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Abstract We propose an efficient approach for classifying insufficient dataset with miss-

ing data (incomplete data) with group difference detection. Specifically, missing data in

an insufficient dataset are first completed with the parimputation strategy. And then, the

insufficient dataset is grouped by contrasting with a known dataset (transfer learning). Fi-

nally, for assessing the quality of the induced models, empirical likelihood (EL) inference

is used to estimate the confidence intervals of structural differences between the insufficient

dataset and the known dataset. In such a way of mining, classifying incomplete data can

be beneficial to industries as it will provide easier and smarter use of information. This will

include evaluating a new medical product by detecting differences between the new product

and an old one for pharmaceutical companies and, identifying frauds by detecting abnormal

operations. To experimentally illustrate the benefits, we evaluate the proposed approach

using UCI datasets, and demonstrate that our method works much better than the boot-

strap resampling method on, for example, distinguishing spam from non-spam emails; and

the benign breast cancer from the malign one.
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1 Introduction

Incompleteness of information is ubiquitous in real applications and incomplete
information mining is an actual and challenging issue. Incomplete information is
mainly classified into two categories: (1) a dataset with missing data, and (2) a dataset
with insufficient information, simply called as insufficient dataset. However, existing
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models and algorithms are designed for learning complete yet quality information
and do not perform well for processing incomplete information. Some researchers
simply discard the data (or instance) with missing values and apply these models and
algorithms only to the complete instances in a dataset. However, it often leads the
original dataset to be an insufficient dataset, because a datum with missing values
often contains many observed attribute values that are valuable in problem solving.
If you discard the datum you may lose key features. In particular, it wastes data
resources because even data with missing values is very expensive and valuable in
some applications. Although we are inundated with vast amounts of information,
data is utterly lacking in many real applications. For example, we often lack data for
a new disease, a new product, or a dangerous item. Therefore, there is a clear need
to learn quality models from incomplete information.

In this paper, we study an efficient approach for classifying insufficient dataset
with missing data (incomplete data) with group difference detection. Specifically,
missing data in an insufficient dataset are first completed with the parimputation
strategy. And then, the insufficient dataset is grouped by contrasting with a known
dataset (transfer learning). Finally, for assessing the quality of the induced models,
empirical likelihood (EL) inference is used to estimate the confidence intervals of
structural differences between the insufficient dataset and the known dataset. In
such a way of mining, classifying incomplete data will be beneficial to industries as
it will provide easier and smarter use of information. This will include identifying
clues from data sources for snaring terrorists; evaluating a new medical product by
detecting differences between the new product and an old one for pharmaceutical
companies; and identifying frauds by detecting abnormal operations; bridging rule
mining for financial companies.

Difference detection is naturally and widely used in scientific research. For exam-
ple, consider a new medicine B for a specific disease in medical research. Researchers
usually compare B with an old medicine A, which has been used effectively to treat
the disease for many years. Differences on statistics of the two medicines are studied
so that researchers have a clear understanding of the properties of B. The observations
of statistics when applying medicine A and B to the disease are called contrast groups
(or simply groups, sets, populations), and the main differences considered between
the two groups are the mean and distribution, which are referred to as structural dif-
ferences in this paper. Difference detection for groups is of great importance in data
mining and machine learning community, such as exploratory data analysis (EDA),
change mining etc. On the other hand, difference detection gains prevalence recently
in many real world applications. For instance, in children’s health research, the height
below/over the standard are important, since the median height (near the standard)
is associated with a normal growth status. It may be meaningful with children’s
growth to compare two groups on the basis of both below the standard or above the
standard of height. As another application in information security, identifying group
differences between spam and non-spam emails (they form the two email groups)
can provide knowledge to users so that the users can distinguish spams from normal
emails. Accordingly, software companies can devise well-performed anti-spam email
systems based on these differences, so as to improve the availabilities of email systems
for users.
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Much research effort has been devoted to detect group differences in different
context. For example, there is some research work reported on mining group differ-
ences between contrast groups from observational multivariate data[2−4,24] in data
mining community. Researchers from the machine learning field also encounter the
problems of difference detection. This is witnessed by a few publications on change
mining over decision trees etc[8,14,21]. Like difference detection, mining changes assists
in intelligent decision support for business managers, such as understanding customer
behaviors.

However, contrast groups are only two samples obtained through limited obser-
vations or tests over contrasting objects, and sometimes the obtained data may be
(1) incomplete, i.e., with missing values, and (2) distorted, i.e., there may be noises
or outliers. Therefore, the differences of groups derived from the data are inevitably
incurring uncertainties. This generates an urgent need of measuring the uncertainty
of structural differences between contrasting groups, when the observations (the data)
are incomplete or with noises.

