
Int J Software Informatics, Volume 6, Issue 3 (2012), pp. 453–472 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2012 by ISCAS. All rights reserved. Tel: +86-10-62661040

Web Data Extraction from Query Result Pages

Based on Visual and Content Features

Daiyue Weng, Jun Hong, and David A. Bell

(School of Electronics, Electrical Engineering and Computer Science,

Queen’s University Belfast, Belfast BT7 1NN, UK)

Abstract A rapidly increasing number of Web databases are now become accessible via

their HTML form-based query interfaces. Query result pages are dynamically generated

in response to user queries, which encode structured data and are displayed for human

use. Query result pages usually contain other types of information in addition to query

results, e.g., advertisements, navigation bar etc. The problem of extracting structured data

from query result pages is critical for web data integration applications, such as comparison

shopping, meta-search engines etc, and has been intensively studied. A number of approaches

have been proposed. As the structures of Web pages become more and more complex, the

existing approaches start to fail, and most of them do not remove irrelevant contents which

may affect the accuracy of data record extraction. We propose an automated approach for

Web data extraction. First, it makes use of visual features and query terms to identify data

sections and extracts data records in these sections. We also represent several content and

visual features of visual blocks in a data section, and use them to filter out noisy blocks.

Second, it measures similarity between data items in different data records based on their

visual and content features, and aligns them into different groups so that the data in the

same group have the same semantics. The results of our experiments with a large set of

Web query result pages in different domains show that our proposed approaches are highly

effective.

Key words: web data mining; web data extraction; data record extraction; web data

alignment

Weng DY, Hong J, Bell DA. Web data extraction from query result pages based on

visual and content features. Int J Software Informatics, Vol.6, No.3 (2012): 453–472.

http://www.ijsi.org/1673-7288/6/i133.htm

1 Introduction

The volume of structured data on the Web has been increasing enormously. Such
data is usually returned from the back-end databases in response to specific user
queries, and presented in the form of data records, which are enwrapped in query
result pages. In the literature, the contents stored in web databases are referred to as
the deep Web and query result pages are referred to as deep web pages. A study[12]

in 2004 reveals that the scale of web databases that are ‘hidden’ on the Web is well
in the order of 105 and continues expanding rapidly. Another estimate is that the

Corresponding author: Daiyue Weng, Email: dweng01@qub.ac.uk

Received 2011-11-14; Revised 2012-07-19; Accepted 2012-08-21; Published online 2012-09-18.

454 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

number of Web databases has reached 25 millions[27]. Many e-commerce sites are
supported by web databases.

In general, majority of query result pages are list pages. A list page contains
several data records in multiple columns with each row on each column representing
a data record. For example, Fig. 1 shows a snapshot of a list page from cooking.com,
which has a single column containing two data records. Each record represents a plate
with several data items e.g. name, price, model etc.

Figure 1. An example of Web data records in a list Page

Extracting data records from query result pages enables integrating data from
various Web databases to provide value-added web applications, such as, price com-
parison sites and meta-search engines etc. Query result pages are dynamically gener-
ated from back-end databases in response to user queries and encoded in HTML using
pre-defined templates or script programs. These pages are semi-structured and dis-
played for human use, rather than for processing by programs. How to automatically
extract data records is a very challenging problem.

There has been intensive research on fully-automatic approaches[3−11,13−16,18] for
extracting data from query result pages. These approaches first represent input pages
as either various kinds of tree structures or token strings. They then try to identify and
extract data by exploring the regularities within these representations and optionally
the regularities of visual features that are inherently exhibited in the pages. The
work in Ref. [18] transforms a page into a Visual Block tree[19] and primarily uses the
visual features of the page to identify data sections, extract data records and align
data items. The methods in Refs. [13–16] extract data from query result pages by
identifying repetitive patterns or templates in the token strings of the result pages.
Among these approaches, those in Refs. [3-10] represent the current technical trend
of query result extraction. First, they identify a data section, which contains a set of
data records. Second, they identify data records from each data section. Finally, they
extract data by aligning the corresponding attributes of different records, producing
a relational table[4, 5, 8,10]. The approach in Ref. [11] also extracts labels as attribute
names for extracted attributes. This is a mainstream extraction strategy that has
proved very efficient and effective based on their experimental results.

However, the existing fully-automatic approaches to query result extraction have
the following limitations. First, Web pages are becoming more and more complex.
Their tag structures are growing more and more complex since HTML itself is evolv-
ing, and other technologies like JavaScript and CSS are widely deployed to make

Daiyue Weng, et al.: Web data extraction from query result pages ... 455

result pages more dynamic. This may make the layouts of result pages different from
their DOM tree or token string representations. Thus the existing approaches that
rely on such representations may fail to extract data records from the pages. Second,
many current techniques employ a similarity measure on page segments of DOM trees
to identify data records. However, data records may not be extracted correctly if the
sibling DOM tree segments of the same root are dissimilar to each other. This also
makes it impossible to extract a single record in a data section. The work in Ref. [7]
can extract one or more data records within a data section by identifying tag forest
separators which are used to partition the data section. However the wrappers it
generates for extracting multiple data records require that the tag structures of all
the records in the same data section must be siblings under the same sub-tree. Some
data sections may contain tag structures that are not siblings. Third, most of current
approaches do not filter out noisy contents or the result of eliminating noisy contents
is not satisfactory. Noisy contents refer to any part of a query result page that is not
part of any data record. For example, banner advertisements, navigation bar, copy-
right notice, record statistical information etc are noisy contents. In other words, we
are most interested in the part of a result page which contains all the data records
with little noisy content which often affects the accuracy of data record extraction.
Thus it is very important to remove any noisy content before data record extraction.

In this paper, we focus on the following problem: Given a query result page that
contains a single column of one or multiple data record(s), automatically identify the
data section and data records in the page; automatically extract and align data items
from the data records. We propose an approach that consists of two phases.

