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Abstract Clustering plays an important role in many fields, such as pattern recognition

and data mining. Its goal is to group the collected data points into their respective

clusters. To this end, a number of matrix factorization based methods have been developed

to obtain satisfying clustering results by extracting the latent concepts in the data, e.g.,

concept factorization (CF) and locally consistent concept factorization (LCCF). LCCF

takes into account the local manifold structure of the data, but it is nontrivial to estimate

the intrinsic manifold, reflecting the true data structure. To address this issue, we in this

paper present a novel method called Multi-Manifold Concept Factorization (MMCF) to

derive more promising clustering performance. Specifically, we assume the intrinsic

manifold lies in a convex hull of some predefined candidate manifolds. The basic idea is to

learn a convex combination of a group of candidate manifolds, which is utilized to

approximate the intrinsic manifold of the data. In this way, the low-dimensional data

representation derived from MMCF is able to better preserve the locally geometrical

structure of the data. To optimize the objective function, we develop an alternating

algorithm and learn the manifold coefficients using the entropic mirror descent algorithm.

The effectiveness of the proposed approach has been demonstrated through a set of

evaluations on several real-world data sets.
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1 Introduction

Clustering is a fundamental problem in pattern recognition and data mining[1].
It groups the samples with similar features into the same cluster and the dissimilar
samples into different clusters[2,3,4,5]. Generally, the collected databases have high
dimensions and are even contaminated by some noises, which not only makes the
clustering computationally expensive but also deteriorates the performance. Typical
methods to address this issue include dimensionality reduction, feature selection and
matrix factorization, e.g., principal component analysis (PCA)[6], locality preserving
projection (LPP)[7], singular value decomposition (SVD)[8], nonnegative matrix
factorization (NMF)[9] and concept factorization (CF)[10]. In this work, we focus on
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matrix factorization based method for data clustering, specifically extracting the
underlying concepts consistent with the local manifold structure of the data.

Matrix factorization has gained considerable popularity in data representation
for a very long time. Basically, it decomposes a given matrix into two or three sub-
matrices, whose product is regarded as an approximation of the original data matrix.
Taking NMF for example, for a data matrix X, NMF factorizes it into one basis matrix
U and one coefficient matrix V , thus approximating X using UV . The clustering
results can be easily derived from the new low-dimensional data representation V .
But the nonnegative constraints are imposed on both U and V , which makes NMF
be unable to handle the input matrix containing negative entries. To overcome this
difficulty, CF models each concept as a linear combination of the data points, and
each data point is treated as a linear combination of the concepts. Assume each
data point xi is a m-dimensional column vector and there are c latent concepts, we
have xj =

∑c
k=1 ukvjk. CF has a major merit that it can be performed in either

original space or the kernel space, e.g., reproducing kernel Hilbert space (RKHS).
Both of NMF and CF only consider the global data structure and do not fully respect
the locally geometrical structure of the data. To take into account the intrinsic
manifold structure, graph regularized nonnegative matrix factorization (GNMF)[11]

and locally consistent concept factorization (LCCF)[12] were proposed by adding the
manifold regularizer on the new data representation derived from NMF and CF,
respectively. However, in many real-world applications, data points might be sampled
from different data distributions, and it is nontrivial to estimate the intrinsic manifold
in a systematical way.

To address this problem, inspired by the work in Ref. [13], we propose a novel
method named Multi-Manifold Concept Factorization (MMCF) to equip the
low-dimensional data representation with more locally consistent structure.
Assuming that the intrinsic manifold lives in a convex hull of a set of pre-defined
candidate manifolds, we aim to approximate the intrinsic data manifold through a
linear combination of these candidate manifolds, i.e., multi-manifold ensemble. In
this way, the locally geometrical structure of the data can be better preserved since
more diverse structural information is available from different manifolds. Therefore,
the extracted concepts are characteristic of more local consistency. Besides, we
develop an alternating algorithm to optimize the objective function and adopt the
entropic mirror descent algorithm[14] to learn the coefficients for the multi-manifold
ensemble. Experiments were conducted on several real-world databases to show the
superiority of the proposed method.