Existing techniques for difference detection and change mining both individually
and collectively participate in the goal of association analysis. While Zhang [29] re-
ported difference detection between complete datasets, in this paper we propose an
efficient approach for measuring uncertainty of group difference by identifying the
confidence intervals of structural differences between contrast groups. Specifically, for
a pre-assigned confidence level 1-α, the confidence interval would contain the param-
eters of interest (refer to the differences of mean and distribution function of the two
contrast groups in this article) with probability not smaller than the prescribed con-
fidence level 1-α, which is more reliable than the point estimate of the parameter (as
the point estimate does not tell us how far is it away from the true parameter value,
or the point estimate does not tell us the lower and upper bound of the parameter
value). On the other hand, the derived confidence intervals can be directly applied
to test the hypotheses on the parameter of interest. For instance, given a significance
level α, if the hypothesis is H : θ = θ0, we first construct the confidence interval
onθ − θ0, then check whether θ′ − θ′0 lies in the interval or not (here θ and θ′is the
parameter of population and observations/samples, respectively). If the answer is yes,
under the significance level α, we accept the hypothesis; otherwise, the hypothesis is
rejected.

From statistics’ point of view, mean and distribution function are important
measures of the data, and one can almost have a full understanding of the data if
he knows the exact mean and distribution function. We can use statistical methods
to obtain the above differences. For instance, for the mean difference ∆, between
groups X and Y, one can use the equation ∆ = E(Y )− E(X) to calculate difference
of mean, where E(Y ) = 1

m

∑m
j=1 yj , E(X) = 1

n

∑n
i=1 xi, and xi, yi is the sample data

of group X and Y, respectively. As for the distribution function difference ∆ between
X and Y, one can compute it as ∆ = GY (γ) − FX(γ), where GY and FX are the
distribution functions of Y and X respectively, and γ is a reference point for comparing
the distribution function of X and Y and is a constant given by the user. Generally,
since the exact form of distribution function is difficult to obtain, an empirical form
is adopted in practice, i.e., ĜY (γ) = 1

m

∑m
j=1 I(yj ≤ γ), F̂X(γ) = 1

n

∑n
i=1 I(xi ≤ γ),

where I(.) is an indicator function and I(x<y)=1 if x<y is true; otherwise I(x<y)=0.
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This is called a non-parametric model. If we know the form of either GY or FX in
advance, we call it a semi-parametric model.

In real world applications obtained data are sampled from a population, thus the
knowledge mined and hypotheses derived from these data are probabilistic in nature,
and such uncertainty has to be measured. Just like the differences calculated above,
we must resort to statistical tools to build confidence intervals in order to measure
their uncertainties, since confidence intervals (CI) can tell people how reliable the
derived differences are given two groups X and Y.

We focus on applying the non-parametric model to measure how reliable the
differences in mean and distribution function of two groups X and Y are, when there
are missing data. We are only taking into account the case in which there are missing
values in the data, whereas dealing with the situation that the data contain outliers
is out of the scope of this paper, and will not be discussed. Instead, we take it
as future work. We experimentally evaluate our approach using UCI datasets, and
demonstrate that our method works much better than its competitors on applications,
such as distinguishing spam from non-spam emails and the benign breast cancer from
the malign one.

The rest of this paper is organized as follows. Section 2 briefly reviews related
work and some basic concepts, including the empirical likelihood method, data struc-
ture and imputation method for dealing with incomplete dataset. In Section 3, we
describe how to build confidence intervals for mean and distribution function by using
the empirical likelihood method; the bootstrap method for constructing confidence
intervals is also presented in this section. In Section 4, we give extensive experimental
results of our method on the simulation dataset as well as UCI datasets. Conclusion
is given in Section 5.

2 Preliminary

2.1 Related work

Group difference detection has attracted tremendous interests from researchers
around the world. For example, work in Refs. [2-4,24] focused on mining contrast sets:
conjunctions of attributes and values that differ meaningfully in their distribution
across groups. This allows us to answer queries of the form, “What is the difference
in study hours between History and Computer Science students?” or “What has
changed in income level from 1993 through 1998?”

Another direction of related work is change mining, as in Cong & Liu 2002;
Liu, et al 2000; Wang, et al 2003. For the change mining problem, there are an
old classifier, representing some previous knowledge about classification, and a new
data set that has a changed class distribution. The goal of change mining is to find
the changes of classification characteristics in the new data set. Change mining has
been applied to various applications such as identifying customer buying behavior[7],
association rules[1], items over continuous append-only and dynamic data streams[25],
and predicting source code changes[12].

The above work has revealed many interesting results of difference detection.
However, they did not consider the situation where missing data may involve, and
they also did not measure reliabilities of the derived group differences from statistics’
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point of view. Different from the above work, our approach in this paper takes into
account (1) the structure of a group (non-parametric), (2) the imputation strategy
when contrast groups contain missing data, and (3) employing empirical likelihood
(EL) method to build confidence intervals for differences in mean and distribution
function of two groups[19,29].

In statistics, the problem of making inference about difference in mean is the well-
known Behrens-Fisher problem, if distribution function F and G of group X and Y,
respectively, are both normal. This is a very broad topic in applications. In general,
both F and G are unknown in advance, thus nonparametric methods are developed
to address this problem. In the case of complete observations, related work can be
found in Ref. [9], among others.

As a powerful tool to deal with nonparametric settings (i.e. populations or mod-
els are not specified into some parametric structures, which describe the cases of
complex data systems), the original idea of EL dates back to Ref. [10] in sample
survey context. Owen[17] made a systematic study of the empirical likelihood method
in the complete data settings. Owen[16] presented a form of data squashing based
on empirical likelihood and outlined the differences in data mining, then he showed
that empirical likelihood weighting can accelerates the rate at which coefficients are
learned.

