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Abstract Internetware applications are context-aware. They adapt their behavior based on
environmental changes. However, faulty adaptation may arise when these applications face
unanticipated situations. Such adaptation faults can be difficult to detect at design time.
One promising approach is to statically analyze model-based context-aware applications
exhaustively for all potential faults. However, it suffers from expressiveness and precision
problems. To address these limitations, we propose in this paper a dynamic adaptation model
(AM) approach. AM offers increased expressive power to model complex adaptation rules,
and guarantees soundness in its fault detection. In addition, AM deploys an incremental rule
evaluation (IRE) technique to cater for context-aware applications, such that it can efficiently
handle environmental changes in its fault detection. We evaluated AM using both simulated
and real-world experiments with two context-aware applications. The experimental results
confirmed that AM can detect real faults missed by existing work, and avoid numerous false
warnings that were misreported otherwise.
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1 Introduction

Internetware applications!™? are receiving increasing attention. Recent advance-
ment in key technologies, such as wireless sensor network and radio frequency
identifi- cation®!, has boosted the development and deployment of new Internetware
applications. These applications continually monitor their environments and make
self-adaptation for seamless integration. Such applications are also called
context-aware adaptive applications (or CAAAs for short)['%16], Typical contexts
used in CAAAs include object location, environmental noise, and any other piece of
information, as long as they affect the computation in an application. One example
CAAA is a PhoneAdapter application'®16], Tt can automatically mute a smart-
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phone’s ring tone and activate its vibration mode when its user is in office, and
disable vibration when the user attends a meeting.

To support CAAA development and deployment, various middleware infrastruc-
tures(H:813:19,24.25] and application frameworks®® have been studied and proposed.
They commonly follow an intuitive computational model. In this model, two design
concerns are well separated: (1) acquiring contexts from environments, and (2)
executing adaptation based on these contexts.

This computational model allows developers or users to specify adaptation rules
(or rules for short) that govern how their applications should react to contexts and
their changes. Adaptation rules thus play an important role in deciding an
application’s runtime behavior. This model is simple yet powerful. However, it may
be exposed to potential threats to its correctness, especially when a CAAA
encounters the situations never anticipated at design time. For example, when
multiple rules are triggered at the same time, a CAAA may randomly select one of
them for execution. Then the application’s state can become unpredictable due to
this non-determinism. Besides, if one rule can be triggered without taking any new
context, the concerned CAAA would have its state unstable. The state’s duration
would depend unpredictably on context update rate or rule execution speed. In
either case, the CAAA may fail to adapt as expected.

Each CAAA may have its own criterion of deciding application-specific faults.
Still, CAAAs can share some common fault patterns. For example, when properties
like determinism (whether a CAAA is always clear about its next executed rule) and
stability (whether a CAAA’s state is always stable after each adaptation) are violated,
an application would probably run in an unpredictable or unstable way, exhibiting
unexpected behavior. This is usually undesirable.

To detect such adaptation faults, one promising approach is static analysis. A
recent piece of work targeting this problem is adaptation finite- state machine
(A-FSM)!15:16] - A_-FSM first constructs a search space for all possible values to be
assigned to context variables used in a CAAA’s rules. It then exhaustively explores
this space to find all potential faults. This approach works, but it also contains two
limitations. First, A-FSM does not have sufficient expressive power to specify
complex adaptation rules. As such, some recently published or pratical CAAAs
cannot be precisely modeled. Second, A-FSM does not take into account the impact
of variable dependency, physical constraints, and rule actions on its fault detection.
As such, it may report numerous false warnings (i.e., unreal faults).

In this paper, we present a novel adaptation model (AM) approach to address
these two limitations. We base AM on existing A-FSM, and improve it by both
increasing its model’s expressive power and avoiding reporting false warnings in fault
detection. In addition, we deploy an incremental rule evaluation (IRE) technique to
enhance AM’s runtime efficiency, so that it can be used for practical context-aware
applications, which are subject to continual environmental changes.

The remainder of this paper is organized as follows. Section 2 presents our
motivating example for explaining A-FSM’s limitations in modeling CAAAs and
detecting faults, and analyzes the challenges of addressing these limitations. Section
3 introduces our AM approach in detail, from its adaptation model, to fault
detection algorithm, and to runtime rule evaluation technique. Section 4 evaluates
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AM and compares it to A-FSM using a simulated stock tracking application and a
real-world self-controlling robot-car application. Finally, Section 5 discusses the
related work, and Section 6 concludes this paper.

2 Motivating Example and Problem Analysis

In this section, we present a motivating example and explain our target problem.
The example exhibits context-aware features found in typical CAAAs.

2.1 Stock tracking application

Our example was adapted from our pilot study of an RFID-enabled stock tracking
application in an international paper company (RFID stands for radio frequency
identification).

The application controls a forklift to transport RFID-tagged paper boxes from
the loading bay of a warehouse to its storage bay, as illustrated in Fig. 1. RFID gates
are installed at these two bays to collect contexts (e.g., RFID codes and detection
locations of the paper boxes) in this stock tracking process. Missing readings can occur
because RFID codes of some paper boxes may not be successfully detected at any time.

This problem can be alleviated by increasing RFID antennae’s transmission power or
altering their orientations. However, this treatment may instead cause RFID codes of
some paper boxes to be accidentally detected by nearby irrelevant RFID gates. These

wrongly detected RFID codes are called cross readings. Missing readings and cross
7,23]

readings are very common in practical RFID deployments!

An RFID gate that consists of four antennae

Loading bay Storage bay
Figure 1. Loading bay (left) and storage bay (right) in a warehouse

The stock tracking application runs in a finite-state machine style, as illustrated
in Fig. 2. It consists of a set of states and adaptation rules connecting them. The
application starts with its initial “loading” state, at which a forklift is controlled to
load a pallet of paper boxes at a loading bay gate. Each paper box is attached with
an RFID tag, which carries a unique RFID code to distinguish this box from others.
When a paper box is passing by an RFID gate, its associated RFID code would be
read and recorded. After the box loading is complete, the application proceeds to
the “transporting” state. At this state, the forklift is controlled to transport a pallet
of paper boxes from the loading bay to the storage bay, where these boxes are to
be unloaded. Box unloading would cause the application to enter the “unloading_1”
state, which is then followed by the “unloading 2” state (i.e., two unloading steps).
During these two steps, RFID codes of all paper boxes are read again to check whether
there is any cross reading or missing reading problem. The checking is conducted with
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respect to two constraints: (1) During the transportation, RFID codes of these paper
boxes should not be read by nearby irrelevant RFID gates; (2) The two sets of RFID
codes collected at the loading bay and unloading bay must match. If any cross reading
occurs, it would be discarded at the “cross_reading” state. If any missing reading
occurs, it would be recovered at the “missing reading” state. After the checking is
complete, the application proceeds to the “returning” state. At this state, the forklift
is controlled to come back to the loading bay for its next transportation task. If there
is no such task, the application would enter the “energy_saving” state after a period
of time, and put all RFID gates into sleep for saving energy, until it receives its next
transportation task.

r6: cross_reading_occurred

transport r2: start_unloading_1 Cross
rl: start_transporting ™~ - 4//7 reading
unloadin -
r12: start_loading r7: cross_reading
- gl _solved

energy loading r3: start_unloading_2

—
savin <«

g unloadin r8: missing_reading

r10: save energy r5: restart loadmg occurred

g2
missing_
r11 save_energy r“ start remmlng
r9: missing_reading_solved

Figure 2. Stock tracking application
(its state transition diagram with 8 states and 12 rules)

In summary, the stock tracking application implements the following three
functional features:

1. Normal workflow. The application runs as a complete work loop for
transporting paper boxes from the loading bay to the storage bay. This
feature covers “loading”, “transporting”, “unloading_1”, “unloading 2", and
“returning” five states. These states associate five adaptation rules r1-5.