In the first phase, given a query result page, our approach first identifies data
records in the page based on a visual block partition of the page in terms of visual
adjacency. In particular, the method for data record extraction performs in three
steps:

Step 1: The approach transforms a query result page into a Visual Block tree,
which represents a visual partition of the Web page. Such a representation reflects the
content organization of the page enforced by visual cues so that content related parts
will be represented in the same branch of the Visual Block tree. For example, Fig. 2
shows a visual partition of a result page (Fig. 2(a) and (b)) and the corresponding
Visual Block tree (Fig. 2(c)) created by the VIPS algorithm[19]. We can also get
visual features (e.g. position, width, height etc) of each block on the Visual Block
tree.

Step 2: We observe that a data section in a result page, which contains all the
data records, usually occupies a significant area of the result page. We also observe
that query terms usually re-appear in the data records. We use these two observations
to identify the data section by exploiting the sizes of the blocks of the Visual Block
tree of the result page, and counting the occurrences of query terms in them. For
example, block b1 1 2 2 3 4 in the Visual Block tree in Fig. 2(c) is the data section
since it occupies a large portion of the result page in Fig. 2(a) and contains a number
of occurrences of query terms (e.g.“Accent Plates”). To get query terms, we make
use of the query interface and assume that the result pages are generated in response
to the queries containing query terms.

The identified data section often contains noisy blocks. Data records are obvi-

456 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

ously more vivid in content than noisy blocks, have one or more links or some images.
To filter out noisy blocks, we use a number of content and visual features to character-
ize each block within the data section. These features provide statistical information
about texts, block areas, links and images in the block. The overall importance of a
block for a data record is apparently higher than noisy blocks. We set up a threshold
of importance to evaluate the importance of each block. Less important blocks are
noisy blocks that can be removed. For example, as shown in Fig. 2(a) there are
ten data record blocks and a block containing information about data records shown
(“Items (1 - 15) of 15”) which is a noisy block.

Step 3: We observe that each data record contains semantically related data
units of a data object, which reside in the leaf nodes of the Visual Block trees and
are visually adjacent to each other. We identify data records by purely using the
positional information of the rendering boxes of the leaf nodes in the data section.
For example, the data units of each data record shown in Fig. 1 are adjacent to each
other and relatively far away from the data units of the other data records. Thus we
can group data units that are adjacent to each other so that each group representing
a data record.

In the second phase, a similarity-based clustering method is proposed for aligning
data items from the extracted data records, and put the data items into a relational
table.

We observe that data items with the same semantics have similar visual and
content features. They usually share certain keywords (e.g., the product name “Ac-
cent Plates” in Fig. 1), and have the same data type (e.g., the product names are
strings). They have similar presentation styles (e.g., the product names in Fig. 1 have
the same font face, font size and font color etc) and have approximately same block
size (e.g., in Fig. 4(a), the blocks that wrap product names have somewhat identical
sizes). Moreover, they are usually encoded by the same tag template (e.g., the product
names in Fig. 1 are encoded in “〈TD〉〈B〉text〈/B〉〈B〉text 〈/B〉〈I〉text〈/I〉〈/TD〉”,
where “text” represents the data enwraped). Therefore, all the data items in the
data records can be clustered into different groups based on similarity measures on
the above features, so that the data items contained in each group have the same
semantics (e.g., all product names are aligned into the same group).

In summary, we make the following contributions. For data record extraction:
(1) we propose an approach for identifying data sections based on the visual features
of the blocks and the occurrences of query terms, even as small as containing only one
data record. (2) Based on content and visual features of visual blocks, our solution
for removing noisy blocks can eliminate most of the noisy blocks. (3) We propose
an approach for identifying data records based on an observation that the data units
of a data record are visually close to each other and distant from the data units of
the other data records on the page. By grouping data units that are adjacent to
each other, we will not miss any record that is dissimilar to its siblings, and we are
also able to extract data records from pages, each of which containing one record
only. Readers can refer to Ref. [28] for details. For data alignment: (1) We propose
a method for aligning data items based on a number of visual and content features
so that data items from different data records with the same semantics are clustered
together. (2) We devise an algorithm for constructing relational tables from aligned

Daiyue Weng, et al.: Web data extraction from query result pages ... 457

data items considering optional data items and data items from nested data records.

Figure 2. (a) An example query result page; (b)The visual block layout of the page;

458 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

(c) Part of the Visual Block tree for b1 1 2 2 3 4

The rest of this paper is organized as follows. Section 2 presents web page rep-
resentation, problem definition and an overview of our approach. Section 3 describes
our approaches for identifying data sections, removing noisy blocks and identifying
data records. Section 4 presents approach for aligning data items in the data records.
Experimental results are given in section 5. Section 6 discusses related work. Section
7 concludes the paper.

2 Fundamentals and Overview

In this section, we first introduce Visual Block trees and give a formal definition
of the rendering box model of Web pages based on the Visual Block tree, which is
the basis of our approach. We then define the problem of web data extraction and
present an overview of our approach.

2.1 Visual representation of query result pages

The content of a query result page is typically organized into different regions
to make it easy for human use, e.g., advertisements, menu bars, sponsor links, query
results and so on. Each region contains semantically related contents. Visual cues
(e.g. lines, spaces, font sizes, background colours etc) can be used to distinguish
regions from each other. To make use of visual features for data record extraction,
we employ the VIPS[19] algorithm to represent a query result page as a Visual Block
tree. The root of the tree represents the entire page and each node represents a visual
block on the page. A leaf node represents a block containing a basic semantic unit
that cannot be further decomposed, e.g., a text or image. Node a is an ancestor
of node b if the block that a represents contains the block that b represents on the
page. The blocks represented by nodes at the same level of the tree do not overlap.
The order of the child nodes with the same parent follows the order of the blocks
they represent on the page, i.e., top-down, left-right. For example, Fig. 2(a) shows a
query result page from cooking.com; Fig. 2(b) shows the visual block layout of the
result page produced by the VIPS algorithm. For example, b1 represents the body
of the page, b1 1 2 1 represents the block containing the category links on the page,
b1 2 contains the website information and b1 1 2 2 3 4 contains all data records denoted
as b1 1 2 2 3 4 1 to b1 1 2 2 3 4 10. Figure 2(c) shows part of the Visual Block tree for
b1 1 2 2 3 4.

