service and the service needs
a set of actions but the agent is not able to perform one of the actions, then the
agent is not integrity.

• Persistence rule 1: If an agent can supply a service and it commits to supply the
service and the service means a set of actions but the agent does not perform
one of the actions, then the agent is not persistent.

• Predictability rule 1: If an agent has goals and it supplies service for achieving
some of the goals but it does not supply services for achieving another goals,
then the agent is not predictable.

The second effort is scoring the integrity, the persistence, the predictability and
the reputation of a service agent. These scores change along the interaction between
the agent and the service selector. For the integrity, the persistence and the pre-
dictability, the scores increase by 1 for one interaction that meets the corresponding
condition and decrease by 1 for one interaction that does not meet the correspond-
ing condition. For the reputation value, we argue that the strategy should make
the reputation score to increase slowly and decrease fast for encouraging agents to
act successfully and avoid failure. Thus, for an candidate service agent a, after an
interaction:

Integrity(a) =
{

Integrity(a) + 1 if it is integrity in the current interaction

Integrity(a)− 1 otherwise
(5.4)

436 International Journal of Software and Informatics, Vol.3, No.4, December 2009

Persistence(a) =
{

Persistence(a) + 1 if it is persistent in the current interaction

Persistence(a)− 1 otherwise
(5.5)

Predictability(a) =
{

Predictability(a) + 1 if it is predictable in the current interaction

Predictability(a)− 1 otherwise
(5.6)

Reputation(a) = Reputation(a)− (1 + dReputation(a)× α + βe) (5.7)

Here, a ∈ (0, 1), b ∈ [0, 1) are two factors. With these rules, when selecting an
agent for delegating a task, the service selector can judge the trustworthiness of the
candidate service agent as follows:

Trust(a) =

1
n
× (p1× Integrity(a) + p2× Persistence(a)+

p3× Predictability(a))⊗Reputation(a)

if a is competent and has intention

−∞ otherwise

(5.8)

Here, p1, p2, p3, p4 are the service selector’s preference on the four trust-related
dimensions, p1, p2, p3, p4 ∈ [0, 1] and p1 + p2 + p3 + p4 = 1. ⊗ is a symbol that
represents that trust value consists of two parts.

Different from the global social ranking in the first experiment, this experiment
emphasizes the individual judgement on particular software assets. Each service se-
lector may have its own interaction history with the software assets and may have its
own preference on different trust dimensions. Hence, each service selector in Web-
based software development has its own trust value to any particular software asset.
The trust value is derived by its own inference engine based on the known history
and current interaction information about the assets. As such, the autonomy of the
service selectors can be captured to a certain extent.

6 Conclusion

Internetware presents many new issues not faced by traditional software develop-
ment. The new issues mainly from the open, dynamic, and distributed nature of the
Internet environment. While many new techniques such as ontology, SOC, environ-
ment modeling, social ranking, cloud computing, and adaptive control mechanisms,
are being developed to address these issues, these new techniques still need to be eval-
uated in the Internet environment to demonstrate their feasibility and effectiveness.

References

[1] Allen C, Appelcline S. ’Collective Choice: Rating Systems’. http://www.lifewithalacrity.com/

2005/12/collective choi.html.

[2] Bai X, Lee S, Tsai WT, Chen Y. Ontology-Based Test Modeling and Partition Testing of Web

Services. Proc. of IEEE Web Services, 2008. 39–46.

[3] Berkem B. From BMM to SOA. Journal of Object Technology, 2008, 7(8): 57–70.

[4] Castelfranchi C, Falcone R. Social trust: cognitive anatomy, social importance, quantification

and dynamics. Autonomous Agents 1998 Workshop on Deception, Fraud and Trust in Agent

Societes, 1998. 35–49.

[5] Chen Y, Tsai WT. Distributed Service-Oriented Software Development. Kendall Hunt, 2008.