When making statistical inference it is typically assumed that all the observations
in the sample are available. This may not be true in many practical situations since
some observations may be missing for various reasons such as unwillingness of some
sampled units to supply the desired information, loss of information caused by uncon-
trollable factors, failure on the part of the investigator to gather correct information,
and so on. In fact, missing observations (responses in these examples) are common
in opinion polls, market research surveys, mail enquiries, medical studies and other
scientific experiments[28,31]. Missing data analysis covers a variety of problems that
are often seen in practical applications[13,18,26]. In this situation, the usual inference
procedures cannot be applied directly. Existing methods typically employ the para-
metric likelihood as they assume the data structures are parametric. When there is
little knowledge about a population or model and there exist missing data, one often
imputes missing data to form a “complete data” set and then uses the EL method
to make inference based on the “complete data”. Wang and Rao[22,23] first use EL
method to construct confidence intervals for the mean of the response variable in a
linear model with missing data (they do not specify the form of the error distribution
in the linear model, i.e. the error distribution is nonparametric).

Different from the above techniques, in this paper we are interested in using
EL method to construct confidence intervals for structural differences, such as the
differences in mean and distribution function of two populations X and Y, when there
are missing values in the data. The advantage of our model is that we need not to
specify the exact distribution forms of X and Y, because in practical applications
people usually have no a prior knowledge about the underlying distribution of the
data. Thus, we adopt the empirical distributions of X and Y in our model.

2.2 Model and data structure

Let F and G be the distribution function of group X and Y, respectively. We
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are interested in constructing confidence intervals for structural differences such as
differences in mean and distribution function of the two populations. Making inference
of difference in mean is the well-known Behrens-Fisher problem if F and G are both
normal. In general, both F and G are unknown so that non-parametric methods are
developed to address this situation. In the case of complete observations, related work
can be found in Refs. [9,11,15].

Let θ0 and θ1 be unknown parameters with respect to F and G, respectively. Let
the difference between the two parameters be ∆ = θ1− θ0. The following information
is available

Eω1(x, θ0,∆) = 0, Eω2(y, θ0,∆) = 0 (1)

where ωi, i=1, 2, are functions of known forms. Some examples that fit Equation (1)
are given in the following.

Difference of mean: by defining θ0 = Ex, θ1 = Ey and∆ = θ1 − θ0, we get
equation ω1(x, θ0,∆) = x− θ0, ω2(y, θ0,∆) = y − θ0 −∆.

Difference of distribution function: For a fixed x0, by definingθ0 = F (x0),
θ1 = G(x0) and ∆ = θ1 − θ0, we get equation ω1(x, θ0,∆) = I(x ≤ x0) − θ0,
ω2(y, θ0,∆) = I(y ≤ x0) − θ0 − ∆, where I(.) is an indicator function, I(x)=1 if
x is true; otherwise I(x)=0.

It is interesting to measure the difference∆for X and Y. To do this, we first
construct the confidence interval for difference∆of two populations. We then compute
the difference ∆′ using the observation data, i.e., samples. If the difference ∆′ falls
within the generated interval, we accept the hypothesis that the difference of the
respective parameters of two groups is ∆ with respect to a pre-specified significance
level; otherwise we reject this hypothesis. In this paper, we construct confidence
interval based on EL (empirical likelihood) method to solve the two nonparametric
population problems.

2.3 Parimputation strategy

Consider the following random samples of incomplete data associated with pop-
ulations X = (xi, δxi), i = 1,· · · , m and Y = (yj , δyj), j = 1, · · · , n, where

δxi =

{
0, if xi is missing

1, otherwise
, δyj =

{
0, if yj is missing

1, otherwise

There are several missing mechanisms in literature, such as missing completely at
random (MCAR), missing at random (MAR), non-negligible, etc. Since it is difficult
to identify which missing mechanism a given real dataset is, an MCAR assumption is
common and viable. Throughout this paper, we assume that missing data in X and
Y are MCAR13, i.e., P (δx = 1 |x ) = Prob1 and P (δy = 1 |y ) = Prob2, where Probi

is constant and 0 ≤ Probi ≤ 1, i=1, 2 . Note that we also assume that population X
and Y are independent.

A common method for handling incomplete data is to impute each missing value
and then standard statistical methods are applied on the complete data as if the data
consist of true observations. Commonly used imputation methods include determinis-
tic imputation and random imputation. We refer to the reader to Little and Rubin[13]

for examples and excellent account of parametric statistical inferences with missing
data.
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In this paper we adopt a new imputation approach, parimputation (partial
imputation, see Refs. [28, 31]), to dealing with missing values. The parimputation
strategy is proposed for addressing those missing data in a given dataset in which all
the nearest neighbors (nearest neighbor is measured using Euclidean distance) are far
from them. From the observed part of an incomplete datum in a dataset, if there are
some complete data in a small neighborhood of the incomplete data, we refer it as
predictable missing data; otherwise, we refer it as unpredictable missing data. With
the observed part of an unpredictable missing data in a dataset, finding the unpre-
dictable missing data is similar to that of detecting outliers (or isolation points) in
machine learning and data mining. This means that there are many well-established
outlier detection techniques (such as John 1995; Ramaswamy, et al. 2000) that can
be applied to determine whether a missing data is unpredictable or not.

