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Abstract In the paper, we develop a method for constructing quantum algorithms for

computing Boolean functions by quantum ordered read-once branching programs (quantum

OBDDs). Our method is based on fingerprinting technique and representation of Boolean

functions by their characteristic polynomials. We use circuit notation for branching programs

for desired algorithms presentation. For several known functions our approach provides

optimal QOBDDs. Namely we consider such functions as MODm, EQn, Palindromen,

and PERMn (testing whether given Boolean matrix is the Permutation Matrix). We also

propose a generalization of our method and apply it to the Boolean variant of the Hidden

Subgroup Problem.
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1 Introduction

During the last two decades different types of quantum computation models based
on Turing Machines, automata, and circuits have been considered. For some of them
different examples of functions were presented for which quantum models appear to
be much more (exponentially) efficient than their classical counterparts.

In this paper we consider computation of Boolean functions by a quantum model
of Branching programs. Branching programs (BP) model is one of the standard non-
uniform models of computation and allow to describe sequential computations in an
intuitively straightforward way in terms of commands “if then else” and “go to”
only. Together with their simple “programming structure”, this is the reason why
BPs are interesting for developing algorithms for Boolean functions. BPs have proven
useful in a variety of domains, such as hardware verification, model checking, and
other CAD applications; see for example the book by Wegener[17]. BPs have another
important attraction – this is a convenient model for defining different restricted
variants (leveled, oblivious, constant width, read-once), which we consider in this
paper.
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The complexity measures for BPs are closely related to machine and circuit
models of computation:

– Sequences of functions that can be computed by BPs of polynomial size can
also be computed within logarithmic space by the non-uniform variant of Turing
machines and vice versa[15]. In terms of complexity classes, this means that the
class of sequences of functions with polynomial-size BPs is equal to the class
LSPACE/poly.

– Even oblivious branching programs of constant width – the non-uniform
equivalent of finite-state automata – are surprisingly powerful. Indeed
Barrington showed[7] that branching programs of width 5 are already as
powerful as polynomial size circuits of logarithmic depth.

An oblivious read-once variant of BPs is well-known in theory and practice as
Ordered Binary Decision Diagrams (OBDDs). We refer to Ref. [17] for more
information.

In this paper we consider a quantum counterpart of OBDDs. The main reason
for the investigation of restricted models of quantum computers was proposed by
Ambainis and Freivalds in 1998[1]. Considering one-way quantum finite automata,
they suggested that first quantum-mechanical computers would consist of a
comparatively simple and fast quantum-mechanical part connected to a classical
computer.

Two models of quantum branching programs were introduced by Ablayev,
Gainutdinova, Karpinski[2] (leveled programs), and by Nakanishi, Hamaguchi,
Kashiwabara[14] (non-leveled programs). Later it was shown by Sauerhoff[16] that
these two models are polynomially equivalent.

For this model we develop the fingerprinting technique introduced in Ref. [6].
The basic ideas of this approach are due to Freivalds (e.g. see the book[12]). It was
later successfully applied in the quantum automata setting by Ambainis and Freivalds
in 1998[1] (later improved in Ref. [5]). Subsequently, the same technique was adapted
for the quantum branching programs by Ablayev, Gainutdinova and Karpinski in
2001[2], and was later generalized in Ref. [6].

Fingerprinting technique for computing the Equality function in communication
computation model in the quantum setting was explicitly described by Buhrman et
al.[8] and later generalized by Yao[19].

In the paper we present a large enough family of Boolean functions for which our
variant of fingerprinting technique provides effective (sometimes provably optimal)
quantum OBDDs. Such a family of Boolean functions is described in terms of their
polynomial presentations known as characteristic polynomials. Our definition of the
characteristic polynomial differs from that of Ref. [10] and Ref. [4], though it uses
similar ideas.

We display several known functions for which our method provides optimal
quantum OBDDs. Namely, these functions are MODm, EQn, Palindromen, and
PERMn.

2 Preliminaries
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At first we present the classical model of branching programs and then generalize
it to the quantum setting. A good source of information on branching programs is
Wegener’s book[17]; for an introduction to quantum computation see Nielsen and
Chuang[13].

A branching program is a finite directed acyclic graph which will be used to
recognize some subset of {0, 1}n. Each node (except for a sink node) is labeled with
an integer 1 ≤ i ≤ n and has two outgoing arrows labeled 0 and 1. This pair of edges
corresponds to querying the i’th bit xi of the input, and making a transition along
one outgoing edge or the other depending on the value of xi. There is a single source
node, called the start node, and a subset Accept of the sink nodes corresponding to
accepting nodes. An input x is accepted if and only if it induces a chain of transitions
leading to a node in Accept, and the set of such inputs is the language accepted by
the program.