2.2 Overview of our approach

The approach takes as input a query result page from a specific Web database
and parses it into a Visual Block tree. The output is a relational table that contains
all aligned data items from the extracted data records. Our approach is composed of
the following modules and processes result pages in order.

1. Data Section Identification: It traverses the Visual Block tree in a depth-first
fashion to identify a block that contains all the data records and treats it as a
data section.

2. Noisy Block Remover: It tries to remove any noisy information remaining in
the data section to improve the accuracy of data record extraction.

Daiyue Weng, et al.: Web data extraction from query result pages ... 459

3. Data Record Identification: It extracts and groups leaf nodes of the data sec-
tion in the Visual Block tree into data records based on the positions of their
corresponding visual blocks.

4. Data Alignment: It clusters and aligns all data items in the data records of the
data section based on visual and content features. The output is a relational
table that all the data items are aligned in the table.

3 Identification of Data Sections and Data Records

In this section, we briefly describe our approaches for identifying data sections,
removing noisy blocks and extracting data records. The details of these approaches
refer to Ref. [28].

3.1 Identifying data sections

We identify a data section as a node in the Visual Block tree, which represents
a rectangular box in the result page that contains all the data record blocks and as
few noisy blocks as possible. our approach is based on two observations: (1) the size
of a data section is usually large relative to the size of the whole page; (2) the query
terms often re-appear in the data records.

To utilize the observations, we first select the blocks, so that area ratios between
the sizes of the blocks and the whole page are greater than a threshold[18], and iden-
tify them as candidate data section blocks. For example, after applying the area
ratio constraint, we can identify b1 1, b1 1 2, b1 1 2 2, b1 1 2 2 3 and b1 1 2 2 3 4 in Fig.
2(b), as candidate data sections. To determine the real data section, we make use of
query terms that are used in queries over query interfaces. For example “Dinnerware”
“Plates” “Royal Doulton” and “$25 to $50” are query terms used for the input ele-
ments on the query interface, as shown in Fig. 3, and re-appear in data records shown
in Fig. 2(a). The more query terms occur in a block, the more likely the block is a
data section. Given a set of query terms qi for i = 1, 2, ..., n, and a candidate block,
the importance of the block is measured as R =

∑n
i=1 fi, where fi represents the

frequency of query term i in the candidate block. The block that has the maximum
number of occurrences of query terms among all the candidate blocks is identified as
the data section. For example, after applying the second constraint to the candidate
data sections, b1 1 2 2 3 4, as shown in Fig. 2(c), is identified as the data section.

3.2 Removing noisy blocks

The identified data section usually contains noisy blocks that are not part of
any data record[18], such as data record numbers (e.g., “Items (1-15) of 15” in Fig.
2(a). We observe that a data record typically contains images, texts and links for
the data object, and occupies a significant area on the page. Moreover, the noisy
blocks usually exist as first-level child blocks in the Visual Block tree of the data
section. Specifically, we evaluate the importance of each first-level child block within
the data section is defined as ImBlk = w1 × ImgNum + w2 × LinkNum + w3 ×
LinkTextLen + w4 × TextLen + w5 × Area, where w1, w2, w3, w4 and w5 are real
numbers so that w1 + w2 + w3 + w4 + w5 = 1, and 0 6 ImBLk 6 1. LinkTextLen
(the anchor text length of the block) and TextLen (the text length of the block)

460 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

are considered as the most important features for differentiating data record blocks
from noisy blocks. ImgNum represents the number of images in the block, LinkNum
represents the number of links in the block, and Area represents the rendering area
of the block. Note that these content features are provided by the Visual Block tree
and are normalized across the whole data section block. When the ImBlk of a block
is greater than the given threshold θ, it is very likely that the block is a data record.
Otherwise the block is taken as a noisy block. The threshold can be trained using
sample pages.

Figure 3. The query interface of cooking.com

3.3 Identifying data records

A data record represents a data object retrieved from the web database and con-
sists of multiple data units that are semantically related. Data items are represented
as leaf nodes on the Visual Block tree, and they are visually aligned with and adjacent
to each other on query result pages. For example, as shown in Fig. 2(a), the data
items of each record are the leaf nodes in the Visual Block tree, and they are visually
aligned with and adjacent to each other on the web page. To identify data records,
our approach takes as input a set of query terms and a data section block. It first
identifies leaf nodes that are part of a data record and can be used as starting points,
which are leaf nodes that contain query terms, for grouping other data items of the
record. Given each of the starting points, our approach first group data items that
are horizontally aligned with it to form a data item group based on the top positions
of the visual blocks of the corresponding leaf nodes (i.e. they have similar top po-
sitions). It then groups data items that are horizontally aligned with each other to
form leaf node groups. Finally, our approach progressively expands each data item
group with other data item groups and leaf node groups that are vertically adjacent
(i.e. the vertical gap between two groups are within a given number of pixels) to it
until there is no vertically adjacent group. Each data item group thus identified as
output a data record.