Accordingly, the parimputation is defined as: imputing all the predictable miss-
ing data in a given dataset and removing all the unpredictable missing data from the
dataset. Certainly, the parimputation strategy is simple and easy to be understood
and implemented. With the parimputation strategy, we will investigate in the follow-
ing section how to use EL based method to construct confidence intervals for∆, given
population X and Y .

3 Confidence Interval for Group Difference ∆

In many real world applications, we are always confronted with the problem of
deciding whether two objects are coming from a same population or not. This involves
using tools from statistics as well as data mining field to identify the difference between
the two objects. If the difference is small, we can draw a conclusion that they are
coming from a same population with high probability; if the difference between them
is large, we believe that it is very unlikely that the two objects are belonging to a
same population. To measure how reliable the conclusion is, we resort to confidence
intervals (CI) from statistics community.

In this section we present the empirical likelihood (EL) based method for con-
structing CI for differences of mean and distribution function of population X and Y.
In order to compare the performance of EL based method, we choose the bootstrap
re-sampling method for comparison, which is widely used in statistics, as well as in
data mining community. The reason that we choose bootstrap re-sampling is that it
is a simple and effective technique to compute an estimator of the data, when the
parametric form of the estimator is not available or difficult to obtain.

3.1 Empirical likelihood (EL) statistic

For two populations X = {x1,x2, ..., xm} and Y = {x1, x2, ..., xn} with size m

and n respectively, the empirical likelihood function is defined as

m∏

i=1

pi

n∏

j=1

qj (2)

where pi > 0, i = 1, · · · ,m,
∑

i pi = 1, and qj > 0, j = 1, · · · , n,
∑

j qj = 1. Note
that pi is the probability that observation of the i-th value of X obtains a specific
value, i.e., pi = P (Xi = xi). The definition of qj is similar. Essentially, based on
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independent assumption of X and Y, the above empirical likelihood function (Eq. 2)
models the overall probability that we get current sample datasets of population X
and Y.

Since the empirical likelihood function (Eq. 2) reaches the maximum at the same
moment as its logarithm, by taking logarithmic form, we introduce a scale parameter
θ and define the log-empirical likelihood ratio statistic as follows

R(∆) = sup
pi,qj ,i,j





m∑

i=1

log(mpi)+
n∑

j=1

log(nqj)



 = sup

θ
R(∆, θ) (3)

where

R(∆, θ) = sup
pi,qj





m∑

i=1

log(mpi)+
n∑

j=1

log(nqj)



 (4)

and pi, qj are subject to restrictions:
∑

i

piω1(xI,i, θ, ∆) = 0, and
∑

j

qjω2(yI,j , θ, ∆) = 0 (5)

From Lagrange multipliers, we get the following

R(∆, θ) = −
m∑

i=1

log {1 + λ1(θ)ω1(xI,i, θ, ∆)} −
n∑

j=1

log {1 + λ2(θ)ω2(yI,j , θ, ∆)} (6)

The empirical likelihood equation could be obtained from the above equations, which
is then used to derive the confidence intervals for the group differences ∆.

3.2 Empirical Likelihood (EL) based confidence interval for ∆

The log-empirical likelihood ratio statistic under imputation converges to a weighted
Chi-squared distribution[15], which will be used to construct the EL based confidence
intervals for ∆.

Let tα satisfy P (χ2
1 ≤ tα) = 1 − α, where 1 − α is the confidence level. An EL

based confidence interval on ∆ with asymptotically coverage probability 1−α can be
constructed as

{∆ : −2â−1
0 (∆)R(∆, θm,n) ≤ tα} (7)

where θm,n is the root of Equation (7).
This result can directly apply to test the hypotheses on ∆. For instance, if the

zero hypothesis is H0 : ∆ = ∆0 and the alternative is H1 : ∆ 6= ∆0, where ∆0 is
a constant. We first construct the confidence interval for ∆ −∆0, then check if the
sample difference ∆′−∆′

0 falls within that confidence interval. If it is true, we accept
hypothesis H0; otherwise, we accept hypothesis H1.

Note that the result can be applied to the complete data settings (i.e., dataset
without missing data). In the complete data situation, i.e., P (δx = 1 |x ) = Prob1 = 1
and P (δy = 1 |y ) = Prob2 = 1, we can see that the asymptotic distribution of the
EL statistic follows a χ2

1 distribution. Thus, the EL based confidence interval for ∆
is constructed as {∆ : −2R(∆, θm,n) ≤ tα}.
3.3 Bootstrap re-sampling based confidence interval for ∆
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Bootstrap re-sampling is based on the idea that in the absence of any other prior
information about the distribution, and the observed sample contains all the available
information about the underlying distribution. On the other hand, if we have only few
data in hand due to expensive cost to collect, we can resort to bootstrap re-sampling
to generate enough “new” data samples. In order to compare with the EL based
method for building CIs, in this paper we only describe how to use the bootstrap
methods to construct CIs of structural differences for two groups of data.