2. Exception handling. The application checks for cross readings and missing
readings in collected RFID codes for paper boxes, and fixes these problems if
necessary. This feature covers “unloading_1”, “cross_reading”, “unloading_2”,
and “missing_reading” four states. These states associate four adaptation rules
r6-9.

3. Energy-awareness. The application can switch between its normal working
mode and energy-saving mode. This feature covers “energy_saving”, “loading”,
and “returning” three states. These states associate three adaptation rules r10-
12.

2.2  Application modeling and rule types

As mentioned, adaptation rules play an important role in specifying an
application’s behavior upon context changes. An expressive modeling language is
thus required for defining rule conditions based on context changes. In our stock
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tracking application, its contexts mainly include two types: (1) pressure sensor
readings (these sensors are installed at the loading bay and storage bay, and their
reading values indicate whether a forklift has arrived or left a bay); (2) RFID
readings (for tracking the pallets and paper boxes being transported). The
application needs to check these contexts and their changes so as to decide its
behavior. For this stock tracking application, we aruge that a language based on
propositional logic (e.g., the one used in A-FSM) does not suffice for this modeling
purpose.

A-FSM’s modeling language defines adaptation rules by logical formulae. These
formulae use propositional context variables and three logical operators (“and”, “or”,
“not”) connecting them. For example, one can specify a rule like “(lArv(rg)) and
(pallet(tg))” using two propositional context variables “flArv(rg)” and “pallet(ts)”
to check whether one pressure sensor (rg) reports the arrival of a forklift at the
storage bay as well as its associated pallet (tg) being found there. Such propositional
context variables return “true” or “false” only. We observe that the rules expressed in
propositional logic are based only on current values of the concerned context variables.
For example, the preceding rule uses “flArv(rg)” and “pallet(ts)” to show whether
the forklift is currently at the storage bay and whether the pallet’s current location
is the storage bay, respectively. We call such rules simple rules.

In the stock tracking application, some rules requiremultiple values for certain
context variables in a spatial or temporal dimension. For example, the rule for
checking missing readings may be specified as “3by, € Bjoaqd (Vbs € Bsior[t] (not
(matched(by,, bg))))”. This rule checks the existence of a paper box that, after its
RFID reading (Bjsqq) has been collected at the loading bay, is no longer detectable
at the storage bay (Bstor[t]; t represents an interval of ¢ from now). Specifying such
rules needs first-order logic that contains universal and existential quantifiers. We
name such a modeling language first-order logic based language and the rules thus
expressed complex rules.

The stock tracking application includes both simple and complex rules. In fact,
complex rules are quite common in modeling recently published or practical CAAAs.
For example, a ConChat application!™ checks whether all members of a group are
in a specific meeting room, or any one of them is in another room. Another context-
aware communication application!®! checks whether its user is occupied in any one of
all possible time slots. In these rules, first-order logic is commonly used to retrieve
every context from a set that is restricted by spatial or temporal conditions.

2.8 Modeling language and application specification

We adopt the following first-order logic based language to specify adaptation
rules in CAAAs:

rule := Vv € S[t] (rule) |3v € S[t] (rule) |(rule) and (rule) |

(rule) or (rule) |(rule) implies (rule) [not (rule) |
func(v, v, ...).

By using this language, an adaptation rule is specified recursively. By universal or
existential quantifier, a rule defines a context variable (v) that can take any arbitrary
value from a set (S[t]). The set can be optionally restricted by an interval ¢. When the
interval is there, the set contains all contexts collected within this interval; otherwise,
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the set contains the latest context only. By this, the language supports both simple
and complex rules. Developers or users can also define application-specific functions
(func). To illustrate the use of this language for modeling CAAAs, we specify all 12
adaptation rules in the stock tracking application.

2.3.1 Specification: normal workflow

The whole application specification consists of three parts. The first part covers
the “normal workflow” feature. It contains five adaptation rules r1-5:

r1(“start_transporting”):

Irp, € Ripaa (AGone(ry)).

r2(“start_unloading_17):

(3rs € Rsior (HArv(rg))) and (3ts € Tsior (pallet(ts))).
r3(“start_unloading_2”):

Jdes € Cstor (proceed(cs)).
r4(“start_returning”):

Irs € Rsior (AGone(rg)).
r5(“restart_loading”):

dry € Rioad (ﬂAI‘V(TL)).

In these five rules, context variables r;, and rg report the latest status for two
pressure sensors installed at the loading bay and storage bay, respectively. Functions
“fAGone” and “fArv” check whether the forklift has left or just arrived according to
sensor readings, respectively. Another context variable tg reports the most recent
RFID reading for the pallet carrying paper boxes at the storage bay, and function
“pallet” checks whether this reading belongs to the pallet being used by the forklift.
Finally, context variable cg contains the latest controlling signal that indicates
whether or not the paper box RFID reading has completed at the storage bay and
the application can proceed to the next checking phase (by function “proceed”).

We discuss one example. According to Rule r2, when the application detects
that the forklift has arrived at the storage bay (flArv(rg) = true) and its pallet also
appears there (pallet(ts) = true), this rule is triggered and executed. As a result, the
application enters the “unloading_1” state.

2.3.2 Speficiation: exception handling

The second part covers the “exception handling” feature. It contains four
adaptation rules r6-9:
r6(“cross_reading_occurred”):
dbs € Bstor (Ele € Bgate[_t] (matChed(b57 bG)))
r7(“cross_reading_solved”):
Vbs € Bstor (not (3bg € Bgate[—t] (matched(bs, ba)))).
r8 (“missing_reading_occurred”):
by, € Bioaa (Vbs € Bstm«[t] (not (matched(bz,, bg))))-
r9 (“missing reading_solved”):
Vbr, € Bioad (3bs € Bstor[t] (matched(by,, bg))).
For this feature, all rules r6-9 are complex rules. They cannot be specified in a
propositional logic based language like the one used in A-FSM.
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Rule r6 checks whether any paper box RFID reading collected at the storage bay
matches any paper box RFID readings collected earlier by another irrelevant RFID
gate within a past interval ¢t. The value of ¢ can be set to reasonable transportation
time between the loading bay and storage bay, such that any matched RFID reading
is considered cross reading. Rule r'7 reverses rule r6’s condition to make sure that all
cross readings have been properly handled. Rules r8 and r9 work in a pair similarly.
Rule r8 checks whether there is any paper box no longer detectable at the storage
bay, after its RFID reading has been successfully collected at the loading bay. Rule
r9 reverses rule r8’s condition to make sure that all such missing readings have
been properly handled. As these rules show, our modeling language is expressive in
specifying the rules that refer to both historical contexts (when using [—t]) and future
contexts (when using [¢]).

2.3.3 Specification: energy-awareness

The third part covers the “energy-awareness” feature. It contains three adapta-
tion rules r10-12,; in which r10 and r11 are the same:

r10/11 (“save_energy”):

(3L, € Ripaa (1Gone(rr))) and (not (Jtr, € Tioaa[—t] (pallet(tr)))).
r12 (“start_loading”):
(3L, € Ripaa (HArv(rr)) or (3tr € Tioaa[—t] (pallet(tyr)).