The rest of the paper is organized as follows. Section 2 gives a brief review of
the related works. In Section 3, we introduce the proposed multi-manifold concept
factorization method. Then, we report the experimental results with analysis in
Section 4. Finally, the concluding remarks are provided in Section 5.

2 Related Works

In this section, we briefly review some works closely related to our work. Matrix
factorization has established itself as a very useful tool for data clustering in the past
decades. Many researchers have devoted themselves to developing a series of matrix
factorization based techniques for clustering analysis[3,11,15]. Among them, the most
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widely used one is nonnegative matrix factorization (NMF)[16].
NMF aims to decompose a nonnegative matrix into one basis matrix and one

coefficient matrix, on both of which are imposed the nonnegative constraints,
leading to a parts-based representation because they allow only additive, not
subtractive, combinations[9]. The optimal coefficient matrix can be obtained by
minimizing the reconstruction error of the data points. The multiplicative update
rules[16] and the projected descent rules[17] are often used to optimize the objective
function. One advantage of NMF over SVD is that the factorization result has
better semantic interpretation. But it has some limitations, e.g., NMF requires the
input data is nonnegative which is unnecessarily satisfied in many other fields rather
than documents, and it cannot be kernelized directly due to the nonnegative
constraints. To handle these problems, Xu et al.[11] proposed concept factorization
(CF) to model each cluster as a linear combination of the data points, and each data
point as a linear combination of the cluster centers. CF not only inherits the
advantages of NMF but also has more merits, e.g., it can deal with data points
containing negative elements and be performed in the kernel space.

Both of NMF and CF only consider the global Euclidean structure of the data
points but neglect the locally geometrical structure, which is more important in
many scenarios. Recent works have shown the great success of manifold learning in
various applications, e.g., face recognition[18], data representation[19,20,21,22]. This
learning paradigm assumes the data points are sampled from a submanifold from
the ambient Euclidean space and nearby data points are more likely to be closer
than those with large distances[23,24]. Inspired by this, Cai et al.[11,12] imposed the
manifold regularizer on NMF and CF, i.e., GNMF and LCCF, respectively. Thus,
the local consistency of the data can be well guaranteed in the low-dimensional data
space. Since CF can be kernerlized, Li et al.[15] employed the manifold kernel in
concept factorization, which learns the new data representation in the warped
RKHS. However, these methods fail to consider the case when data points reside on
the overlapped manifolds. Actually, this makes the task of estimating the intrinsic
manifold very challenging. Geng et al.[13] utilized a convex combination of some
pre-defined candidate manifolds to approximate the intrinsic manifold of the data
collection. Motivated by this, we propose to incorporate the multi-manifold
ensemble learning into concept factorization to better preserve the local structure of
the data.

Besides, there are many other extensions of NMF and CF. For example, to further
ensure the parts-based representation of NMF, Hoyer et al.[25] explicitly imposed
the sparseness constraints on the coefficient matrix. Zhang et al.[26] attempted to
deal with the corrupted data matrix using a robust nonnegative matrix factorization
method. To enhance the sparsity of the new data representation, Liu et al.[27] enforced
a locality constraint onto CF by requiring the concepts to be as close to the original
data points as possible. Thus, each data can be represented by a linear combination of
only a few basis concepts. In addition, Hua et al.[28] took advantage of the available
label information to equip the new data representation with more discriminating
power in concept factorization.
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3 Multi-Manifold Concept Factorization

This section is devoted to our proposed multi-manifold concept factorization
approach. First, we give a concise description about concept factorization followed
with the introduction of multi-manifold learning. Then, the objective function of
MMCF is provided with its optimization framework. Finally, we present the complete
algorithm of MMCF.