Given two groups X and Y (note that the data size of group X may not equal to
that of Y), the bootstrap methods is used on each of the group, generating m bootstrap
samples for X, say X∗

1 , X∗
2 , ..., X∗

m, and for Y, say Y ∗
1 , Y ∗

2 , ..., Y ∗
m. Then we compute

the collection of the mean and distribution function difference estimators for each
pair of these m bootstrap samples. We take the mean difference for example. After
bootstrap sampling, we get a sequence of differences of mean ∆∗ = {∆∗

1,∆
∗
2, ...,∆

∗
m},

where ∆∗
i = E(Y ∗

i ) − E(X∗
i ). According to the bootstrap re-sampling theory, if

∆∗ is approximately normally distributed, we can calculate the 1 − α confidence
interval for the mean difference ∆, which ranges from E(∆∗) − zα/2Seboot(∆∗) to
E(∆∗) + zα/2Seboot(∆∗), where zα is the α critical value of the standard normal
distribution, Seboot(∆∗) is the standard variance of∆∗. However, since making the
normal-distributed assumption is contrary to the non-parametric aspect of bootstrap
method, instead we can obtain [α,1 − α] confidence interval (e.g., [0.05, 0.95]) by
finding the corresponding quantiles of bootstrapped estimators ∆∗ (e.g., the 5th and
the 95th values in a sorted list of 100 bootstrap estimators).

To compare the performance of EL based method and Bootstrap method, we use
the EL based method to construct CIs on imputed dataset at first, and then utilize
the bootstrap method to build CIs on the same dataset.

4 Experimental Study

We have implemented our approaches using MATLAB, and conducted several
experiments on real datasets on a DELL Workstation PWS650 with 2G main memory
and 2.6GHz CPU. The operating system is WINDOWS 2000.

In order to evaluate the performances of our EL based method in building con-
fidence intervals on real datasets, we designed three kinds of experiments on several
datasets extracted from the UCI machine learning repository[5], i.e., one-class experi-
ment, two-class experiment, and multiple-class experiment. The one-class experiment
uses data samples that are coming from a same population, i.e., the dataset corre-
sponds to a population. In the two-class experiment, we choose dataset that contains
a binary-valued class attribute, which is then divided into two portions based on the
class attribute. Each portion is regarded as a population, and data samples are ex-
tracted from the two populations. We also consider in the last experiment dataset
that contains tuples from multiple classes.

4.1 One-Class experiment

The objective of one-class experiment is to check whether the confidence intervals
(CI) constructed are tight enough around the sample differences of groups. The
sample difference should approach to zero, since the two groups are coming from
a same population. To measure the difference, we construct CI for the difference
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with a confidence level 1 − α, where we set α = 0.05 in our experiments (Note that
α = 0.05 is a commonly used parameter in statistical inference, and one may choose
other confidence level, other than 0.05, to suit his applications). We use the abalone
dataset for our one-class experiments, which contains 4177 instances in total and each
instance consists of 9 attributes. These 9 attributes give features of abalones, such as
length, diameter and height, etc. Some other statistics of abalone dataset are listed
in Table 1. There are no missing values in abalone.

We evenly separate the abalone dataset into two parts (groups), denoted as D1

and D2, where the two parts have the same size. We then construct the confidence
intervals (denoted as CI) for the differences of mean and distribution functions (de-
noted as DF) of the original complete data in D1 and D2. The “incomplete” version
of data is generated by using MCAR missing mechanism on the complete data under
a missing rate of 20%, and then the parimputation method[30,31] is adopted to impute
these “incomplete” data. After imputation, we get the “imputed” data. CIs for the
differences of mean and DF are thus built from the imputed data, which are com-
pared with those CIs generated from the original complete data. Theoretically, the
difference ∆of the complete data is very close to 0, due to the fact that population D1

and D2 have the same mean and distribution (note that D1 and D2 are drawn from
a same attribute Ai). The CIs built on complete data are compared with those built
on imputed data. We repeat this whole process (including random separation, impu-
tation, and CI construction) multiple times (e.g., 50) in order to avoid randomness.
Then the result is averaged over these repeated trials.

The experiment results on all the attributes exhibit a similar trend. Thus, for
simplicity we only report experiment results on attributes 3, 5 and 6 of the abalone
dataset, which correspond to the diameter, whole weight, and shucked weight of the
abalone, respectively. For each attribute, a fixed percentage, say 10%, of attribute
values is randomly sampled from D1 and D2, which yields the population X and Y.
The processes of constructing CIs on complete and imputed data are the same as
described above. For each attribute, we generate 20 random samples from D1 and
D2 in order to avoid randomness. The constructed CIs for mean and distribution
function (DF) on complete and imputed data are presented in Fig. 1. The vertical
solid bars denote the CIs on samples from imputed data, whereas the vertical dashed
bars are CIs on samples from complete data. The horizontal straight line is the true
difference∆ of the samples from complete data. We can see that∆ for mean and DF
are very close to 0, which conforms the fact that the two populations X and Y are
drawn from a same attribute (group), that is, D1 and D2 approximately have the
same mean and distribution function.