This feature contains two complex rules r10-11 and one simple rule r12. Rule
r10/11 enables the application to enter the “energy_saving” state when the forklift
has left (maybe used somewhere else) and the pallet is taken away for a period of
time (already timeout). Rule r10/11 applies to both the “loading” and “returning”
states. The last Rule r12 brings the application back to its normal working mode if
either of the above two condition is no longer satisfied.

2.4 Fault detection precision analysis

Within the scope of this paper, we focus on two adaptation faults commonly
found in CAAAs!'516] They are non-determinism fault (violating the determinism
property) and instability fault (violating the stability property). As mentioned, the
existing A-FSM approach can detect such faults by static analysis. However, we
also note that A-FSM has made two implicit assumptions that have affected its fault
detection precision.

2.4.1 Assumption 1: using a propositional logic based specification language

A-FSM supports only those CAAAs whose adaptation rules are specified by a
propositional logic based language. By doing so, the number of context variables
used in a rule is fized, and at the same time they can only take “true” or “false”
as its value. This is important and necessary, because otherwise A-FSM cannot
exhaustively explore all possible value assignments made to these context variables.
When detecting non-determinism faults, A-FSM enumerates all value assignments
in each state and examines whether any of them would trigger more than one rule
at the same time. When detecting instability faults, A-FSM enumerates all value
assignments in each state, and examines when any rule is triggered and executed,
whether another rule is already triggered without taking any new context changes.



92 International Journal of Software and Informatics, Volume 7, Issue 1 (2013)

Since A-FSM adopts a propositional logic based specification language, it models
and detects faults in simple rules only. As such, its fault detection results may not
be complete. This implies that A-FSM can introduce false negatives (i.e., no fault is
reported but there actually exists).

Take our stock tracking application as example. A non-determinism fault may
occur at the “loading” state, where two rules rl and r10 can be triggered at the
same time. This happens when the forklift stays at the loading bay but the pallet
has been taken away for a period of time, causing the right part of rule r10 evaluated
to “true”. Now the forklift is also taken away, and then the application would face a
nondeterministic situation. This is because two rules r1 and r10 are both triggered
(rule r1 and the left part of rule r10 are both evaluated to “true”). However, A-FSM
cannot detect it because r10 is a complex rule and A-FSM cannot even model it.

2.4.2 Assumption 2: not considering dynamic information in analysis

A-FSM is a static analysis approach. It does not consider the impact of variable
dependency, physical constraints, and rule actions on its fault detection results.
Therefore, the results can be imprecise. First, variable dependency and physical
constraints enforce specific relationships among contexts, such that context variables
cannot take arbitrary values. This is basically ignored by A-FSM. Second, rule
actions introduce dynamic context changes at runtime. A-FSM is fully unaware of
it.

Still take our stock tracking application as example. A-FSM can detect an
instability fault at the “energy_saving” state. This fault manifests itself when value
assignments to concerned context variables are: pallet(ty,) = true, flArv(ry) = true,
fiGone(ry) = true, pallet(ts) = false, flArv(rg) = true, flGone(rg) = false, and
proceed(cg) = false. The application would make a state transition from “energy_
saving” to “loading” (since flArv(ry) = true), and then to “transporting”
immediately (since flGone(ry) = true), without taking any new context changes.
During these two continual transitions, collecting paper box RFID readings may or
may not be skipped, depending on rule execution speed and context update rate.
However, although this fault is undesired, it would never occur in reality. This is
because the associated value assignment is invalid due to the variable dependency
between flArv(ry) and flGone(ry). They can never both take “true” at the same
time.

It could be argued that such variable dependency should be studied in advance
for refining later fault detection results. We note that there are three concerns.
First, variable dependency can be a lot, and there does not exist an automated way
to derive a complete and precise set of variable dependency for any given CAAA.
Second, modeling variable dependency may itself require expressive power beyond
that supported by a propositional logic based specification language. Third, physical
constraints and rule actions add extra complexity by uncontrollable dynamic context
changes, which cannot be modeled in advance.

For example, consider a physical constraint like “a forklift cannot jump from
the loading bay to the storage bay suddenly”. It requires that “pallet(7},qq) = true”
should not be followed immediately by a context change that demands “pallet(Tsor) =
true”. Exploring a complete set of such constraints needs extensive knowledge on
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physical laws about the real world and does not seem to be an easy task. Besides, the
application can modify contexts at the “cross reading” or “missing reading” state,
and this would update values of concerened context variables. Static analysis fails to
incorporate such dynamic information into its fault detection, and has to suffer from
the imprecision problem.

2.5 Challenges in improvement

Summing up our preceding analyses, the inadequate expressive power of a
propositional logic based specification language and the nature of a static analysis
based fault detection approach bring along two major limitations. They cause the
fault detection precision inevitably impaired.  Therefore, we first consider a
migration from a propositional logic based specification language to a first-order
logic based one. However, the migration is not that straightforward.

First, consider a rule that is specified by a first-order logic based specification
language like rule r8, “Iby, € Bjoad (Vbs € Bstor[t] (not (matched(by, bg))))”, in the
stock tracking application. Each context variable (e.g., by, and bg) in the rule can
take an arbitrary value from its associated context set (not only “true” or “false”),
and it can refer to a set of different values rather than only one value. Not only
what contexts can become the values for such a context variable is unclear (should
be decided at runtime), but also how many of them can be in this set is no longer
knowable in advance (should be decided by an interval ¢). As such, exhaustically
exploring all possible value assignments to context variables used in a rule becomes
impossible. Then, the idea of detecting all potential adaptation faults by exhaustive
exploration of a rule’s space is no longer feasible to first-order logic specified rules.

Second, since an exhaustive exploration for the space formed by a first-order
logic specified rule cannot be done statically, one may migrate from static analysis to
dynamic analysis, i.e., detecting faults at runtime. This can also avoid the concern
that there is no way to automatically derive a complete and precise set of variable
dependency and physical constraints for CAAAs. However, detecting faults at runtime
requires high efficiency because otherwise an application’s responsiveness to context
changes would be impaired, denying its original purpose of being context-aware.

Regarding the above two challenges and their analyses, we propose our novel
adaptation model (AM) approach to detect CAAA adaptation faults at runtime. Our
ideas are as follows:

1. Completeness: Deploy our first-order logic based specification language to
model CAAA adaptation rules. The language supports both simple and complex
rules. It also allows application-specific functions to be specified by developers
or users.

2. Precision: Detect adaptation faults at runtime to avoid false warnings. Our
AM approach detects CAAA faults dynamically and therefore must report real
faults.

3. Efficiency and scalability: Detect adaptation faults in an incremental way.
Our AM approach would reuse previous rule evaluation results and
incrementally handle new context changes for efficiency and scalability.
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3 AM Approach

In this section, we elaborate on our AM approach. We first introduce its
underlying model for specifying how a CAAA runs with its state transitions. Based
on this model, we then propose an algorithm to detect a CAAA’s adaptation faults
dynamically.  Finally, we discuss how we reduce the impact of runtime fault
detection on a CAAA’s responsiveness to its received context changes.

3.1 Adaptation model

Our AM approach contains a built-in model for specifying CAAAs. This model,
named adaptation model, is a finite-state machine, which contains a set of states S
and a set of adaptation rules R. Each state is a unique string that distinguishes it
from other states. Rules are further defined as: R C S x C x § x A x N. Here,
C is a set of rule conditions specified in our aforementioned first-order logic based
specification language. A is a set of actions that can be executed by a CAAA, and
they may modify the values of concerned context variables. Finally, IV is a set of
natural numbers presenting rule priorities.