3.1 A review of CF

Concept factorization (CF)[10] is an extension of nonnegative matrix
factorization. Given a data collection of n samples, each of which has m features,
our goal is to group them into c clusters. Mathematically, we denote the input data
matrix by X ∈ Rm×n and each data point by xi ∈ Rm. The basic idea of CF is to
represent every sample as the linear combination of the concepts (i.e., cluster
centers), each of which is the linear combination of samples. Essentially, CF seeks
an approximation of three matrices, i.e.,

X ≈ XWV T , (1)

where the basis matrix in NMF is reconstructed by the product of the original data
matrix X and its association matrix W ∈ Rn×k, and the new data representation is
shown by the low-dimensional coefficient matrix V n×k. This assembles the convex-
NMF[29], which interprets the column of basis matrix in NMF as weighted sums of
certain data points. The two nonnegative variables W and V can be readily obtained
by optimizing the cost function measured by Euclidean distance, i.e.,

min
W ,V

‖X −XWV T ‖F , s.t., W ≥ 0,V ≥ 0, (2)

where ‖ · ‖F denotes the Frobenius norm.
Defining the kernel matrix as K = XT X, the update rules of CF can be shown

as[10]

wjk ← wjk
(KV )jk

(KWV T V )jk

, vjk ← vjk
(KW )jk

(V W T KW )jk

. (3)

As can be seen from the above rules, CF can easily substitute the data-dependent
adaptive kernel to improve the performance in resolving different problems.

3.2 Multi-Manifold learning

Traditional manifold learning considers the case that data points reside on a
submanifold of the ambient Euclidean space. However, in many real-world
applications, some data points might be sampled from different distributions.
Therefore, inspired by Geng’s work[13], we propose to employ multi-manifold
learning (MML) to approximate the intrinsic manifold using a subset of candidate
manifolds, so as to better reflect the locally geometrical structure by graph
Laplacian[19].

To consider different data sources, we assume the intrinsic manifold of the
collected data points lives in a convex hull C of a group of candidate manifolds,
each of which indicates one kind of data distribution. MML essentially learns an
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approximated intrinsic manifold by integrating the diverse manifold information of
candidates in a linear manner. We regard this linear combination of candidate
manifolds as manifold ensemble. Let L be the intrinsic manifold, Li be the i-th
candidate manifold, and there are q candidates corresponding to different data
distributions. Here, we use p-nearest neighbor graph to encode the data structure
and p is kept small to ensure the local preserving property. In general, the typical
schemes to construct the weight matrix S are binary weighting, gaussian weighting
and cosine similarity weighting[11]. Each candidate manifold is a graph Laplacian
obtained by Li = Di − Si, where Di is a diagonal matrix with its entries by the
column or row sum of the weight matrix W i.

Multi-manifold learning represents the manifold ensemble L by a linear
combination of the pre-defined candidate manifolds. Each candidate Li is associated
with a coefficient µi, which is shown by

L =
q∑

i=1

µiLi, s.t.

q∑

i=1

µi = 1, µi ≥ 0. (4)

Since L is in a convex hull of q candidate graph Laplacians, it is also a graph
Laplacian. The coefficients are imposed by the simplex constraints.

3.3 The objective function

To preserve the locally geometrical structure of the data space, we impose the
multi-manifold regularizer Tr(V T ∑q

i=1 µiLiV ) onto concept factorization. Here,
Tr(·) denotes the trace of a matrix. Moreover, we introduce the l2 norm of the
variable µ (i.e., ‖µ‖2) to avoid overfitting on only one manifold as in Ref. [13].
Therefore, the objective function of MMCF is formulated as

min
W ,V ,µ

‖X −XWV T ‖F + αTr(V T
q∑

i=1

µiLiV ) + β‖µ‖2,

s.t., W ≥ 0,V ≥ 0,

q∑

i=1

µi = 1, µi ≥ 0,

(5)

where the parameter α is used to tradeoff the contribution of the multi-manifold
regularizer and β controls the regularization term ‖µ‖2.