Table 1 Statistics for attributes 3, 5 and 6 of dataset

Attribute 3 Attribute 5 Attribute 6

Min 0.055 0.002 0.001

Max 0.650 2.826 1.488

Mean 0.408 0.829 0.359

First, we investigate the effect of missing data on the constructed CIs. From Fig.
1(2) and (4) we can see that for the 20th and 8th sample, the CIs (vertical solid bars)
for complete data do not include the actual difference∆, which means that on the
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complete data we have a coverage probability of (19/20)*100%=95%. While for CI of
sample 20 in Fig. 1(2) on imputed data, its lower endpoint covers the true difference
marginally. In contrast, for sample 8 in Fig. 1(4), CI on imputed data does not
include the true difference. From all the subfigures above, we can see that the lengths
of the EL based CIs on both complete and imputed data are stable around the true
differences, and they give us high coverage probability. As expected, CIs on complete
data are shorter than CIs on imputed data, because the imputation of missing data
may introduce uncertainty or even distort the distribution of the original data. This
results in a longer CI. Note that we do not give the results of bootstrap re-sampling
method in Fig. 1, for the reason of avoid cluttering the graphs. Instead, we present
the detailed experimental results of both EL and bootstrap re-sampling method in
Tables 2 and 3.

(1) CIs for mean (attribute 3) (2) CIs for DF (attribute 3, X0=0.5)

(3) CIs for mean (attribute 5) (4) CIs for DF (attribute 5, X0=0.5)

(5) CIs for mean (attribute 6) (6) CIs for DF (attribute 6, X0=0.5)

Figure 1. Comparisons of CIs for mean and DF on the complete and imputed dataset

We compare the EL based and bootstrap re-sampling method in Table 2 and 3,
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with respect to the average endpoints of CIs and the average length (AL) for mean
and DF. We use the abbreviations “Boot” and “EL” for the bootstrap re-sampling
method and the EL based method respectively, and “A.3 Ori” and “A.3 Imp” for the
complete data and imputed data drawn from attribute 3.

Table 2 Left and Right Endpoints and AL for mean of abalone

LE RE AL CP%

Boot A.3 Ori A.3 Imp
-0.04463 0.03201 0.07664 100

-0.03264 0.04705 0.07969 100

EL A.3 Ori A.3 Imp
-0.02455 0.02996 0.05451 100

-0.03137 0.03724 0.06861 100

Boot A.5 Ori A.5 Imp
-0.18264 0.21617 0.39881 100

-0.2511 0.18025 0.43135 100

EL A.5 Ori A.5 Imp
-0.10777 0.13994 0.24771 100

-0.17565 0.16382 0.33947 100

Boot A.6 Ori A.6 Imp
-0.03623 0.07763 0.11386 95

-0.08212 0.08857 0.17069 100

EL A.6 Ori A.6 Imp
-0.04724 0.06413 0.11137 100

-0.06386 0.07909 0.14295 100

Table 3 Left and Right Endpoints and AL for DF (X0=0.5) of abalone

LE RE AL CP %

Boot A.3 Ori A.3Imp
-0.08840 0.10681 0.19521 95

-0.16142 0.12049 0.28191 100

EL A.3 Ori A.3 Imp
-0.10371 0.08388 0.18759 95

-0.13156 0.10676 0.23832 100

Boot A.5 Ori A.5 Imp
-0.11839 0.12080 0.23919 100

-0.16970 0.16801 0.33771 100

EL A.5 Ori A.5 Imp
-0.13295 0.09509 0.22804 95

-0.15046 0.15084 0.3013 100

Boot A.6 Ori A.6 Imp
-0.14768 0.08944 0.23712 100

-0.17232 0.12988 0.3022 100

EL A.6 Ori A.6 Imp
-0.12886 0.09002 0.21888 100

-0.15399 0.15015 0.30414 100

From above tables we can see that the average lengths (AL) of derived CIs on im-
puted data are only slightly longer than that of CIs on complete data. Another obser-
vation is that our EL based CIs are generally shorter than those derived by bootstrap
re-sampling method, although these two methods both have coverage probabilities
that are slightly larger than the pre-specified confidence level 95%.

4.2 Two-Class experiment

Identifying structural differences between samples drawn from two distinct groups
is also important in real world applications. It can give us insight into the underlying
structural differences of two contrast groups. For example, in medical research on
breast cancer, doctors are usually concerned about the differences between the benign
and malignant patients. They may ask the questions, such as how large is the mean
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of tissue radius of a group of benign patients compared with that of the malignant
group? How reliable are the differences that we have obtained from these two groups
of patients? The solution for these problems is to compute the structural differences
of two groups by using statistical methods, and then using EL based method to build
confidence intervals for the differences.

We use the WDBC (Wisconsin breast cancer) dataset from UCI for our two-
group experiment. The WDBC contains 569 instances in total and there are 32
features for each instance. Each instance, representing a patient, belongs to either
benign or malignant according to its class label. For simplicity, we only report those
expriments on attributes 4, 15 and 27. The reason is that these attributes give the best
classification power over the instances[5], and we are interested in how the CIs measure
the difference between instances from different classes of a same attribute. We give
some statistical information of these features in Table 4, more detailed information
about the WDBC and its features can be seen in Ref. [5]. First, based on the
class attribute we separate WDBC into two disjoint portions, one is benign group
(D1) which contains 357 instances, and the other malignant group (D2) with 212
instances.