[6] The Chicago Manual of Style. University of Chicago Press, Chicago 60637, USA, 1982.

Wei-Tek Tsai, et al.: Internetware computing: Issues and perspective 437

[7] Cloud Computing: Wikipeida entry. http://en.wikipedia.org/wiki/Cloud computing, 2009.

[8] Forgaard R. A Program for Generating and Analyzing Term Rewriting Systems[Master’s Thesis].

MIT Lab. for Computer Science, 1984.

[9] Geihs K, Khan MU, Reichle R, Wagner M. Modelling Notation for Adaptive Applications

in Ubiquitous Computing Environments. Project Report. http://www.ist-music.eu/MUSIC/

results/musicdeliverables/techreportreference.2008-02-21.3918111699, 2008.

[10] IBM Developers Works: IBM’s SOA Foundation: An Architectural Introduction and Overview.

http://www.ibm.com/developerworks/webservices/library/ws-soa-whitepaper, 2005.

[11] Adams H. Mashup Business Scenarios and patterns. http://www.ibm.com/developer-works/

lotus/library/mashups-patterns-pt1, 2009

[12] Jarvis J. What Would Google Do? Collins Business, 2009.

[13] Johnson SK, Brown AW. A Model-Driven Development Approach to Creating Service-Oriented

Solutions. http://www.ibm.com/developerworks/webservices/library/ar-soaspl/, 2006.

[14] Liu Z. Requirement Elicitation and Modeling for Service-Oriented Requirements Engineer-

ing[Master Thesis]. Arizona State University, 2008.

[15] Liu C, Wang Y, Jin Z. Elicit the Requirements on Software Dependability: A Knowledge-Based

Approach. APSEC, 2009.

[16] Long T, Liu L, Yu Y, Jin Z. AVT Vector: A Quantitative Security Requirements Evaluation

Approach based on Assets, Vulnerabilities and Trustworthiness of Environment. Proc. of IEEE

International Conference on Requirements Engingeering, 2009: 377–378.

[17] Lv J, Ma X, Tao X, Xu F, Hu H. Research and progress of Internetware. Science in China Series

F: Information Sciences, 2006, 36(10): 610–622.

[18] Lv J, Ma X, Tao X, Cao C, Huang Y, Yu P. On Environment-Driven Software Model for

Internetware. Sciences in China F: Information Sciences, 2008: 683–721.

[19] Mahout A. http://lucene.apache.org/mahout/, 2009.

[20] Mei H, Huang G, Lan L, Li J. A Software Architecture-Centric Self-Adpation Approach for

Internetware. Science in China F: Information Sciences, 2008: 722–742.

[21] Human-Systems Engineering (HSE). http://esd.mit.edu/hse/.

[22] Human-Centered Systems Eniginering Process Guidance. www.hf.faa.gov/docs/508/docs/

Human System Engineering (NSWC).pdf

[23] OMG: Service Oriented Architecture Modeling Language (SoaML) -Specification for the UML

Profile and Metamodel for Services (UPMS). http://www.omg.org/docs/ad/08-08-04.pdf, Aug.

2008.

[24] Parr B. With Chrome OS, Google Intends to Destroy the Desktop and Microsoft.

http://mashable.com/2009/11/19/impact-of-chrome-os/, Nov. 2009.

[25] T. O’Reilly: What is Web 2.0?. Available at http://www.oreillynet.com/pub/a/oreilly/tim/

news/2005/09/30/what-is-web-20.html, 2005.

[26] Search-based Software Engineering, Wikipedia. http://en.wikipedia.org/wiki/Sear-ch Based

Software Engineering.

[27] Short K. UML and DSLs Again. http://blogs.msdn.com/keith short/archive/2004/04/16/

114960.aspx

[28] Toma I, Foxvog D, De Paoli F, Comerio M, Palmonari M, Maurine A. Non-Functional Properties

in Web Services. CMS WG Report, 2008, D3 v. 0.1.