The objective function incorporates the multi-manifold learning into concept
factorization, which enables better extracting the concept with the local consistency,
thus yielding more satisfactory clustering results. In the following, we provide the
optimization framework to solve this problem.

3.4 The optimization framework

The objective function in Eq. (5) is not convex jointly, but convex for each variable
individually. So, we present an alternating algorithm to solve it, i.e., optimize one
variable while fixing others. Thus, the locally optimal solutions can be achieved.

Through some algebraic transformations, we can rewrite the objective function
of MMCF as

OMMCF = Tr(K)− 2Tr(V W T K) + Tr(V W T KWV T ) + αTr(V T LV ) + β(µT µ),
(6)



412 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

where K = XT X and L =
∑q

i=1 µiLi. Let Θ and Ψ be the Lagrange multiplier for
the two nonnegative constraints for W and V , respectively. We define Θ = [θjk] and
Ψ = [ψjk]. Then, the Lagrangian function of MMCF can be expressed by

L = OMMCF + Tr(ΘW T ) + Tr(ΨV T ). (7)

Taking the first-partial derivatives of L with respect to W and V , respectively,
we can easily arrive at

∂L
∂W

= −2KV + 2KWV T V + Θ, (8)

∂L
∂V

= −2KW + 2V W T KW + 2αLV + Ψ (9)

Using the Karush-Kuhn-Tucker (KKT) conditions[30], i.e., θjkwjk = 0 and
ψjkvjk = 0. Then, we can get the update rules

wjk ← wjk
(KV )jk

(KWV T V )jk

, vjk ← vjk
(KW + αSV )jk

(V W T KW + βDV )jk

, (10)

where D =
∑q

i=1 µiDi and S =
∑q

i=1 µiSi.
Now, we can update W or V while fixing the rest. How to optimize the multi-

manifold coefficient seems to be a tough problem. It can be solved using quadratic
programming (QP) or the entropic mirror descent algorithm (EMDA)[14] to optimize
µ when the other two variables are held. Here, we adopt the latter in the sense that
EMDA is provably with a global efficiency estimate and is mildly dependent on the
problem size. But QP might bear the computational burden when the problem size
scales up. While fixing W and V , the objective function reduces to

min
µ

q∑

i=1

µihi + β‖µ‖2, s.t.,

q∑

i=1

= 1, µi ≥ 0, (11)

where hi = Tr(V T LiV ). If β equals 0, then µ will take trivial solutions 0 and 1. If β

approaches infinity, the candidate manifolds will be treated equally. Hence, we should
assign a proper value to β to guarantee the effectiveness of multi-manifold learning.

As a kind of nonlinear projected-subgradient methods, EMDA can be achieved
using a general distance-like function rather than Euclidean squared distance. Since
the constraints imposed on µ is a unit simplex 4 = {µ ∈ Rq :

∑q
i=1 µi = 1,µ º 0},

it makes sense to choose EMDA thanks to its natural advantages over convex
problems[14]. EMDA requires the objective function f to be a convex Lipschitz
continuous function with Lipschitz constant Lf w.r.t. a fixed norm. For MMCF,
this Lipschitz constant is computed by ‖∇f(µ)‖1 ≤ 2β + ‖h‖1 = Lf , where
h = {h1, . . . , hq}. The pseudocode of EMDA is shown in Algorithm 1.

3.5 The MMCF approach

In the optimization framework, we have shown an alternating algorithm which
updates the three variables W , V and µ iteratively. To have an overview of our
multi-manifold concept factorization approach, we provide the complete procedures
in Algorithm 2.
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Algorithm 1 Entropic Mirror Descent Algorithm
Input: Lipschitz constant Lf , β, h.
Output: Multi-manifold ensemble coefficient µ.
Procedure:
1: Initialize µi with identical weights 1/q.
2: for i = 1 to q do
3: repeat
4: tm =

√
2 ln q
mL2

f
, where m is the m-th iteration.