Table 4 Statistics of Attributes 4, 15 and 27 of dataset WDBC

Mean Distribution function

A4 A15 A27 A4 (x0=15) A15 (x0=3) A27 (x0=0.1)

Malignant 21.6 4.3239 0.14485 0.0189 0.3392 0.0094

Benign 17.91 2.0003 0.12496 0.2437 0.8907 0.1092

Sample difference

Mean

3.69 2.3236 0.01989 -0.2248 -0.5515 -0.0998

We calculate the differences for mean and distribution function for samples drawn
from the two groups, then CIs for the differences are constructed. The settings of the
two-groups experiment are similar to that of the one-group experiment. At first, for
each attribute we generate 20 random samples X’s and Y’s from D1 and D2, respec-
tively, and then the random missing mechanism (MCAR) with 20% missing rate is
applied to these samples, which are then imputed by the parimputation method[30,31].
Finally, the EL based method and bootstrap resampling method are utilized to build
CIs for structural differences of each sample pair X and Y. The results are given in
Tables 5 and 6.

The above tables show that generally the lengths of CIs generated by EL based
method are shorter than those derived by bootstrap re-sampling method, which means
that with a fixed confidence level, the EL method is preferable to the bootstrap re-
sampling method in constructing CIs for group difference. The results also reveal the
fact that the benign patients are very different from the malignant ones with respect to
some specific features such as radius, smoothness and perimeter of the breast tumor.
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Table 5 Left and Right Endpoints and Average Length (AL) for mean of

WDBC

LE RE AL CP %

Boot
A4 Ori

A4 Imp

2.6248 4.3506 1.7258 86

2.4984 4.6312 2.1328 90

EL
A4 Ori

A4 Imp

2.8323 4.2533 1.421 85

2.5606 4.3972 1.8366 93

Boot
A15 Ori

A15 Imp

1.4788 3.4099 1.9311 92

1.2365 3.3782 2.1417 100

EL
A15 Ori

A15 Imp

1.5062 3.1558 1.6496 95

1.3589 2.9475 1.5886 93

Boot
A27 Ori

A27 Imp

-0.2023 0.2167 0.419 100

-0.1985 0.2201 0.4186 100

EL
A27 Ori

A27 Imp

-0.1972 0.2094 0.4066 100

-0.2010 0.2105 0.4115 100

Table 6 Left and Right Endpoints and Average Length (AL) for DF of WDBC

LE RE AL CP %

Boot
A4 Ori

A4 Imp

-0.3211 -0.1267 0.1944 94.4

-0.3395 -0.1348 0.2047 100

EL
A4 Ori

A4 Imp

-0.2996 -0.1156 0.184 95.3

-0.3107 -0.1055 0.2052 100

Boot
A15 Ori

A15 Imp

-0.6496 -0.4212 0.2284 95.3

-0.6388 -0.4035 0.2353 98.5

EL
A15 Ori

A15 Imp

-0.6197 -0.4326 0.1871 95

-0.6291 -0.4117 0.2174 100

Boot
A27 Ori

A27 Imp

-0.2015 0.1909 0.3924 99.6

-0.2268 0.2054 0.4322 100

EL
A27 Ori

A27 Imp

-0.1890 0.1921 0.3811 100

-0.1995 0.2033 0.4028 100

4.3 Multiple-Class experiment

As we have shown in Section 4.1, in real world applications there are some
datasets with binary-valued class attribute. However, there are also other problems
with multiple-valued class attribute. For instance, in a weather forecasting applica-
tion, weather can be classified as sunny, cloudy, windy and rainy. Thus, we must
take into account the problem of building CIs for differences of samples drawn from
dataset with multiple-valued class attribute, since samples from different populations
(classes) may have distinct statistics such as mean, variance, distribution, etc. We re-
fer this as multiple-class problem. A straightforward way to address the multiple-class
problem is to use the methodology in the two-class experiment to construct CIs for
data samples from all class pairs. For example, we consider the two populations sunny
and cloudy, or sunny and windy, where sunny, cloudy and windy are three distinct
classes. Although this method can give some information about differences on any
permutation of the classes, it is not appropriate to reveal characteristics of the whole
dataset. In this paper, we use a simple strategy for our multiple-class experiments.
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Specifically, we divide the example weather database DB into two datasets, one is D1

that contains instances with class value sunny, the other is D2 that contains the rest
instances (i.e., with class value cloudy, windy and rainy). Thus we can use our EL
based method to construct CIs for differences on D1 and D2.

To test our EL based method, we extract several datasets from UCI repository,
where each of the datasets contains a class attribute with more than 2 class labels. We
conduct experiments on numerical attributes of these datasets, and we found that the
results follow a similar trend across different attributes. Since some datasets contain
too many attributes, we only select one attribute for each dataset to present in our
experiments, which are given in Tables 7 and 8.