A branching program is oblivious if the nodes can be partitioned into levels
V1, . . . , V` and a level V`+1 such that the nodes in V`+1 are the sink nodes, nodes in
each level Vj with j ≤ ` have outgoing edges only to nodes in the next level Vj+1,
and all nodes in a given level Vj query the same bit xij

of the input. Such a program
is said to have length `, and width k if each level has at most k nodes. The size of a
branching program is defined as the number of its internal nodes.

It is known that any BP can be transformed into oblivious BP with only
polynomial increase in size.

An oblivious branching program is called an Ordered Binary Decision Diagram
(OBDD) if on each path from the start node to a sink each variable appears at most
once.

Linear branching programs. The definition of a linear branching program is based
on the oblivious model. This is a generalization of the definition of quantum branching
program presented in Ref.[2]. Deterministic, probabilistic, and quantum oblivious
branching programs are special cases of linear branching programs.

Let Vd be a d-dimensional vector space. We use |ψ〉 to denote column vectors
from Vd, and 〈ψ1 |ψ2〉 denotes the inner product. We use the notation |i〉 for the
vector, which has a 1 on the i-th position and 0 elsewhere.

Definition 1. A Linear Branching Program P on the variable set Xn =
{x1, . . . , xn} over Vd is defined as

P = 〈T, |ψ0〉 ,Accept〉

where T is a sequence of l instructions: Tj =
(
xij , Uj(0), Uj(1)

)
determined by xij ∈

Xn tested at step j, and Uj(0), Uj(1) are d× d matrices.
Vectors |ψ〉 ∈ Vd are called states (state vectors) of P , |ψ0〉 ∈ Vd is the initial

state of P , and Accept ⊆ {1, . . . , d} is the accepting set.
We define a computation of P on an input σ = (σ1, . . . , σn) ∈ {0, 1}n as follows:

1. A computation of P starts from the initial state |ψ0〉;

2. The j’th instruction of P queries a variable xij , and applies Uj = Uj(σij ) to the
current state |ψ〉 to obtain the state |ψ′〉 = Uj(σij

) |ψ〉;
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3. The final state is

|ψ(σ)〉 =




1∏

j=l

Uj(σij
)


 |ψ0〉 .

Deterministic branching programs. A deterministic branching program (DPB)
as a linear branching program over the vector space Rd. A state |ψ〉 of such a program
is a Boolean vector with exactly one 1. The matrices Uj correspond to permutations
of order d, and so have exactly one 1 in each column.

A DBP accepts an input σ iff |ψ(σ)〉 = |i〉 with i ∈ Accept.

Quantum branching programs. We define a quantum branching program (QBP)
is a linear branching program over the Hilbert spaceHd. The states for such a program
are complex vectors with ‖ |ψ〉 ‖2 = 1, and Uj are complex-valued unitary matrices.

After the l-th (last) step of quantum transformation, P measures its configuration
|ψ(σ)〉 = (α1, . . . , αd)T , and the input σ is accepted iff the result of the measurement
is |i〉 with i ∈ Accept.

The probability Praccept(σ) of P accepting an input σ is defined by

Praccept(σ) =
∑

i∈Accept

|αi|2.

Note, that using the set Accept we can construct Maccept – a projector on the
accepting subspace (i.e. a diagonal zero-one projection matrix, which determines the
final projective measurement). Thus, the accepting probability can be re-written as

Praccept(σ) = 〈ψ(σ)M†
accept |Macceptψ(σ)〉 = ||Maccept |ψσ〉 ||22.

Computing Boolean functions. From the definition, it follows that a quantum
branching program on the variable set Xn computes some Boolean function of n

variables.
In particular, we say that a QBP Q computes the Boolean function f with one-

sided error if there exists an ε ∈ (0, 1) (called error) such that for all σ ∈ f−1(1)
the probability of Q accepting σ is 1 and for all σ ∈ f−1(0) the probability of Q

erroneously accepting σ is less than ε.

Circuit representation. Quantum algorithms are usually given by using quantum
circuit formalism[9, 18], because this approach is quite straightforward for describing
such algorithms.

We propose, that a QBP represents a classically-controlled quantum system.
That is, a QBP can be viewed as a quantum circuit aided with an ability to read
classical bits as control variables for unitary operations.
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Figure 1. Circuit presentation of a quantum branching program.