5: µm+1
i ← µm

i exp[−tmf ′(µm
i )]∑q

i=1 µm
i exp[−tmf ′(µm

i )]
.

6: until convergence
7: end for

Algorithm 2 Multi-Manifold Concept Factorization
Input: Data collection X ∈ Rm×n, parameters α and β, the number of concepts c.
Output: New data representation V .
1: Initialize W and V with random values between 0 and 1.
2: Construct the a set of candidate manifolds {L}q

i=1.
3: repeat
4: Conduct multi-manifold learning using EMDA in Algorithm 1 to obtain µ.
5: Update W : wjk ← wjk

(KV )jk

(KWV T V )jk

.

6: Update V : vjk ← vjk
(KW +αSV )jk

(V W T KW +βDV )jk

.

7: until convergence

The convergence of our method can be easily proved using an auxiliary function
as in Refs. [12,16]. As mentioned earlier, MMCF inherits the advantage of CF
and LCCF, it can also handle the input data matrix with negative entries by using
the multiplicative updates for nonnegative quadratic programming[31]. Readers are
referred to Ref. [12] for more details. If the MMCF algorithm converges in t times
and EMDA converges in z times, then the time complexity of MMCF is O(tn2k +
n2m + n2pq + qz). Compared to LCCF (i.e., O(tn2k + n2m + n2p)), it requires to
construct q (q ¿ n) candidate manifolds and learn µ in linear time. In consequence,
MMCF, LCCF and CF (i.e., O(tn2k + n2m)) have the same time complexity using
the big O notation.

4 Experiments

To investigate the clustering performance of the proposed MMCF method, we
have conducted extensive experiments on several databases. First, we give brief
descriptions about the data collections and the evaluation metrics. Second, the
performance comparison and corresponding results are shown. Third, some param-
eter selections are illustrated by curves.

4.1 Data sets

In total, three image databases and one document data were used in our test.
ORL1 is composed of 400 face images, which belong to 10 different persons. Every

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html



414 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

person has 40 distinct samples. All images were taken against a dark homogeneous
background with the subjects in an upright, frontal position. After preprocessing,
each image is represented by a 1,024-dimensional vector. UMIST2[32] is a face image
database that contains 575 multi-view face images of 20 people, referring to a range
of poses from profile to frontal views. Each image is rescaled to 28×23 pixels. The
COIL203[33] image library contains 1,440 images, which refer to 20 different objects
viewed from varying angles. Each object has 72 gray scale images with the size of
32×32. WebKB4[34] is a document database involving the home pages of 4 universities.
These web pages were collected from computer science departments and were classified
into seven topics: student, faculty, staff, department, course, project, and other. We
used a subset of 814 samples in this test. The statistics of the data sets are given in
Table 1.

Table 1 Statistics of the data sets

Database Samples Features Classes

ORL 400 1,024 40

UMIST 575 644 20

COIL20 1,440 1,024 20

WebKB 814 4,029 7

4.2 Evaluation metrics

We employ accuracy (AC) and the normalized mutual information (NMI)[4,12] to
evaluate the clustering performance of the compared algorithms.

AC is the percentage of correctly estimated labels in the total data collection.
Given a data point xi, let ai and gi be the estimated and true label respectively, then
we have

AC =
∑n

i=1 δ(gi,map(ai))
n

, (4.12)

where δ(·, ·) is an indicator function. The mapping function map(ai) permutes the
cluster labels and maps each label ai to its equivalent one in the database.