Thus, a rule r is represebted as a tuple of five attributes (s, ¢, s, a, n). If a
CAAA is currently resident at state s and rule r’s condition c is evaluated to “true”,
we say that rule r is t¢riggered. All rules (like r) starting from state s (as the first
element in r’s representation tuple) are considered active for state s. If multiple
active rules are triggered, then only one of them can be selected for execution. The
choice depends on their priorities (n). When rule r is executed, the CAAA would
conduct action a and transits to a new state s’. For our stock tracking application,
the first-part adaptation rules r1-5 (for normal workflow) have a normal priority (say
5), the second-part and third-part adapation rules r6-12 (for exception handling and
energy-awareness) have a high priority (say 10).

Given a CAAA, we specify its adaptation model as: AM = (S, R, so, Sy, s¢, V).
Here, S and R are the set of states and set of adaptation rules, respectively, used by
this application. A special state so € S is this application’s initial state. When the
application starts, it is set to this initial state. Subset S; C S is this application’s
final states. When the application reaches any one of them, it stops running. All
these belong to static information. On the other hand, s, and V capture runtime
information. Here, s, € S is the application’s current state, and V is the current
value assignment for all context variables used by this application: o (CTX_VAR x
p (CTX_VAL)). A context variable can be mapped to either a single context value
(for simple rules) or a set of context values (for complex rules).

3.2 Fault detection algorithm

Now we explain the detection of non-determinism faults and instability faults.
The detection is based on the adaptation model associated with a CAAA. As
explained earlier, non-determinism fault violates the property that, for each state
and each possible value assignment to context variables, there is at most one active
rule that can be triggered. Instability fault violates the property that an
application’s current state’ duration is independent of context update rate and rule
execution speed. When an instability fault occurs, given context changes would
produce a sequence of continul adaptations, such that which state the application
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would eventually stop at depends on how long concerned context variables would
hold their values, which are unpredictable. This would cause the application to run
in an unstable way (called adaptation race) or maybe worse in an infinite loop
(called adaptation cycle)>16],

We give our fault detection algorithm in Fig. 3. It is composed of three parts.
The first part is an overall framework, and the other two parts detect two adaptation
Algorithm (Part 1): detectFaults
Input: AM M, context change c¢

Output: faults F
1: M.evaluateRules (c)

2: F = {}

3: r = checkNondeterminism (M, F)

4: if r != null then

5: state = M.getState ()

6: cycle = false

7 R = checkRaceCycle (M, r, F, cycle)
8: if size(R) > 1 then

9: if cycle then

10: F.add ({“cycle”, state, R})
11: else

12: F.add ({“race”, state, R})
13: end if

14: end if

15: end if

16: return F

Algorithm (Part 2): checkNondeterminism
Input: AM M, faults F
Output: triggered rule r, faults F

1: rules[] = M.getSatisfiedRules ()

2: if size(rules[]) > 1 then

3: F.add ({“nondeterminism”, M.getState(), rules[]})
4. r = selectRandom (rules[])

5: else if size(rules[]) == 1 then

6: r = rules[0]

7: else

8: r = null

9: end if

10: return r

Algorithm (Part 3): checkRaceCycle
Input: AM M, triggered rule r, faults F, boolean cycle
Output: race rules R, faults F, boolean cycle

1: R = {r}

2: while r != null && !cycle do

3: changes|[] = M.executeRule (r)
4: M.evaluateRules (changes[])
5: r = checkNondeterminism (M, F)
6: if r !'= null then

7 if »r € R then

8: cycle = true

9: end if

10: R.add (r)

11: end if

12: end while
13: return R

Figure 3. Fault detection algorithm
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faults, respectively. When a new context change c is received, Part-1 Algorithm
(detectFaults) is invoked. A CAAA’s associated adaptation model M would
evaluate all its active rules to see whether any rule is triggered due to this context
change (Lines 1-3 of Part 1). Part-2 Algorithm (checkNondeterminism) is then
invoked to detect non-determinism faults if any, and select one triggered rule r for
execution (Lines 1-9 of Part 2). If such a rule r exists, the control flow goes back to
Part-1 Algorithm to continue to detect adaptation race or cycle faults (Lines 4-7 of
Part 1); otherwise, the whole algorithm stops. The adaptation race or cycle
detection forms a loop, in which Part-3 Algorithm (checkRaceCycle) executes the
selected rule r and collects potential context changes (Line 3 of Part 3), then
reevaluates active rules against these new changes and detects new non-determinism
faults (Lines 4-5 of Part 3), and finally selects a new rule for execution if any. The
loop keeps repeated until no more rule can be triggered or the selected rules have
already formed a cycle (Line 2 of Part 3). If the loop is not infinite, it indicates an
adaptation race fault. It implies that no new context change is received, but the
application keeps triggering itself and making continual adaptations. If the loop is
infinite (cycle detected), it indicates an adaptation cycle fault. It implies that the
same states and rule sequences would repeat themselves forever.

All these faults are harmful to CAAAs and can be detected by the fault
detection algorithm. We note that since these faults are detected dynamically
during the application runs, they are always real, i.e., no false warning. This is also
confirmed by our later evaluation.

3.3  Incremental rule evaluation

Our fault detection algorithm works at runtime, and therefore its time
complexity is a key issue. In the algorithm, when a context change is received,
function evaluateRules would be invoked to check whether this change would
cause any active rule to be triggered. The checking needs to reevaluate all active
rules. Later, when a triggered rule is selected for execution, new context changes
may be produced as a result of this rule’s action. These new changes would also
need to be examined by function evaluateRules to see whether any new rule is
triggered. As such, this function can be called multiple times even in one invocation
of the fault detection algorithm.

We conjecture that this could be time-consuming. To study its complexity at
runtime, we conducted initial experiments to investigate the percentage of time spent
solely by this function against the total time. We found that this percentage could
be up to 99%, which is very significant. This finding suggests that reducing the
time complexity for the evaluateRules function is the key to improving the overall
efficiency and scalability of our runtime fault detection algorithm.

3.3.1 Rule evaluation tree

We propose an incremental rule evaluation (IRE) technique to address this
concern. IRE builds on our previous work on incremental consistency checking(?-23),
and extends it to support efficient handling of three types of context change as well

as enhanced reuse for both data structures and evaluation results.

IRE represents the evaluation for each adaptation rule by a tree structure (called
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rule evaluation tree or RET). The tree structure contains multiple layers, and each
layer corresponds to a nested level of the associated rule. For example, consider rule r6
“Jbg € Bstor (3bg € Byate|—t] (matched(bs, bg)))” in our stock tracking application.
Suppose that at the time we evaluate this rule, By, contains its only value by,
and Byqre[—t] contains two values {bg1, by2}, which have been collected within the
past ¢ interval. Then the evaluation of rule r6 can be represented by an RET, as
illustrated in Fig. 4 (top-left diagram). This RET spans itself by listing all possible
value assignments for concerned context variables. A post-order traversal (i.e., visiting
each tree node and evaluating its truth value based on its associated value assignment)
to the RET would return the truth value of the whole rule r6. Intermediate truth
values (also called intermediate evaluation results) can be recorded in each node’s
data structure for later reuse.

m: function “matched”

‘l' bs=by, @ l' bs=by,
IbgeB,,[1] IbgEByaie[-t]
bo b7 Bo = by, b = by ~Jo=ba @

| m(bs, bg) | | m(bs, bg) | | m(bs, bg) | | m(bs, bg) |

3B, [] 3bgEByye[-t]
b= bgl/ \bf =by e bg = bgl/ \bf =by

[ mosby) | | mibgby | | mbsby | [ mogby | [ mosby |

Figure 4. Rule r6s associated RET (top-left), tree change due to context update

/.