Daiyue Weng, et al.: Web data extraction from query result pages ... 461

To illustrate how the algorithm works, we take the first two data records shown
in Fig. 2(a) as an example. “Plates” has been used as a query term. Two leaf
nodes representing text “Dinner Plates by” are identified as starting points. These
two starting leaf nodes are used to initiate two data item groups. Those leaf nodes
representing the second rows of these two data records form two leaf node groups.
Each data item group is expanded with a leaf node group which is vertically adjacent
to it. Each extracted data item group represents a data record.

4 Data Alignment

The objective of data alignment is to match and cluster data items with the same
semantics together. In this section, we propose a new clustering-based approach to
data alignment which utilizes a number of visual and content features.

We note that ViDE[18] also uses visual features in data item alignment. However,
there are significant differences between ViDE and our approach. First, ViDE assumes
that the order of data items is fixed in data records. Given a data record, ViDE
extracts its leaf nodes in the Visual Block tree from left to right in sequence. It
utilizes this inherent order along with visual features to align a set of the first un-
aligned data items in every data record. ViDE clusters the data items in such a set that
data items with the same font and left position are clustered together, i.e. these data
items have the same semantic. If there are multiple clusters, i.e. there are optional
data items, ViDE fills blank items into those data records that do not have these
optional data items, so that all data records will have the same number of data items.
ViDE has two weaknesses. First, the conditions for deciding if the data items have the
same semantic, which are purely based on visual features are too strong. Sometimes
data items that have the same visual features may belong to different semantics. For
example, in Fig. 4, “Director”, “Starring”, “Also Starring” and “Release Company”
have the same left position and font, but they belong to different semantics. Hence,
we need to use more evidence in addition to visual features. Second, ViDE does not
work very well on extracting nested data records containing sub data records, i.e.
multi-value attributes. It relies on the order of the data items and simply aligns those
data items that expand horizontally and occupy more columns, hence it treats nested
data records as flat ones. Therefore, we need to introduce a clustering algorithm that
groups data items bottom-up, so that data items with the same semantics can be
clustered together.

Figure 4. An example from bestvideobuys.com

We also note that the work in Ref. [22] uses an agglomerative clustering algorithm
to group data items of the same semantics based on four visual and content features.
Initially, every data item itself forms a group. The distance is calculated between two
groups based on the aggregated sum of the similarities on the five features. However,

462 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

this method has two major drawbacks. First, if a data record contains multiple nested
data records (e.g. a plate may have multiple sizes, colours and prices), the attribute
values of the nested data records may be wrongly aligned. This is because the method
defines the similarities between the data items from the same data record as zero,
so the data items of those nested data records with the same semantics will not be
grouped together. Second, this method merges two groups with the highest similarity,
but it does not consider the case where two groups have a very high similarity but
different semantics.

In order to solve these problems, we introduce an agglomerative nesting algorithm
(AGNES)[31,32] that takes multiple features into account. Our approach iteratively
clusters data item groups with the highest similarity which is measured in terms of
the data contents, presentation styles, data types, tag strings and block sizes of the
two groups. In addition, we also use the positional information of data items for
clustering data items with the same semantic.

4.1 Visual and content features of data items

Each data item (i.e. text node) on the Visual Block tree is associated with a set
of attributes, which contains visual and content information about the data item. For
example, coordinates, size, height, width, data content and so on. The data items
of the same semantics, usually have a number of similar visual and content features.
Our approach uses five features:

1. Data Content. Data items having the same semantics usually contain some
similar keywords. This observation can be further investigated in two cases.
First, query terms that are used to make queries in query interfaces, usually
re-occur in the corresponding data items. For example, in Fig. 5, the visual
blocks that represent product titles in the two data records both contain “Accent
Plates”, which is a query term used to make the query. Second, some static texts
are usually placed in front of data items to indicate the meaning of the data
items. For example, in Fig. 5, the data items that represent the prices of the
plates are prefixed by “GBP”, which indicates the currency.

2. Presentation Style. The data items of the same semantics are usually presented
in the same style. We describe the presentation styles of a data item based on
the following features: font face, font size, font colour, font weight, font style,
text decoration and background colour. For example, in Fig. 5, the product
titles have the same font and are in italic.

3. Data Type. The data type of a data item can be defined in terms of its textual
values. We define six data types: image, date, time, price, number and string.
Values that are not one of the first five types are defined as strings. Note that,
since each type except string follows some conventional formats, e.g. a date is
usually formatted as “dd–mm–yy” or “dd/mm/yy”, so it can be recognized by
their values. The data items of the same semantics usually have the same data
type.

4. Tag String. The tag string of a data item is a string of tags used to encode the
data item. The data items of the same semantics usually have very similar tag

Daiyue Weng, et al.: Web data extraction from query result pages ... 463

strings, since query result pages of the same web database are generated using
fixed templates.

5. Block Size. The visual blocks that represent the data items of the same semantics
have similar sizes. This is because the data records in the query result pages of
the same web database tend to have a uniform and repetitive layout, and the
location and size of each block is relatively fixed. For example, in Fig. 5, the
blocks for prices have almost the same sizes.

Figure 5. Two data records in the data section with their leaf nodes visually blocked

4.2 Data item types

The data items in a data record can be divided into two types – atomic data
items and composite data items. An atomic data item is a text node that contains
the value of a single attribute. For example, every text node that represents the
price in Fig. 5 is an atomic data item. A composite data item is a text node that
contains the values of multiple attributes. For example, every product title in Fig.
5 is a composite data item, since it can be further divided into plate name (“Accent
Plates by Dansk” and “Accent Plates by Lenox”) and plate pattern (“LM Studio”
and “Apropos”) by a comma.

We observe that for a specific web database the values of a fixed set of attributes
are usually encoded into a composite data item in every data record. These composite
data items have the same string pattern, and there are usually some symbols in the
string that visually distinguish the attributes encoded in the string, and can be used
to break the composite data item into multiple atomic data items.