NMI measures the ability of the clustering algorithm to reconstruct the
underlying label distribution of the data. Denote the cluster sets from the ground
truth and the clustering method by C and C ′ respectively, then we calculate NMF
using

NMI(C,C ′) =

∑
ci∈C,c′j∈C′ p(ci, c

′
j) · log2

p(ci,c
′
j)

p(ci)·p(c′j)

max(H(C),H(C ′))
, (4.13)

where p(ci), p(c′j) indicate the probabilities of a sample belonging to the clusters ci and
c′j respectively. p(ci, c

′
j) is the joint probability suggesting the specified sample belongs

to ci and c′j at the same time. H(·) denotes the entropy. Generally, NMI(C, C ′) ∈
[0, 1], and the larger value means better clustering performance.

2http://images.ee.umist.ac.uk/danny/database.html
3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http://www-2.cs.cmu.edu/ webkb/
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4.3 Performance comparison

To demonstrate the advantages of MMCF, we compare it with the following
methods:

• Traditional k-means clustering method (Kmeans).

• Principle component analysis (PCA)[6].

• Non-negative matrix factorization (NMF)[16].

• Concept factorization (CF)[10].

• Convex non-negative matrix factorization (ConNMF)[29].

• Graph regularized non-negative matrix factorization (GNMF)[11].

• Locally consistent concept factorization (LCCF)[12].

For all the algorithms, the number of concepts is set to the number of classes in
the data collection. The number of nearest neighbor is set to 5 for the graph-based
methods. For GNMF, LCCF and MMCF, we search the best parameters from the grid
{10−3, 10−2, 10−1, 1, 10, 100, 1000}. The results derived from the optimal parameters
are reported. For GNMF and LCCF, we use the gaussian weight to construct the
weight matrix for the graph Laplacian, and the bandwidth is set to the inverse of the
mean square of Euclidean distances between all samples, i.e., 1

τ = 1
n2

∑n
i,j=1 ‖xi −

xj‖2. For MMCF, we adopted three weighting schemes to diversify the candidate
manifolds for better approximating the intrinsic manifold. In concrete, for gaussian
weighting, we vary the bandwidth in a broad range of area, i.e., { τ

[45:−5:5] , 1, τ [5 :
5 : 30]}; for binary weighting, we vary the number of nearest neighbor from 1 to 5;
for cosine similarity weighting, we directly compute the dot product of two samples.
Thus, we totally have a set of 22 candidate manifolds for multi-manifold learning in
MMCF.

For all the compared algorithms, k-means were run 20 times with different
initializations, and we record the results corresponding to the minimum objective
value. To randomize the experiments, the final results are averaged over 10 repeated
test runs. All data points are normalized to unit Euclidean length and we perform
clustering on the new low-dimensional representation.

4.4 Results

The clustering results are reported in Tables 2 and 3. The best results on each
data are highlighted in boldface. From these tables, a number of interesting points
can be observed as follows.

• MMCF enjoys more promising performances in comparison with other methods,
which justifies the effectiveness of incorporating multi-manifold learning into
concept factorization.

• MMCF significantly outperforms LCCF, which can be attributed to the fact
that LCCF only uses one local manifold to represent the intrinsic manifold of
the data. However, MMCF employs a set of diverse candidate manifold to
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maximally approximate the true manifold, leading to better locally preserved
structure in the data space.

• In most cases, GNMF performs better than NMF while LCCF performs better
than CF and Convex NMF. This demonstrates that taking into account the
locally geometrical structure indeed improves the clustering performance.

• On WebKB, the NMI values are very low for all the compared algorithms. The
reason for this might be that the seven classes in this database are severely
imbalanced since the number of some classes is much smaller than others.