(top-right), tree change due to context addition (bottom-left), and tree change due to
context deletion (bottom-right).

3.3.2 Types of context change

In order to incrementally evaluate adaptation rules, one needs to adjust these
rules’ associated evaluation trees incrementally with respect to received context
changes. There are a total of three types of context change. They are context
update, context addition, and context deletion changes:

1. Context update change: Modify the current value of a context variable.
Such context variables can take only one value. One example is variable bg in
rule r6.

2. Context addition change: Add a new value for a context variable. Such
context variables can take multiple values from a context set. One example is
variable bg in rule r6. This change actually affects this variable’s associated
context set.

3. Context deletion change: Remove a previous value for a context variable.
Such context variables can also take multiple values from a context set. One
example is variable b in rule r6. This change actually affects this variable’s
associated context set.
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Context update change works for simple rules, which are specified by a
propositional logic based specification language. Handling such context changes
supports the case that the current value of a context variable is replaced by its
latest value. Context addition and deletion changes work for complex rules, which
are specified by a first-order logic based specification language. Handling such
context changes supports the case that a context variable represents a set of
contexts restricted by spatial or temporal conditions and this set is altered by
inserting new contexts (received from environments) or removing previous contexts
(obsolete due to timeliness requirements).

3.3.3 Handlig context changes incrementally

To incrementally handle context changes, one needs to reuse existing tree
structures and previous evaluation results as many as possible. Our basic idea is
outlined by the following four operations, which have different levels of reuse:

1. Reuse. Both existing tree structures and previous evaluation results are reused
(as they are still useful).

2. Renew. Existing tree structures are reused, but previous evaluation results are
renewed (as they need update).

3. Discard. Both existing tree structures and previous evaluation results are
discarded (as they are no longer useful).

4. Add. Both tree structures and evaluation results are newly created (as they do
not exist before).

We in the following explain how to incrementally handle context changes using
these four operations. We explain our idea by illustrative examples.

Context update change. Suppose that a context update change modifies
a context variable bg’s value from by to bge, as illustrated in Fig. 4 (top-right
diagram). We observe that all nodes in this RET are reusable but their evaluation
results need update. Our IRE technique would first locate the node that contains the
context variable bg and then update its associated variable assignment from “bg =
bg1” to “bs = bg2”. Since all nodes below this node are affected by this update, their
evaluation results need renewal. Finally, this node itself and all nodes above this node
also renew their evaluation results in a bottom-up manner.

Context addition change. Suppose that a context addition change adds a new
context bgz to the context set of {by1, byo} for a context variable b, as illustrated
in Fig. 4 (bottom-left diagram). Our IRE technique would first locate the node
that contains the context variable bg and then add one branch to it. The new branch
corresponds to a new value assignment of bg = by3 and a new node “matched(bg, ba)”
(rightmost one) is created for this new assignment. IRE would then evaluate this node
as it is completely new, but both the tree structures and previous evaluation results
of the other two “matched(bg, be)” nodes (two left ones) can be fully reused. Finally,
for the two top nodes “3bg € Bgate[—t]” and “Jbg € Bgor”, their tree structures
are reusable but IRE would renew their evaluation results as their child nodes have
updated evaluation results.
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Context deletion change. Suppose that a context deletion change removes a
previous context bg; from the context set of {bg1, bgo} for a context variable bg, as
illustrated in Fig. 4 (bottom-right diagram). Our IRE technique would first locate the
node that contains the context variable bg and then remove the branch corresponding
to the value assignment bg = byq from it. All nodes on this branch are discarded, but
the tree structures and previous evaluation results on the “Jbg € Bgqie[—t]” node’s
other branches are still reusable. Finally, IRE would renew the evaluation results for
the two top nodes “Jbg € Byare|—t]” and “Ibg € Bsior” because their child nodes
have updated evaluation results, but their tree structures keep unchanged and thus
still reusable.

3.3.4 Time complexity analysis

Our IRE technique is very efficient. To see it, we analyze its time complexity.
Let the number of nodes in an RET be n and one node visit be the unit time (1).
Without IRE, one has to create the whole RET, evaluate all nodes on this RET. No
matter what type of context change it is, the RET creation and evaluation is always
complete. Therefore, the time complexity is O(n). On the other hand, with IRE, the
time complexity is greatly reduced due to significant reuse of existing tree structures
and previous evaluation results. It is O(1) ~ O(n) for handling a context update or
addition change, and O(1) for handling a context deletion change.

We note that even if our IRE technique reaches its worst-case complexity O(n),
its actual spent time would still be much less than the time required by a non-
incremental technique (i.e., without IRE). This is because IRE handles affected nodes
only, whereas a non-incremental technique has to recreate and reevaluate all nodes.
We shall illustrate the significant performance difference between using and not using
IRE, as well as the great difference in the number of nodes created for rule evaluation
in our following evaluation.

4 Evaluation

In this section, we conduct both simulated and real-world experiments to evaluate
our AM approach and compare it to existing A-FSM approach in detecting adaptation
faults for CAAAs. We study two research questions:

1. Effectiveness: Compared to A-FSM, how effective can our AM approach be in
detecting adaptation faults for CAAAs?

2. Efficiency: How efficiently does our AM approach support runtime fault
detection for CAAAs?

We select two applications as our experimental subjects. One is the stock tracking
application discussed throughout the paper. We use it with simulated configurations
and parameters, which were adapted from its field test data in our pilot study. The
other experimental subject is a self-controlling robot-car application. It is a real-world
system build on real hardware platform and tested with realistic physical data.

4.1  Comparison metrics

To answer our two research questions, we need to first select comparison metrics
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in our experiments. We compare the effectiveness of our AM approach with that of
the A-FSM approach as follows.

Given a CAAA that has been specified by our AM model, we first project it on
simple rules. The resulting model is named AMg;ppc model. We then apply the
A-FSM approach to this model to detect adaptation faults, since A-FSM can handle
simple rules only. The set of thus detected faults is named Faultssmpie,A—Fsnr-
Next we apply our AM approach to the AM model directly to detect adaptation
faults, since AM can handle both simple and complex rules. The set of thus detected
faults is named Faultsgy;, a5s. For comparison purposes, we further divide Faultsq, aar
into two disjointed subsets: Faultssimpre, ans and Faultsoiper ans (€., Faultsqy ap =
Faultsgimpie, amU Faultsoiner, anr). Here, Faultssimpre, ans contains those faults that
are related to simple rules only, and Faultseiner ans is defined as: Faultsqy an —
Faultsimpie, anr-

In the experiments, we study the following three metrics:

1. Real faults, which are defined as: Faultssimpie, a— sy Faultsgimpie, apr. This
part gives the faults related to simple rules only and they must be real faults.
This is because they are detected by the A-FSM approach using static analysis,
and also confirmed by our AM approach at runtime.

2. Potential false positives, which are defined as: Faultsgimpie,aA—Fsm —
Faultssimpie, ans. This part gives the faults related to simple rules and they are
potentially false positives. This is because these faults are detected by the
A-FSM approach, but not confirmed by our AM approach. As A-FSM has not
taken into account the impact of variable dependency, physical constraints,
and rule actions, these faults are potentially unreal and need further analysis.

3. False negatives, which are defined as: Faultsgmpie, anr — Faultsgimple, a- rs U
Faultsotper, ans. This part gives the faults missed by the A-FSM approach, but
reported by our AM approach. They are real faults because they have been
observed in our runtime detection. They have been missed by A-FSM due to
various reasons (e.g., some rule actions have modified contexts at runtime but
this is not consided by A-FSM, or some faults relate to complex rules and cannot
be handled by A-FSM).