4.3 Align data items

To utilize the five features described in section 4.1 we define five similarity mea-
sures respectively.

1. Data Content Similarity (simDC): It is defined as Cosine similarity[25] between
the contents of two data items. Each data item di is represented by a binary
term vector TERMi1, TERMi2, ..., TERMit, where TERMij is an unique word
extracted from the texts of the two data items. A given data item collection
containing two data items may then be represented as a matrix of terms where
each row represents a data item, and each column represents an assignment of

464 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

a specific term to the two data items. The Cosine similarity is defined as:

COSINE(di, dj) =
∑t

k=1(TERMik ∗ TERMjk)
2

√∑t
k=1(TERMik)2 ∗∑t

k=1(TERMjk)2
(1)

where TERMij is assigned to one whenever term k occurs in data item i, and
zero otherwise.

2. Presentation Styles Similarity (simPS): It is defined as the number of common
style features divided by the total number of unique style features of two data
items based on the seven style features. If the two data items have the same
presentation styles, simPS is one, otherwise it is ranging from one to zero.

3. Data Type Similarity (simDT): If two data items have the same data type, then
it is defined as one, otherwise zero.

4. Tag String Similarity (simTS): We use edit distance EDT [30] between the tag
strings (t1 and t2) of two data items (d1 and d2) to represent the number of
operations (insertions, deletions and substitutions) needed to transform t1 into
t2. The similarity between t1 and t2 can be defined as follows:

simTS(d1, d2) = 1− EDT (t1, t2)/(LEN(t1) + LEN(t2)) (2)

where LEN(t) denotes the length of the tag string in tags.

5. Block Size Similarity (simBS): It is defined as the ratio between the block sizes
of two data items. If the two data items have the same block size, simBS is
one, otherwise it is ranging from one to zero.

The similarity between data items d1 and d2 is defined as follows:

Sim(d1, d2) = w1 ∗ simDC(d1, d2) + w2 ∗ simPS(d1, d2)

+ w3 ∗ simDT (d1, d2) + w4 ∗ simTS(d1, d2)

+ w5 ∗ simBS(d1, d2) (3)

where w1, w2, w3, w4 and w5 are non-negative real numbers so that w1 + w2 + w3 +
w4 + w5 = 1, and 0 6 Sim(d1, d2) 6 1.

We define the similarity between two data item groups C1 and C2 to be the
average of similarities between each data item di in C1 and each data item dj in C2.

Sim(C1, C2) =

∑
di∈C1

∑
dj∈C2

Sim(di, dj)

n1 ∗ n2
(4)

where ni represents the number of data items in Ci.
An agglomerative clustering algorithm shown in Algorithm 1 is used to align data

items of the same semantics. Initially each data item forms itself a data group. The
intuition of the algorithm is that when two data item groups are highly similar based
on the similarity measures described above, they are very likely to contain data items
with the same semantic, and we cluster them into one group. We iterate this process

Daiyue Weng, et al.: Web data extraction from query result pages ... 465

until all data items with the same semantics are clustered into the same group. Each
group corresponds to a column in the relational table. The algorithm takes as input
a set of data records (denoted as R), and outputs a set of data item clusters, each of
which contains data items with the same semantics. Initially, each data item in every
data record forms its own group (lines 3-6). We then iteratively merge two groups
with the highest similarity until no two groups have similarity greater than a threshold
(denoted as T) (lines 7-15). In particular, if one group has the highest similarity with
another group, we will also consult the left positions (left coordinates) of the data
item(s) in the two groups (lines 11-12). If two groups have a very proximate or the
same left positions, they are merged into one group, since data items of the same
semantics usually have the same left position.

Algorithm 1 Clustering Data Items
Require: a set of data records R

Ensure: a set of data item clusters C

1: Set C, a set of data items N , a set of data item groups G, all to {}
2: Add every data item in R to N

3: for every data item ni ∈ N do
4: Set a data item group g to {ni}
5: Add g to G

6: repeat
7: Remove a data item group g from G

8: repeat
9: if {g′1, ..., g′i, ..., g′n} ∈ G for i = 1, 2, ..., n, and g′i 6= g have the highest

similarity Sim(g′i, g) with g and Sim(g′i, g) > T and g′i is aligned with g

then
10: Set g to g ∪ g′i
11: until Sim(g′, g) < T for all g′ ∈ G

12: Add g to C

13: until G = {}
14: Return C

We need to further identify composite data items and divide them into atomic
data items. If the data items of a specific column satisfy the following three conditions,
they are identified as composite data items. First, the texts of the column are all
different. If the column have the same text, it is very likely that the text is a label
used to annotate the data in the following column. Second, the data type of the
column is string. If the data type is a non-string type, then each text of the column
is itself an atomic data item. For example, if the data type of a column is “currency”,
then each text is an atomic data item representing “price”. Third, we cannot find any
separator. A separator is a non-digit, non-letter, non-space character that appears
in every composite data item of the same column that visually divides the composite
data item into atomic attributes. We scan all the texts of the composite data items
to identify candidate separators. For each separator, we record its occurrences, and
we select the separator that has the biggest occurrence as the right separator to break
all the composite data items into atomic data items.

The data items in the identified data item clusters need to be aligned to construct

466 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

a relational table. We observe that the majority of data items in data records are
mandatory. If a data record does not have an optional data item, a blank will be
filled in the position for the optional data item. If a data record has multiple nested
data items, it may need multiple rows for the nested data items.