Table 2 Clustering performance of the compared algorithms(AC: %)

Database Kmeans PCA NMF CF ConNMF GNMF LCCF MMCF

ORL 51.05 57.10 58.12 48.90 53.50 56.03 51.65 60.05

UMIST 39.77 44.33 41.17 38.77 43.48 54.92 49.13 60.23

COIL20 63.62 60.39 62.44 61.65 66.67 74.56 76.57 78.84

WebKB 35.54 35.36 33.82 35.47 40.26 46.78 46.01 48.15

Avg. 47.49 49.30 48.89 46.20 50.98 58.07 55.84 61.82

Table 3 Clustering performance of the compared algorithms (NMI: %)

Database Kmeans PCA NMF CF ConNMF GNMF LCCF MMCF

ORL 71.06 74.78 74.27 66.95 73.04 74.10 69.57 77.84

UMIST 58.94 62.69 58.80 57.20 62.16 72.57 68.04 76.68

COIL20 74.31 72.86 72.67 72.05 75.29 84.58 87.41 89.97

WebKB 16.18 17.48 14.61 15.24 14.11 13.43 14.23 15.70

Avg. 55.12 56.95 55.09 52.86 56.15 61.17 59.81 65.05

4.5 Parameter selection

There are two important parameters in our approach, i.e., α and β. In order to
explore the influences of different parameters on clustering performance, we select the
parameters from the wide range of grids {10−3, 10−2, 10−1, 1, 10, 100, 1000}. Here we
illustrate the results in terms of AC in Fig. 1. The depicted curves of α are obtained
when fixing β as its best, and vice versa.

As vividly drawn in these figures, MMCF enjoys better clustering performance
on the image database when α is large and β is small. On the document data WebKB,
MMCF achieves the best performance when α = 1 and β takes 1 or 10. Besides, it
can be readily find that our method performs more robustly on UMIST since it has
satisfactory performances in a wide range of parameters. Parameter selection has the
similar behaviors on other data sets.

5 Conclusion

This paper presents a novel method called Multi-Manifold Concept Factorization
(MMCF) for clustering analysis. It incorporates the multi-manifold ensemble learning
into concept factorization, thus better respecting the locally geometrical structure
of the data. Specifically, it approximates the intrinsic manifold by using a convex
combination of some given candidate manifolds. When data points reside on multiple
manifolds, MMCF is considerably superior to others only considering one manifold.
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Figure 1. Clustering performance of MMCF with different α and β in a wide range. Here

we use AC to evaluate the clustering performance. (a) UMIST; (b) WebKB.

To optimize the objective function, we present an alternative method to learn the
variables, which are updated until it reaches the convergence. Experiments were
conducted on several real-world databases. Results have shown that the proposed
method enjoys more promising performance compared to some alternatives.

References

[1] Bishop C, et al. Pattern recognition and machine learning, Vol. 4. Springer New York. 2006.

[2] Slonim N, Tishby N. Document clustering using word clusters via the information bottleneck

method. Proc. of the 23rd ACM SIGIR Conference on Research and Development in Information

Retrieval. 2000. 208–215.

[3] Xu W, Liu X, Gong Y. Document clustering based on non-negative matrix factorization. Proc.

of the 26th ACM SIGIR Conference on Research and Development in Information Retrieval.

2003. 267–273.

[4] Cai D, He X, Han J. Document clustering using locality preserving indexing, IEEE Trans. on

Knowledge and Data Engineering, 2005, 17(12): 1624–1637.

[5] Yang Y, Xu D, Nie F, Yan S, Zhuang Y. Image clustering using local discriminant models and

global integration. IEEE Trans. on Image Processing, 2010, 19(10): 2761–2773.

[6] Abdi H, Williams L. Principal component analysis. Wiley Interdisciplinary Reviews:

Computational Statistics, 2010, 2(4): 433–459.

[7] He X, Niyogi P. Locality preserving projections. Advances in Neural Information Processing

Systems, 2003, 16: 153–160.

[8] Wall M, Rechtsteiner A, Rocha L. Singular value decomposition and principal component

analysis. A Practical Approach to Microarray Data Analysis, 2003: 91–109.

[9] Lee D, Seung H, et al. Learning the parts of objects by non-negative matrix factorization.

Nature, 1999, 401(6755): 788–791.