We would measure and compare the above three metrics in evaluating the
effectiveness for our AM approach and existing A-FSM approach. Regarding the
efficiency comparison, we would measure the time spent in fault detection for both
approaches.

4.2 Stock tracking application

To run the stock tracking application, we set up simulated warehouse scenarios
based on configurations and parameters from our engineers according to practical
environments in our field study. Each forklift undertakes multiple transportation
tasks, and each transportation task costs 20-60 seconds. During transportation, a
forklift carries 50 paper boxes, each of which is attached with an RFID tag for unique
tracking. The cross reading rate and missing reading rate are both set to 5%. Besides,
a forklift may be randomly delayed in its return trip back to the loading bay by other
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uses due to resource sharing. The probability of such events is set to 10%, and the
delay thus incurred is random and can be up to 40 seconds.

The experiments with the stock tracking application were conducted on a PC
with Intel® Pentium® 4 CPU @3.2GHz and 2GB RAM. The operating system is
Windows XP Professional SP3. We implemented both the A-FSM and AM
approaches in Java (Oracle/Sun JRE 7). They shared the same data structures for
collecting and manipulating contexts. We integrated both approaches in Cabot
context middleware['924 as plug-in services. The stock tracking application ran
with contexts fed by Cabot.

4.2.1 Effectiveness

We now compare the existing A-FSM and our AM approaches using discussed
metrics. The AM model for the stock tracking application contains a total of 12
adaptation rules (Fig. 2), which include both 6 simple rules and 6 complex rules.
Then the corresponding AMg;mpie model applicable to A-FSM contains all 6 simple
rules r1-5 and r12. A-FSM did not detect any non-determinism faults, but detected
164 adaptation race faults and 12 adaptation cycle faults (both belonging to instability
faults) on the AMg;mpre model. On the other hand, AM detected faults on the AM
model directly. It detected one non-determinism fault and two adaptation race faults.
Seemingly, A-FSM has detected much more faults, but we are more interested in their
detection qualities. We further investigated all these detected faults, and obtained
the following findings according to our comparison metrics.

Real faults. There is only one adaptation race fault detected by both
approaches. This fault shows that one adaptation race occurred at the “energy_
saving” state when the “start_loading” rule was executed and immediately followed
by the triggering of another “start_transporting” rule. This happened when the
application resided at the “energy_saving” state, at which its controlled forklift and
pallet were taken away by other uses, and then the pallet came back earlier than the
forklift did. As a result, the application’s state transited from “energy_saving” to
“loading” and then immediately to “transporting”, as both adaptation rules’
conditions were satisified. However, the activity of reading RFID tags of all paper
boxes being transported could be skipped at the “loading” state.

Potential false positives. A-FSM also detected other 163 adaptation race
faults and 12 adaptation cycle faults. Unfortunately, they are all potential false
positives. After our further analysis, all of them were confirmed as false positives
due to violation with variable dependency or physical constraints. First, 132
adaptation race and 12 cycle faults violate variable dependency among four context
variables flArv(ry), flGone(ry), flArv(rg) and flGone(rg). For example, flArv(ry)
and flGone(ry) cannot take “true” at the same time. This is because the pressure
sensor installed at the loading bay must report “down” or “up”, implying that the
forklift arrives at or leaves the loading bay, respectively. Two cases cannot be
together. Second, all the remaining 31 adaptation race faults violate four physical
constraints. They are: “forklift and pallet cannot be separated at two places at the
same time”, “forklift and pallet must go together”, “forklift cannot jump from the
loading bay to the storage bay or back suddenly”, and “paper box unloading cannot
take zero time”. As such, although A-FSM detected much more faults, most of them
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are unreal (175/176 = 99.4%).

False negatives. There are two faults (one non-determinism fault and one
adaptation race fault) detected by AM but missed by A-FSM. This is interesting as
although A-FSM detected much more faults, it still missed real faults. This
non-determinism fault occurred at the “loading” state, at which both rules
“save_energy” and “start_transporting” were triggered. This happened when the
forklift stayed at the loading bay and its pallet had been taken away for some time,
and then the forklift was also taken away and the application would now face a
non-deterministic situation. This is because both rules “save_energy” and
“start_transporting” had their conditions satisified and thus triggered. The
adaptation race fault occurred at the “unloading_1” state, at which the application
started to transit to the “unloading 2” state. At the new state, if some missing
readings were present, the application would immediately transit to the
“missing reading” state (the adaptation rule’s condition already satisified). Then
the preparation for missing reading checking could be skipped at the “unloading_2”
state. These two faults are real, but missed by A-FSM, causing false negatives to its
detection results.

We summarize these comparison results in Table 1, from which we observe that:
(1) AM is precise; (2) A-FSM contains both false positives and false negatives; (3)
AM reports more effectively developer-cared faults than A-FSM (three real faults vs.
one real fault; no false fault vs. 177 false faults).

Table 1 Effectiveness comparison between two fault detection approaches

Non-determinism faults Adaptation race faults Adaptation cycle faults

Approach
Detected Analysis Detected Analysis Detected Analysis
A-FSM 0 1 missing 164 1 real, 12 12 unreal
163 unreal,
1 missing
AM 1 1 real 2 2 real 0 0

4.2.2 Efficiency

Our AM approach detects adaptation faults in CAAAs at runtime, and therefore
its efficiency is a key issue. We deploy our IRE technique for this purpose. To see
how well it works, we study AM’s efficiency. We name the AM version with our IRE
technique IC (i.e., incremental checking) and the one without our IRE technique NI
(i.e., non-incremental checking).

Handling time. We first measure and compare the total time used in handling
contexts (fault detection included). We simulated forklift transportation 50 times.
We observe that NI took 209,261 ms to handle all contexts, whereas IC took only
43,413 ms (20.7%). This shows that IC works much more efficiently.

Response time. The above handling time only compares the total time cost.
We then measure and compare the application’s response time, as illustrated in Fig.
5. Response time is the interval between an application receives a context and it
conducts required actions. For NI, 80% response times are less than 50.4 ms, 90% are
less than 62.3 ms, and the average is 23.0 ms. For IC, the three values are greatly
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reduced to 5.0 ms, 6.7 ms, and 4.1 ms, respectively. This shows that IC works much
more efficiently also for its every required response.

Response time comparison
100% <
— ./‘//

80% I
3 60%
e\°
3 40% E/ —NI
E 20% —iC
g % ‘ ‘ ‘ ‘ ; ‘
& 0 20 40 60 80 100 120

Response time (ms)

Figure 5. Response time comparison between two rule evaluation techniques

Created nodes. We owe AM’s efficiency to its IRE technique (i.e., the IC
version). To further understand how IRE contributes to AM’s efficiency, we measure
and compare how many nodes are created in NI and IC, respectively. As illustrated in
Table 2, NI created a total of 43,993,249 nodes for tree structures in our experiments.
On the other hand, IC created only 903,829 nodes (2.0%), which are much less. IC
realized this by reusing 42,524,948 nodes (96.7%) and renewing 564,472 nodes (1.3%).
That is, the reuse of existing tree structures (“renew” case) and previous evaluation
results (“reuse” case) helped AM work much more efficiently at runtime.

Table 2 Created nodes comparison between two rule evaluation techniques

Technique Reused(t) Renewed(f) Added(f)
NI 0 0 43,993,249
I1C 42,524,948 564,472 903,829
Percentage 96.7% 1.3% 2.0%

Scalability. Finally, we compare NI’s and IC’s scalability and study its impact
on rule triggering when an application’s complexity increases. We set up a scale factor
F (from 1 to 10) to control the number of transportations running in parallel. With
the increase of the scale factor, the number of contexts to be handled in the unit time
would increase and the interval between contexts would decrease accordingly. This
would thus increase the rule evaluation workload for both NI and IC.