Algorithm 2 Construct relational tables
Require: a set of data item clusters C

Ensure: a relational table with all data items aligned
1: Set tempItemSet and currentRowItemSet to {}
2: for every cluster ci ∈ C for i = 1, 2, ..., n do
3: Sort the data items in ci from top to bottom
4: Sort the clusters in C from left to right
5: for every cluster c ∈ C do
6: Add Item1

i ∈ c to tempItemSet for i = 1, 2, ..., n

7: repeat
8: Separate data items in tempItemSet into groups {g1, g2, ..., gm}, based on their

record numbers
9: if gi has the majority of data items in tempItemSet then

10: Move data items in gi to currentRowItemSet

11: else
12: if the first data item in gi has the left-most position among the first data

items in the remaining groups then
13: Move data items in gi to currentRowItemSet

14: Fill blanks into the positions left by the data items in tempItemSet for
currentRowItemSet

15: if there is a row above currentRowItemSet then
16: for every remaining data item i ∈ tempItemSet and j ∈

currentRowItemSet do
17: if i matches any previous data item based on record number at its corre-

sponding column then
18: Add a new row under the least matched data item and put i in its

corresponding column
19: else
20: if i matches any previous data item based on record number at that row

then
21: Put i in its corresponding column of the row
22: if j matches any previous data item based on record number at that row

then
23: Put j in its corresponding column of the row
24: for every cluster c ∈ C do
25: if Itemj

i exists in currentRowItemSet or tempItemSet = {} then
26: Add Itemj+1

i to tempItemSet

27: until tempItemSet = {}

Our algorithm for constructing relational tables is shown in Algorithm 2. The
algorithm takes as input a set of data item clusters, and produces a relational table
as output. The clusters and the data items in each cluster are sorted first (lines

Daiyue Weng, et al.: Web data extraction from query result pages ... 467

2-4) from left to right and from top to bottom respectively. Then the first data
item of each cluster is put into a pool (denoted as tempItemSet) (lines 5-6). Next
the data items in the pool are processed iteratively until the pool is empty. In every
iteration, the data items in the same record are grouped together. The group contains
the majority of data items in the pool is chosen as currentRowItemSet. The data
items in currentRowItemSet (lines 8-10) form a row and blanks are filled into those
positions for the data items that are still in tempItemSet (line 14). In particular, if
no group has the majority, we choose one of the groups that has the left-most position
for the first data item in the group (lines 12-13). The reason for doing this is that
the data items that are located at the left-most position of the data records are tend
to be mandatory. The algorithm then tries to align nested data items, that if a data
record is a nested data record, the record number of every forth coming nested data
item from its corresponding cluster will be matched with the one of data item in the
previous row to see if they belong to the same data record (lines 15-23). tempItemSet

is then replenished with the first unaligned data item from each cluster (line 24-26).
To further explain the algorithm, let’s walk through an example as shown in Fig.

6. Each data item is represented by two numbers. The first indicates which cluster it
belongs to, the second indicates which record it belongs to. The first cluster represents
mandatory data items, the second one represents optional data items and the third
represents nested data items. Initially, 1 1, 2 2 and 3 1 are put in tempItemSet (Fig.
6a), since 1 1 and 3 1 are from the same record and are the majority in tempItemSet,
they are moved into currentRowItemSet and a blank is filled in position left by
2 2 (Fig. 6b). The tempItemSet is replenished with 1 2 and 3 1. As 1 2 and 2 2
are from record two and are the majority in tempItemSet, they are moved into
currentRowItemSet and a blank is filled in position left by 3 1. Since there is a row
ahead of currentRowItemSet and 3 1 matches its previous item in the same column,
thus 3 1 is filled into a new row under the matched one (Fig. 6c). The rest of data
items are processed in the same way. Note that when the algorithm processes 1 4 and
3 3, and chooses 1 4 as the leading data item of the row, since 1 4 is ahead of 3 3.

5 Experimental Results

We have implemented our proposed approach in a prototype using Visual C++.
Each query result page is first parsed by the VIPS into a Visual Block tree which the
prototype takes as input. We have conducted experiments on a data set of 200 query
result pages that are returned from 20 web databases in the UIUC Web Integration
Repository[26]. These web databases are from 5 domains - Books, Jobs, Movies, Music
and Hotels. 15 of these pages contain a single data record. For each web database, 10
result pages are collected after manually submitting 10 different queries via its query
interface.

5.1 Performance evaluations

We use two common measures, recall and precision, to evaluate the performance
of our approach. For data extraction, the recall is the percentage of the number of
data records that have been correctly extracted by our approach over the total number
of data records on a result page. The precision is the percentage of the number of
data records that have been correctly extracted over the total number of data records

468 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

that have been extracted. For data alignment, the recall is the percentage of correctly
aligned data items by our approach over all the data items manually aligned by human
expert. The precision is the percentage of correctly aligned data items over all the
data items aligned by our approach.

Figure 6. An example of constructing a relational table

Daiyue Weng, et al.: Web data extraction from query result pages ... 469

5.2 Experimental results on data record extraction

We compare our approach with MDR[3], which is a well known data record ex-
traction system based on HTML DOM tree and available for download online. We
set the similarity threshold for MDR at its recommended value (60%). Table 1 shows
the experimental results of both our approach and MDR. As we can see from Table 1,
our approach has much better experimental results than MDR in total, and in almost
every domain our approach significantly outperforms MDR. The precision and recall
of our approach are both high across all domains, approaching 100%. Our approach
can also extract query result pages with single data records, but MDR cannot. Table
1 shows that our approach has slightly higher precision than recall. The main reasons
for missing data records are as follows. First, sometimes some data records do not
contain any query terms so our approach cannot identify the appropriate starting leaf
nodes. Second, sometimes the VIPS divides a data section into multiple sections,
and our approach only identifies the largest section as the data section. The main
reasons for extracting data records incorrectly are as follows. First, some noisy blocks
have not been removed from the data section because they may contain query terms.
Second, sometimes the VIPS parses result pages incorrectly so that some data items
are missing on the Visual Block tree. Third, sometimes the VIPS fails to give correct
block positions, which leads to data units missing from some data records. The per-
formance of MDR is inversely proportional to the complexity of the result pages, and
it performs relatively well on extracting data records from tables.