Here xi1 , . . . , xil
is the sequence of (not necessarily distinct) variables denoting

classical control bits. Using the common notation single wires carry quantum
information and double wires denote classical information and control.

Complexity measures. The width of a QBP Q, denoted by width(Q), is the
dimension d of the corresponding state space Hd, and the length of Q, denoted by
length(Q), is the number l of instructions in the sequence T . There is one more
commonly used complexity measure – the size of Q, which we define as size(Q) =
width(Q) · length(Q).

Note that for a QBP Q in the circuit setting another important complexity
measure explicitly comes out – a number of quantum bits, denoted by qubits(Q),
needed to encode the state of Q. From the definition, it follows that qubits(Q) =
dlog width(Q)e.

Read-once branching programs.
Definition 2. We call a linear branching program P an OBDD or read-once

LBP if each variable x ∈ {x1, . . . , xn} occurs in the sequence T of transformations of
P at most once.

Note that the “obliviousness” is inherent for an LBP and therefore this definition
is consistent with the usual notion of an OBDD defined in terms of graphs.

For the rest of the paper OBDD will denote deterministic OBDDs and QOBDD
will be used for quantum ones. Additionally, we could have defined probabilistic
branching programs and probabilistic OBDDs. However, in this paper we are mostly
interested in establishing upper bounds for QOBDD model via fingerprinting
technique and showing they are tight for several individual functions using the
following general lower bound.

General Lower Bound. The following general lower bound on the width of
QOBDDs was proven in [3].

Theorem 2.1. Let f(x1, . . . , xn) be a Boolean function computed by a
quantum read-once branching program Q with bounded error for some margin ε.
Then

width(Q) > log width(P )
2 log

(
1 + 1

ε

)
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where P is a deterministic OBDD of minimal width computing f(x1, . . . , xn).
That is, the width of a quantum OBDD cannot be asymptotically less than

logarithm of the width of the minimal deterministic OBDD computing the same
function. And since the deterministic width of many “natural” functions is
exponential[17], we obtain a linear lower bound for these functions.

2.1 Quantum fingerprinting

Generally[12], fingerprinting – is a technique that allows to present objects (words
over some finite alphabet) by their fingerprints, which are significantly smaller than
the originals. It is used in randomized and quantum algorithms to test equality of some
objects (binary strings) with one-sided error by simply comparing their fingerprints.

In this paper we develop a variant of the fingerprinting technique adapted for
quantum branching programs. At the heart of the method is the representation of
Boolean functions by polynomials of special type, which we call characteristic.

2.1.1 Characteristic polynomials for quantum fingerprinting

Definition 3. We call a polynomial g(x1, . . . , xn) over the ring Zm a
characteristic polynomial of a Boolean function f(x1, . . . , xn) and denote it gf when
for all σ ∈ {0, 1}n gf (σ) = 0 iff f(σ) = 1.

This definition is similar to the algebraic transformation of Boolean function from
[10] and [4], though it is adapted for the fingerprinting technique.

Lemma 1. For any Boolean function f of n variables there exists a
characteristic polynomial gf over Z2n .

Proof. One way to construct such characteristic polynomial gf is transforming a
sum of products representation for ¬f .

Let K1 ∨ . . . ∨Kl be a sum of products for ¬f and let K̃i be a product of terms
from Ki (negations ¬xj are replaced by 1−xj). Then K̃1 + . . .+K̃l is a characteristic
polynomial over Z2n for f since it equals 0 ⇐⇒ all of K̃i (and thus Ki) equal 0.
This happens only when the negation of f equals 0.

Generally, there are many polynomials for the same function. For example, the
function EQn, which tests the equality of two n-bit binary strings, has the following
polynomial over Z2n :

n∑

i=1

(xi(1− yi) + (1− xi)yi) =
n∑

i=1

(xi + yi − 2xiyi) .

On the other hand, the same function can be represented by the polynomial

n∑

i=1

xi2i−1 −
n∑

i=1

yi2i−1.

We use this presentation of Boolean functions for our fingerprinting technique
which generalizes the algorithm for MODm function by Ambainis and Nahimovs[5].

2.1.2 Fingerprinting technique
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For a Boolean function f we choose an error rate ε > 0 and pick a characteristic
polynomial g over the ring Zm. Then, for an arbitrary binary string σ = σ1 . . . σn we
create its fingerprint |hσ〉 composing t = 2dlog2((2/ε) ln (2m))e single qubit fingerprints∣∣hi

σ

〉
:

∣∣hi
σ

〉
= cos

2πkig(σ)
m

|0〉+ sin
2πkig(σ)

m
|1〉

|hσ〉= 1√
t

t∑
i=1

|i〉
∣∣hi

σ

〉

That is, the last qubit is rotated by t different angles about the ŷ axis of the Bloch
sphere.