Table 7 Experiments on datasets with multiple-valued class attribute for

mean

Dataset Method LE RE AL CP(%)

Spambase

Attr. 24

(2-Classes)

Boot.Ori 0.17980 0.23697 0.05717 95.8

EL.Ori 0.17879 0.22690 0.04811 96

Boot.Imp 0.1697 0.2296 0.0599 97.2

EL.Imp 0.1701 0.2188 0.0487 97.1

Diabetes

Attr. 4

(2-Classes)

Boot.Ori 1.4198 3.5641 2.1443 99.4

EL.Ori 1.5265 3.5713 2.0448 100

Boot.Imp 1.3588 3.6467 2.2879 100

EL.Imp 1.4476 3.4745 2.0269 100

Wine

Attr. 11

(3-Classes)

Boot.Ori -3.51207 -2.98109 0.53098 82.5

EL.Ori -4.15280 -2.66225 0.89055 100

Boot.Imp -3.8012 -2.8916 0.9096 100

EL.Imp -4.1029 -2.5688 1.5341 100

Iris

Attr. 3

(3-Classes)

Boot.Ori -3.32600 -2.58400 0.742 80.6

EL.Ori -4.05828 -2.31574 1.74254 100

Boot.Imp -3.5727 -2.6346 0.9381 85.7

EL.Imp -3.8262 -2.4459 1.3803 100

Yeast

Attr. 3

(10-Classes)

Boot.Ori -0.48495 -0.36687 0.11808 88.5

EL.Ori -0.46824 -0.30341 0.16483 95.3

Boot.Imp -0.5346 -0.3402 0.1944 95

EL.Imp -0.5752 -0.3260 0.2492 100

From Table 7, we can see that for dataset spambase and diabetes, the lengths
of EL based CIs for mean are shorter than those derived by bootstrap re-sampling
method; whereas for dataset wine, iris, and yeast, EL generates slightly longer CI
than that of bootstrap method. However, EL based method always achieves a better
coverage probability than bootstrap method. Now we turn to CIs for DF, as presented
in Table 8. Although bootstrap re-sampling method derives slighty shorter CIs on
spambase, yeast, and wine, the average coverage probability of these CIs is smaller
than that generated by EL based method.
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Table 8 Experiments on datasets with multiple-valued class attribute for DF

Dataset Method LE RE AL CP(%)

Spambase

Attr. 24

(2-Classes)

Boot.Ori 0.2414 0.4105 0.1691 89.9

EL.Ori 0.2388 0.4285 0.1897 93

Boot.Imp 0.2209 0.4299 0.209 95.4

EL.Imp 0.2307 0.4356 0.2049 98.7

Diabetes

Attr. 4

(2-Classes)

Boot.Ori 0.1040 0.2663 0.1623 100

EL.Ori 0.1178 0.2602 0.1424 98.5

Boot.Imp 0.0994 0.2598 0.1604 99.3

EL.Imp 0.1272 0.2696 0.1424 98.3

Wine

Attr. 11

(3-Classes)

Boot.Ori 0.49295 0.56338 0.07043 84.2

EL.Ori 0.42028 0.60124 0.18096 96.3

Boot.Imp 0.6012 0.7955 0.1943 100

EL.Imp 0.4006 0.6255 0.2249 100

Iris

Attr. 3

(3-Classes)

Boot.Ori -0.14999 -0.05000 0.09999 92.4

EL.Ori -0.13047 -0.10581 0.02466 89.1

Boot.Imp -0.2056 -0.0811 0.1245 100

EL.Imp -0.1878 -0.0942 0.0936 94.3

Yeast

Attr. 3

(10-Classes)

Boot.Ori 0.16248 0.37997 0.21749 87.6

EL.Ori 0.17085 0.42803 0.25718 92.0

Boot.Imp 0.1832 0.3951 0.2119 90.8

EL.Imp 0.1788 0.4035 0.2247 94.1

4.4 Discussion

As shown in Tables 2, 3, 5 and 6, the empirical likelihood (EL) method is su-
perior to the bootstrap re-sampling method in computing CIs for group difference,
both in one-group and two-class experiments. For multiple-class experiments, EL
based method generates a slightly longer CIs that of bootstrap re-sampling method.
However, EL based method achieves a higher coverage probability than bootstrap.
Another observation is that the lengths of CIs on imputed data are slightly longer
than the lengths of CIs on complete data, which shows the effectiveness of the parim-
putation method in dealing with incomplete data, for the purpose of building CI for
group differnce.

The implication of the three experiments is that our method, using EL method
and parimputation strategy, can robustly construct CIs for group difference either
on complete or incomplete dataset, no matter the datasets are coming from a same
population or different populations. This means that our method for buildiing CIs for
group difference is suitable for a broader range of applications, and as a tool it can
help researchers in exploratory data analysis tasks such as medical research, anti-spam
email software development, customer behavior analysis, etc.

5 Conclusion

Recognizing the importance of differences between populations (groups), there
are many data mining techniques developed for group difference detection in the con-
text of associations[2−4,8,14,21,24], and group interaction detection between complete
datasets[29]. In this paper we have incorporated the parimputation strategy and the
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group interaction approach to mining quality models from incomplete data by identi-
fying the (mean and distribution function) differences between an incomplete dataset
and a known dataset, which can be utilized for measuring the quality when one is
making inferences on the datasets.

In comparison with the differences of two contrast groups with missing data, we
have shown that in most cases the empirical likelihood (EL) based method works
better than the bootstrap re-sampling counterpart in building confidence intervals for
the mean and distribution function differences. We also showed that this result can
directly be used to test the hypotheses on difference ∆.
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