Table 1 Comparison results between our approach and MDR

Our Approach MDR

Domain Precision Recall Precision Recall

Books 97.86% 96.76% 40.38% 82.01%

Hotel 99.20% 98.30% 18.21% 32.68%

Jobs 99.48% 98.37% 99.62% 67.60%

Movies&Music 100% 98.54% 28.05% 72.46%

Single Record Page 100% 100% 0% 0%

Total 99.26% 98.11% 38.68% 74.86%

5.3 Experimental results on data alignment

For data alignment, we evaluate the performance by comparing the data items
clusters aligned by our approach with the actual data item clusters manually aligned.
A correct alignment means that all data items of an attribute are clustered into one
group. An incorrect alignment can be categorized into two cases. First, the data
items of an attribute are put into several groups. Second, the data items of different
attributes are put into the same group. When an incorrect alignment happens, we
only consider the group with the most data items of some attribute as the correct
alignment group for the attribute, and take the other aligned data item group(s) for
the attribute and mixed in data item(s) of a different attribute as mis-aligned. Only
correctly extracted data records are used as input for this step. The alignment results
are shown in Table 2. “ACT” indicates the number of actual data items which reside
in the Web pages; “COR” shows the number of correctly aligned data items; “WRG”
means the number of incorrectly aligned data items. Our approach achieves very

470 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

high accuracy in terms of both precision and recall in all domains. Especially in the
hotels domain, precision and recall are approaching 100%. The results prove that the
observations that we made and applied on query result pages are very robust. The
incorrect alignments mainly come from the situation where the data contents of the
data items with the same semantics share no common words, so that the data items
clustering are only based on visual features and tag strings. The situation can be
worse when some websites use the same or similar visual styles and tag strings to
encode data items of different semantics. For example, “Books” and “Movie&Music”
domains suffer from this problem, since the query results of books, movies and music
can vary in terms of their title, starring, author, artists and so on. Also the use of
agglomerative clustering algorithm can sometimes generate unsatisfied results. The
reasons are twofold. First, the agglomerative clustering algorithm merges data item
groups with highest similarity. Second, once two data item groups are clustered, it
cannot be undone, and the new fusion will operate on the previously merged groups.
It sometimes happens that the data items of an attribute clustered into several groups,
but some items of these groups may have high similarities one another and these items
can never be clustered again.

Table 2 Data alignment performance of our approach

Domain ACT COR WRG Recall Precision

Books 6992 6636 356 94.91% 94.91%

Hotel 6906 6779 127 98.16% 98.16%

Jobs 6570 6295 275 95.81% 95.81%

Movies&Music 7268 6714 554 92.38% 92.38%

Total 27736 26424 1312 95.27% 95.27%

6 Related Work

Automatic extraction of web query results has attracted a lot of attention over
the recent years. Several automatic extraction systems have been developed. Ear-
lier works mainly focus on finding repetitive patterns and templates in result pages,
e.g., IEPAD[14], RoadRunner[13], DeLa[15] and EXALG[16]. Recent techniques have
focused on exploiting tag structures and visual features, e.g., MDR[3], DEPTA[4, 5],
MSE[7], ViNTs[6], ViPER[8], ViDE[18] and [9].

The works that use visual features include ViPER[8], ViNTs[6], MSE[7] and
ViDE[9]. ViDE is the most related to our approach. It is the first work that is
primarily based on visual features. There are several main differences between ViDE
and our approach. ViDE first clusters data items of the same semantics based on
similarity between their appearances, and then groups appropriate data items from
each of the clusters into data records. Our approach directly group data items that
are visually adjacent to each other in the same data records. ViDE may cluster data
items with different semantics because sometimes neighboring data items in the same
data record may not have distinguishable appearances, resulting in them being clus-
tered together and then grouped into different data records. Second, ViDE uses the
positions and sizes of visual blocks to determine if a block is a data section. If multi-
ple blocks are identified as candidate data sections, it chooses the one with smallest
size as the data section. Our approach counts the occurrences of query terms in can-
didate blocks to select the real data section that makes our approach more robust.

Daiyue Weng, et al.: Web data extraction from query result pages ... 471

Third, ViDE identifies noisy blocks by deciding whether the blocks are aligned to
the left of a data section but it may not remove all the noisy blocks. Our approach
evaluates the importance of blocks within the section based on content and visual
features which improve the effect of removing noisy blocks. Fourth, ViDE assumes
that data items having the same font and position belong to the same column, but
visually similar data items may have different semantics. We align the data items by
considering both visual and content features that makes data item alignment more
accurate. ViDE treats nested-structured data (e.g. data records containing multiple
sub data records) flat, so that the aligned data expand horizontally and occupy more
columns unnecessarily. In contrast, our approach align the data items uniformly by
clustering all the data items with the same semantics together, and will not have such
problem.

Our algorithm for grouping data items of a data record is inspired by the work
of Gatterbauer and Bohunsky[1, 2] on extracting web tables. Our approach instead
extracts data records from query result pages that have more complex content struc-
tures. Though our approach also uses the alignment and adjacency techniques, our
alignment definition is much simpler than the one in Refs. [1, 2]. Our approach also
uses query terms in the process of grouping data items.

7 Conclusions

In this paper, we have presented an automatic approach for extracting data
from query result pages. Our approach first uses the sizes of visual blocks and the
occurrences of query terms in visual blocks to identify the data section. It then groups
data items in the data section, which are adjacent to each other, into data records. It
also uses content and visual features of visual blocks to evaluate their importance and
to filter out noisy blocks, and align data items. Our work can be part of a web data
integration system which interacts with multiple web databases, e.g. e-commerce web
sites. Our experimental results show that our proposed approach is highly effective.
In future work, we will develop algorithms for annotating data items in the extracted
data records so that data items of the same attribute can be labeled to indicate its
meaning in the database table.