We observe from Fig. 6 that NI’s occupied time increases quickly with the
scalability factor F’s growth. Here, occupied time measures the percentage of
context handling time against the total time allowed. IC’s occupied time grows
clearly much slower. Besides, we observe that starting from F' = 5, NI’s occupied
time becomes so close to 100%. At the same time, its rule triggering number
decreases quickly (down to below 60% as compared to IC’s value at F = 10). The
continuous decreasing of this number indicates that the application’s adaptation
rules cannot be triggered as expected. This would seriously affect the application’s
responsiveness (i.e., no response when context changes occur). On the other hand,
IC’s rule triggering number keeps quite stable (almost no change). This shows that
our IRE technique really contributes to AM’s efficiency as well as its scalability for
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Figure 6. Scalability comparison between two rule evaluation techniques

complex applications.

4.8 Self-Adaptive robot-car application

Our second experimental subject is a self-adaptive robot-car application. It is a
realistic system with real hardware, as shown in Fig. 7. The car is developed on a
Cirrus Logic EDB9302 board (ARM920T) with a TelosB mote for wireless
communication.  The car is equipped with eight ultrasonic sensors at four
orientations (two sensors at each orientation). These sensors can detect obstacles at
each orientation. The car’s two rear wheels are programmable for different walking
speeds, and its two front wheels are equipped with speed sensors, which can measure
how far the car has walked.

Four groups of
ultrasonic sensors

TelosB mote

Two motors
Two speed sensors

Figure 7. Robot-car system

The self-adaptive robot-car application runs on the car. It collects contexts
(ultrasonic sensor and speed sensor data) periodically (every 350 ms). It then analyzes
these contexts, evaluates adaptation rules, and decides how to guide the car to walk.
The application aims to guide the car to explore an unknown area. It supports two
context-aware features: (1) automatic speed adjustment (high-speed mode HS and
low-speed mode LS); (2) automatic obstacle avoidance (normal walking mode W and
obstacle avoidance mode A). The two features can combine together with different
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modes, as illustrated by the state transition diagram in Fig. 8.

r8: hsw 2 lIsa

: 2] @ rll:hsa 2 lsa
r12:1sa 2 hsa
r10: hsa 2 hsw

r7: hsw 2 lsw r4: Isw 2 lsa
_— _—
«— «—

r6: Isw 2 hsw r5:Isa 2 Isw

r2: start_Isw | r3: start Isa

HS: High-speed

rl: start_hsw
LS: Low-speed
*—> W: Walk
A: Avoidance

Figure 8. Self-adaptive robot-car application (its state transition diagram with 5 states
and 12 rules)

The application starts with its initial “Stop” state, from which it can transit to

one of three different states, depending on its contexts then. For example, it transits
to the “HS-W?” state if no obstacle is detected nearby, meaning that the car can walk
with a high speed. Otherwise, it may transit to the “LS-A” or “LS-W” state with a
low speed, depending on whether any detected nearby obstacle is already very close
or not. The application’s state would keep being adjusted when the car’s surrounding
obstacle conditions change. It works for the goal of exploring the area efficiently and
at the same time keeping safety (i.e., without bumping into any obstacle).

The application contains a toal of 5 states and 12 adaptation rules, as shown
in Fig. 8. All these rules are complex ones. They check all reported ultrasonic
sensor data within a recent interval to decide runtime obstacle conditions for each
orientation. For example, the “lsw_2_hsw” rule would transit the application from
the “LS-W” state to “HS-W” state (low-speed walking to high-speed walking), when
all ultrasonic sensors report “clear” conditions recently: Yos € OC u[—t] (clear(o4)).
Here, “clear” means no obstacle detected at any orientation. Another rule “lsa_2_hsa”
transits the application from the “LS-A” state to “HS-A” state (low-speed avoidance
to high-speed avoidance), if no ultrasonic sensor reports a “dangerous” condition and
the obstacle avoidance rountine is not so frequently called recently: (not (Jos €
OC .[—t] (danger(o4)))) and (not (3h € HS[—t] (frequent(h)))). Here, “dangerous”
means very close obstacle detected at at least one orientation. Besides, if the car gets
stuck (judged from speed sensor data), the application would clear all contexts, reset
its state to “Stop”, and then restart itself.

For this application, the A-FSM approach does not apply due to the presence of
complex rules (all rules are complex) and runtime context changes (A-FSM assumes no
runtime context change). Therefore, we only evaluate the effectiveness and efficiency
of our AM approach in detecting adaptation faults for this application.

We ran the car in a 5.0m x 3.5m typical office environment, which contains several
desks, chairs, and cabinets, as illustrated in Fig. 9. Its left part is considered as high-
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Figure 9. Office environment for field test

speed area due to its sparse layout, while its right part is considered as low-speed area
as it is much denser with furniture. We ran the car ten times in this environment, each
taking about 2.5 minutes due to its battery limitation. We recorded all experimental
data and analyzed them.

4.3.1 Effectiveness

Our AM approach detected a total of 6 distinct non-determinism (named D1-6)
and 8 distinct adaptation race faults (named R1-8) with various occurrences. Table
3 lists all these fault occurrences for each car run as well as their sums for each run
and for each fault type. The sums of detected fault occurrences for each run have
a range between 65 and 93 (with an average of 75), which are roughly close to each
other. However, the sums of fault occurrences for each fault type have a significantly
different distribution. For non-determinism faults, the distribution range is 3.1-36.3%,
while for adaptation race/cycle faults, it is 0.3-44.7%. A graphical representation of
these fault distributions is given in Fig. 10.

Table 3 Fault occurrences in the self-adaptive robot-car application

Run D1 D2 D3 D4 D5 D6 R1 R2 R3 R4 R5 R6 R7 RS8 Total

1 4 9 2 0 0 O 1 22 2 5 2 0 18 0 65
2 4 13 6 1 2 0 4 16 2 0 9 1 23 2 83
3 5 11 2 0 0 8 15 5 10 0 0 13 0 80
4 2 0 3 0 0 6 2 287 0 5 0 39 1 93
5 6 10 3 2 1 0 5 18 0 3 4 0 27 0 79
6 1 5 1 1 2 0 0 21 0 O 6 1 28 1 68
7 $FP o & 0 O 1 1 18 1 0 7 0 30 1 68
8 r 5 5 0 o0 o0 1 23 0 O 7 O 31 0 73
9 3 3 1.2 0 O 3 20 0 2 3 0 31 0 68
io 7 2 3 1 0 4 5 19 3 0 4 0 23 0 T
All 44 58 33 9 5 11 31 200 20 20 47 2 263 5 748

This suggests that some faults are really hard to detect. The hardest
non-determinism fault D5 (only 5 occurrences in 10 runs) happened at the “HS-W”
state, where three adaptation rules “hsw_2_lsw”, “hsw_2_1sa”, and “hsw_2_hsa” were
all triggered at the same time. The hardest adaptation race fault R6 (only 2
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Figure 10. Fault distribution in the self-adaptive robot-car application

occurrences in 10 runs) happened also at the “HS-W” state, where two rules
“hsw_2_hsa” and “hsa_2_1sa” were triggered in sequence.