[10] Xu W, Gong Y. Document clustering by concept factorization. Proc. of the 27th ACM SIGIR

Conference on Research and Development in Information Retrieval. ACM. 2004. 202–209.



418 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

[11] Cai D, He X, Han J, Huang T. Graph regularized nonnegative matrix factorization for data

representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548–

1560.

[12] Cai D, He X, Han J. Locally consistent concept factorization for document clustering. IEEE

Trans. on Knowledge and Data Engineering, 2011, 23(6): 902–913.

[13] Geng B, Tao D, Xu C, Yang L, Hua XS. Ensemble manifold regularization. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 2012, 34(6): 1227–1233.

[14] Beck A, Teboulle M. Mirror descent and nonlinear projected subgradient methods for convex

optimization. Operations Research Letters, 2003, 31(3): 167–175.

[15] Li P, Chen C, Bu J. Clustering analysis using manifold kernel concept factorization.

Neurocomputing, 2012, 87: 120–131.

[16] Seung D, Lee L. Algorithms for non-negative matrix factorization. Advances in neural

information processing systems, 2001, 13: 556–562.

[17] Lin C. Projected gradient methods for nonnegative matrix factorization. Neural computation,

2007, 19(10): 2756–2779.

[18] He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using laplacianfaces. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 2005, 27(3): 328–340.

[19] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation.

Neural computation, 2003, 15(6): 1373–1396.

[20] Gu Q, Zhou J. Co-clustering on manifolds. Proc. of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data mining. ACM. 2009. 359–368.

[21] Guan N, Tao D, Luo Z, Yuan B. Manifold regularized discriminative nonnegative matrix

factorization with fast gradient descent. IEEE Trans. on Image Processing, 2011, 20(7):

2030–2048.

[22] Li P, Bu J, Yang Y, Ji R, Chen C, Cai D. Discriminative orthogonal nonnegative matrix

factorization with flexibility for data representation. Expert Systems With Applications, 2014,

41(4): 1283–1293.

[23] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning

from labeled and unlabeled examples. Journal of Machine Learning Research, 2006, 7: 2399–

2434.

[24] Li P, Bu J, Chen C, Wang C, Cai D. Subspace learning via locally constrained a-optimal

nonnegative projection. Neurocomputing, 2013, 115: 49–62.

[25] Hoyer PO, Dayan P. Non-negative matrix factorization with sparseness constraints. Journal of

Machine Learning Research, 2004, 5: 1457–1469.

[26] Zhang L, Chen Z, Zheng M, He X. Robust non-negative matrix factorization. Frontiers of

Electrical and Electronic Engineering in China, 2011, 6(2): 192–200.

[27] Liu H, Yang Z, Wu Z. Locality-constrained concept factorization. Proc. of the 22nd International

Joint Conference on Artificial Intelligence. 2011. 1378–1383.

[28] Hua W, He X. Discriminative concept factorization for data representation. Neurocomputing,

2011, 74(18): 3800–3807.

[29] Ding CH, Li T, Jordan MI. Convex and semi-nonnegative matrix factorizations. IEEE Trans.

on Pattern Analysis and Machine Intelligence, 2010, 32(1): 45–55.

[30] Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press. 2004.

[31] Sha F, Lin Y, Saul L, Lee D. Multiplicative updates for nonnegative quadratic programming.

Neural Computation, 2007, 19(8): 2004–2031.

[31] Graham D, Allinson N. Face recognition: From theory to applications. NATO ASI Series F,

Computer and Systems Sciences, 1998, 163: 446–456.

[32] Nene S, Nayar S, Murase H, et al. Columbia object image library (coil-20), Rapport interne

CUCS-005-96, Columbia University Computer Science.

[33] Craven M, DiPasquo D, Freitag D, McCallum A, Mitchell T, Nigam K, Slattery S. Learning

to construct knowledge bases from the world wide web. Artificial Intelligence, 2000, 118(1):

69–113.