References

[1] Gatterbauer W, Bohunsky P, Herzog M, Krupl B, Pollak B. Towards domain-independent infor-

mation extraction from web tables. 16th International Conference on World Wide Web. ACM,

New York. 2007. 71–80.

[2] Gatterbauer W, Bohunsky P. Table extraction using spatial reasoning on the CSS2 visual box

model. 21st AAAI. AAAI Press. 2006. 1313–1318.

[3] Liu B, Grossman R, Zhai Y. Mining data records in web pages. 9th ACM SIGKDD. ACM, New

York. 2003. 601–606.

[4] Zhai Y, Liu B. Web data extraction based on partial tree alignment. 14th International Con-

ference on World Wide Web. ACM, New York. 2005. 76–85.

[5] Zhai Y, Liu B. Structured data extraction from the web based on partial tree alignment. IEEE

Trans. on Knowledge and Data Eng., Dec. 2006, 18(12): 1614–1628.

[6] Zhao H, Meng W, Wu Z, Raghavan V, Yu C. Fully automatic wrapper generation for search

engines. 14th International Conference on World Wide Web. ACM, New York. 2005. 66–75.

[7] Zhao H, Meng W, Yu C. Automatic extraction of dynamic record sections from search engine

result pages. 32nd International Conference on Very Large Data Bases. VLDB Endowment.

472 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

2006. 989–1000.

[8] Simon K, Lausen G. ViPER: augmenting automatic information extraction with visual percep-

tions. 14th ACM International Conference on Information and Knowledge Management. ACM,

New York. 2005. 381–388.

[9] Miao G, Tatemura J, Hsiung W, Sawires A, Moser LE. Extracting data records from the web

using tag path clustering. 18th International Conference on World Wide Web. ACM, New York.

2009. 981–990.

[10] Liu B, Zhai Y. NET - A System for Extracting Web Data from Flat and Nested Data Records.

6th International Conference on Web Information Systems Engineering. Springer, 2005. 487–

495.

[11] Zhu J, Nie Z, Wen J, Zhang B, Ma W. Simultaneous record detection and attribute labeling

in web data extraction. 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. ACM, New York. 2006. 494–503.

[12] Chang KC, He B, Li C, Patel M, Zhang Z. Structured databases on the web: observations and

implications. SIGMOD Rec. ACM, 2004, 33(3): 61–70.

[13] Crescenzi V, Mecca G, Merialdo P. RoadRunner: towards automatic data extraction from large

web sites. 27th International Conference on Very Large Data Bases. Morgan Kaufmann Pub-

lishers, San Francisco, CA. 2001. 109–118.

[14] Chang CH, Lui SC. IEPAD: information extraction based on pattern discovery. 10th Interna-

tional Conference on World Wide Web. ACM, New York. 2001. 681–688.

[15] Wang J, Lochovsky FH. Data extraction and label assignment for web databases. 12th Inter-

national Conference on World Wide Web. ACM, New York. 2003. 187–196.

[16] Arasu A, Garcia-Molina H. Extracting structured data from web pages. ACM SIGMOD Inter-

national Conference on Management of Data. ACM, New York. 2003. 337–348.

[17] Chang C, Kayed M, Girgis MR, Shaalan KF. A survey of web information extraction systems.

IEEE Trans. on Knowledge and Data Eng., 2006, 18(10), 1411–1428.

[18] Liu W, Meng XF, Meng WY. ViDE: a vision-based approach for deep web data extraction.

IEEE Trans. on Knowledge and Data Eng., 2010, 22(3), 447–460.

[19] Cai D, Yu S, Wen J, Ma W. Extracting content structure for web pages based on visual repre-

sentation. 5th Asia Pacific Web Conference. Springer. 2003. 406–417.

[20] Li J, Ezeife CI. Cleaning web pages for effective web content mining. 17th International Con-

ference on Database and Expert Systems Applications. Springer, 2006. 560–571.

[21] Wang J, Wen J, Lochovsky F, Ma W. Instance-based schema matching for web databases by

domain-specific query probing. Thirtieth international Conference on Very Large Data Bases.

VLDB Endowment. 2004. 408–419.

[22] Lu Y, He H, Zhao H, Meng W, Yu C. Annotating structured data of the deep web. 23rd IEEE

International Conference on Data Engineering. IEEE Computer. 2007. 376–385.

[23] Song R, Liu H, Wen J, Ma W. Learning block importance models for web pages. 13th Interna-

tional Conference on World Wide Web. ACM, New York. 2004. 203-211.

[24] Debnath S, Mitra P, Pal N, Giles CL. Automatic Identification of Informative Sections of Web

Pages. IEEE Trans. on Knowledge and Data Eng., 2005, 17(9): 1233–1246.

[25] Salton G, McGill MJ. 1986 Introduction to Modern Information Retrieval. McGraw-Hill, Inc.

[26] The UIUC Web Integration Repository, http://metaquerier.cs.uiuc.edu/repository/.

[27] Madhavan J, Jeffery S, Cohen S, Dong X, Ko D, Yu C, Halevy A. Google Inc: Web-scale Data

Integration: You Can Only Afford to Pay As You Go. Proc. of CIDR-07. 2007.

[28] Weng D, Hong J, Bell D. Extracting data records from query result pages based on visual

features. 28th British National Conference on Databases. Springer, 2011.

[29] Jurafsky D, Martin J. Speech and Language Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR. 2000.

[30] Gusfield D. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational

Biology. Cambridge University Press, 1997.

[31] Han J. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc. 2005.

[32] Kaufman L, Rousseeuw P. Finding Groups in Data: An Introduction to Cluster Analysis. 1990.