After our further analysis, we found that both faults happened only when the
car’s two front ultrasonic sensors reported inconsistent obstacle conditions. For
example, one sensor reported that “the car is approaching some obstacle but there is
still some distance”, and the other sensor reported that “the obstacle is already very
close and the situation is dangerous”). We understand that we may not be able to
easily control real-world contexts, and this explains why it is so difficult to observe
these faults at runtime. Traditional coverage information (e.g., state reachability,

[15’16]) may not be so useful in exposing such faults. This is

liveness and rule liveness
because we measured that all states and rules had been already covered 100% for
this application. One of our ongoing projects is to use improved static analysis with
refined and ranked fault reports to more effectively detect such hard faults!). We
are going this line. Still, we note that our AM approach can already detect so many
real faults, which the existing A-FSM approach is unable to detect. This further

confirmed AM’s usefulness in detecting adaptation faults for practical CAAAs.
4.3.2 Efficiency

Finally, we evaluate our AM approach’s efficiency in detecting adaptation faults
for the self-adaptive robot-car application. We list the context handling time and
occupied time for all ten car runs in Table 4.

Table 4 Handling time and occupied time in the self-adaptive robot-car

application
Run Handling time (ms) Occupied time (%)
1 3,963 2.8%
2 3,741 2.6%
3 3,604 2.6%
4 5,175 3.7%
5 3,465 2.4%
6 4,254 3.0%
7 4,569 3.2%
8 4,190 2.9%
9 5,117 3.6%
10 5,086 3.6%

Average 4,325 3.0%
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We observe that our AM approach’s overhead is very small. For this application,
its time for handling contexts (fault detection included) took 4,325 ms on average.
This is with respect to a total car running time of about 2.5 mintues. Therefore, the
average occupied time (i.e., handling time against total time allowed) is no more than
3.0%. When we further investigated the response time (i.e., interval between a car
receives a context change and it takes a response action), it is about 1.0ms on average
(80% less than 1.1ms and 90% less than 2.3ms). It shows that our AM’s runtime
fault detection only incurred negligible overhead in addition to normal application
execution. This is desirable to practical context-ware applications as they usually
need to be sensitive to context changes.

5 Related Work

Context-aware computing is attractive and receiving increasing attention from
software developers and researchers. When applications become context-aware, they
can actively perceive environmental changes and make seamless adaptation for
delivering smart services to users. To support such applications, various middleware
infrastructures®:8:13:19:24.25] and application frameworks(®5 have been proposed to
assist application development and deployment. At the same time, many interesting
context-aware applications have been developed and deployed for practical uses,
such as highway collision avoidance system(®!, Roaming Jigsaw!'®!, ConChat!'*!, Call
Forwarding!'8!, and so on.

To ease application development, software developers usually assume that: (1)
contexts can be correctly received from physical environments, and (2) adaptation
rules can be correctly applied once their triggering conditions are satisfied at runtime.
However, recent studies have disclosed that contexts from physical environments are
often noisy, inaccurate, and easily obsolete. This fact often causes context-aware
applications to run in an unexpected way, if they have not considered adequately how
to alleviate the impact of such unreliable contexts.

Regarding this, Deshpande et al.l?) proposed to use threshold smoothing to
filter out unreasonable contexts that have clearly exceeded allowable ranges. Our
previous work!2%:23] presented a constraint checking approach to identify correlated
contexts whose inconsistency is difficult to judge by threshold solely. Regarding
detected context problems or inconsistencies, Jeffery et al.l”l proposed a probabilistic
approach to fix missing RFID contexts. It is effective but only applies to RFID
contexts. Our previous work(?!) complemented it in a heuristic way by enforcing
22,27] 4150
tried to resolve context inconsistencies in a way that minimizes potential side effect
on an application’s behavior. This is understandable as when contexts change by
repairing actions, an application’s behavior would also change accordingly. We have
to validate such follow-up changes. Besides, applications may have conflicting

general contexts to satisfy consistency constraints. Our previous work

resolution policies between each other, and repairing contexts for one application
may be harmful to another application. Our previous work?® also tried to isolate
such across-application side effect by maintaining individual context views for each
of these applications. This makes these applications run as if they are stand-alone.
On the other hand, while researchers are making great efforts in improving the
quality of contexts collected from physical environments, applications themselves
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may still suffer from wunanticipated faults or errors at runtime, when non-
determinism and adaptation races or cycles arise. Insuk et al.[ proposed to tolerate
non-determinism as long as such simultaneously triggered adaptations do not
conflict with each other in their semantics. This requires a precise modeling of such
semantics, which costs manual efforts. Sama et al.['%16] set up a stricter criterion by
disallowing any occurrence of non-determinism, adaptation race, or adaptation cycle
(i.e., the A-FSM approach). This is achieved by statically exploring all potential
search space in an application. This can be done by a great deal of simplification in
application modeling, and it also impairs the approach’s effectiveness. For example,
lacking dynamic information makes this approach probably report numerous false
positives, which can easily overwhelm developers. This concern has been also echoed
by Capra et al.ll, who believed that removing adaptation conflicts should be
conducted dynamically. This is exactly what we have made efforts for in this paper.

Finally, researchers from software testing and debugging communities focused
on detecting faults for code-based context-aware applications. They proposed new
testing coverage criteria for covering those data flows especially affected by context
changes!'®'1] as well as new test case generation techniques for manipulating
contexts into context-aware program points in an application!!”. We in this paper
mainly focus on model-based context-aware applications, and extend over its earlier
symposium version0l. As compared to the existing A-FSM approach, we propose a
new AM approach that owns increased expressive power for application modeling
and increased precision for eliminating false warnings in fault detection. We also
address the detection algorithm’s runtime efficiency to make it useful for practical
applications. This complements our previous work on disclosing the correlations
between errors and failures in CAAAs. This also complements our ongoing effort of
detecting adaptation faults statically with reduced false warnings and ranked fault
reports!?). This is done by deriving an application model that contains deterministic
constraints to remove false warnings, and an environment model that contains likely
constraints to rank remaining fault reports.

6 Conclusion

In this paper, we reviewed existing approaches for detecting adaptation faults in
context-aware adaptive applications, and identified two aspects for improvement. We
proposed our novel AM approach, and explained how it can be used to model complex
rules in these applications and improve fault detection precision. Our AM approach
works dynamically, and it supports such runtime fault detection via an efficient rule
evaluation technique.

We evaluated our AM approach and compared it to a representative A-FSM
approach using two context-aware applications. Both applications realize
functionali- ties according to their perceived environmental changes in terms of
states and adaptation rules. We selected these two applications in our evaluation for
two reasons: (1) The stock tracking application was derived from a practical RFID
application scenario with real parameters from on-site engineers; (2) The
self-adaptive robot-car application runs on a real hardware platform, which collects
realistic and noisy contexts from physical environments. By these two applications,
we try to make our experiments more realistic, and measure AM’s effectiveness and
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efficiency and compare it to A-FSM in a practical setting.

We note that detected non-determinism faults can be addressed by setting up a
rule priority mechanism or refining the existing one. However, addressing detected
adaptation race and cycle faults needs more effort, maybe requiring manual
inspection. If the quality of fault reports is so low such that most reported faults are
false warnings, then a great deal of inspection effort would be wasted. Our AM
approach exactly fits here by helping report real faults only. In addition, due to its
dynamic analysis nature, AM also reports the occurrence for each distinct fault
type. This provides additional information on which faults have occurred more
frequently and thus are more urgent for addressing. We note that this information is
collected at runtime and thus reflects real fault conditions. It is helpful for
debugging practice.

We are now studying ways of detecting hard adaptation faults that occur rarely
at runtime. We are also interested in adapting our approach to code-based context-
aware applications. We are going this line.
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