[29] Taleb NN. The Black Swan: The Impact of Highly Improbable. Random House, 2007.

[30] Tsai WT, Song W, Paul R, Cao Z, Huang H. Service-Oriented dynamic reconfiguration frame-

work for dependable distributed computing. Proc. of the 28th annual International Computer

Software and Applications Conference (COMPSAC), 2004. 28–30.

[31] Tsai WT, Chen Y, Paul R, Huang H, Zhou X, Wei X. Adaptive Testing, Oracle Generation,

and Test Case Ranking for Web Services. COMPSAC, 2005(1): 101–106.

[32] Tsai WT. Service-Oriented System Engineering: A New Paradigm. Proc. of IEEE International

Workshop on Service-Oriented System Engineering (SOSE), 2005. 3–8.

[33] Tsai WT, Xiao B, Paul R, Chen Y. Consumer-Centric Service-Oriented Architecture: a New

Approach. Proc. of IEEE WCCIA, 2006. 175–180.

[34] Tsai WT, Fan C, Chen Y. DDSOS: A Dynamic Distributed Service-Oriented Simulation Frame-

work. The 39th Annual Simulation Symposium (ANSS), 2006. 160–167.

[35] Tsai WT, Huang Q, Sun X, Chen Y. Dynamic Collaboration Simulation Framework in Service-

438 International Journal of Software and Informatics, Vol.3, No.4, December 2009

Oriented Computing Paradigm. Proc. of ANSS, 2007. 41–48.

[36] Tsai WT, Cao Z, Wei X, Paul R, Huang Q, Sun X. Modeling and Simulation in Service-Oriented

Software Development. Simulation, 2007, 83(1): 7–32.

[37] Tsai WT, Zhou X, Chen Y, Bai X. On Testing and Evaluating Service-Oriented Software. IEEE

Computer, 2008, 41(8): 40–46.

[38] Tsai WT, Zhong P, Bai X, Alston J. Role-Based Trust Model for Community of Interest. Proc.

of IEEE SOCA, 2009.

[39] UN/CEFACT: UN/CEFACTs Modeling Methodology (UMM), UMM Meta Model - Foundation

Module. Technical Specification V1.0. http://www.unece.org/cefact/umm/UMM Foundation

Module.pdf, 2006.

[40] Wang P, Jin Z, Liu L, Cai G. Building Towards Capability Specifications of Web Services Based

on an Environment Ontology. IEEE Transactions on Knowledge and Data Engineering, 2008,

20(4): 547–561.

[41] Wirsing M, et al. Semantic-Based Development of Service-Oriented Systems. Proc. Interna-

tional Conf. Formal Techniques for Networked and Distributed Systems, 2006. 24–45.

[42] Wu B. Service-Oriented Modeling: A Reuse-based Approach[Ph.D. Thesis]. Beijing: Academy

of Mathematics and System Science, Chinese Academy of Science, 2009.

[43] Wu B, Jin Z, Tsai WT, Liu Z. Service-Oriented Modeling: A Reusability Approach IEEE

Transactions on Service Computing, 2009. (to appear)

[44] Yang F, Lv J, Mei H. Technical Framework for Internetware: An Architecture-Centric Approach.

Science in China Series F: Information Sciences, 2008. 610–622.

[45] Zhang Y, Bai X, Jiang C. A Technique for Evaluating Services Based on Improved Bayesian

Voting Algorithm. J of Computer Science, 2008, 35(04): 255–259.

[46] Zhu M, Jin Z. An Agent-Based Trust Model for Service-Oriented Systems. R. Falcone, K.

Suzanne Barber, J. Sabater-Mir, Singh MP(Eds.): Trust in Agent Societies, 11th International

Workshop, TRUST 2008, Estoril, Portugal, May 12-13, 2008. Lecture Notes in Computer

Science 5396: 162-181 Springer 2008.