The chosen parameters ki ∈ {1, . . . , m−1} for i ∈ {1, . . . , t} are “good” following
the notion of Ref. [1].

Definition 4. A set of parameters K = {k1, . . . , kt} is called “good” for some
integer b 6= 0 mod m if

1
t2

(
t∑

i=1

cos
2πkib

m

)2

< ε.

The left side of inequality is the squared amplitude of the basis state |0〉⊗ log t |0〉
if b = g(σ) and the operator H⊗ log t ⊗ I has been applied to the fingerprint |hσ〉.
Informally, that kind of set guarantees, that the probability of error will be bounded
by a constant below 1.

The following lemma proves the existence of a “good” set and generalizes the
proof of the corresponding statement from [5] (for the proof see [6]).

Lemma 2. There is a set K with |K| = t = 2dlog2((2/ε) ln (2m))e which is “good”
for all integer b 6= 0 mod m.

We use this result for our fingerprinting technique choosing the set
K = {k1, . . . , kt} which is “good” for all b = g(σ) 6= 0. That is, it allows to
distinguish those inputs whose image is 0 modulo m from the others.

3 Algorithms for QBPs Based on Fingerprinting

In this section we describe the class of Boolean functions that can be efficiently
computed in the quantum OBDD model using the fingerprinting technique described
in subsection 2.1.2.

Let f(x1, . . . , xn) be a Boolean function and g be its characteristic polynomial.
The following theorem holds.

Theorem 3.1. Let ε ∈ (0, 1). If g is a linear polynomial over Zm, i.e. g =
c1x1 + . . . cnxn + c0, then f can be computed with one-sided error ε by a quantum
OBDD of width O

(
log m

ε

)
.

Proof. Here is the algorithm in the circuit notation:
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Figure 2. A Quantum Branching Program for computing Boolean function given by its

linear characteristic polynomial.

Initially qubits |φ1〉⊗|φ2〉⊗· · ·⊗|φlog t〉⊗|φtarget〉 are in the state |ψ0〉 = |0〉⊗ log t |0〉.
For i ∈ {1, . . . , t}, j ∈ {0, . . . , n} we define rotations Ri,j as

Ri,j = Rŷ

(
4πkicj

m

)
,

where cj are the coefficients of the linear polynomial for f and the set of parameters
K = {k1, . . . , kt} is “good” according to the Definition 4 with t = 2dlog2((2/ε) ln (2m))e.

Let σ = σ1 . . . σn ∈ {0, 1}n be an input string.
The first layer of Hadamard operators transforms the state |ψ0〉 into

|ψ1〉 =
1√
t

t∑

i=1

|i〉 |0〉 .

Next, upon input symbol 0 identity transformation I is applied. But if the value
of xj is 1, then the state of the last qubit is transformed by the operator Ri,j , rotating
it by the angle proportional to cj . Moreover, the rotation is done in each of t subspaces
with the corresponding amplitude 1/

√
t. Such a parallelism is implemented by the

controlled operators Ci(Ri,j), which transform the states |i〉 |·〉 into |i〉Ri,j |·〉, and
leave others unchanged. For instance, having read the input symbol x1 = 1, the
system would evolve into state

|ψ2〉= 1√
t

t∑
i=1

Ci(Ri,1) |i〉 |0〉 = 1√
t

t∑
i=1

|i〉Ri,1 |0〉

= 1√
t

t∑
i=1

|i〉 (cos 2πkic1
m |0〉+ sin 2πkic1

m |1〉)
.

Thus, after having read the input σ the amplitudes would “collect” the sum∑n
j=1 cjσj

|ψ3〉= 1√
t

t∑
i=1

|i〉
(
cos

2πki

∑n
j=1 cjσj

m |0〉+ sin
2πki

∑n
j=1 cjσj

m |1〉
)

.
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At the next step we perform the rotations by the angle 4πkic0
m about the ŷ axis

of the Bloch sphere for each i ∈ {1, . . . , t}. Therefore, the state of the system would
be

|ψ4〉= 1√
t

t∑
i=1

|i〉
(
cos 2πkig(σ)

m |0〉+ sin 2πkig(σ)
m |1〉

)
.

Applying H⊗ log t ⊗ I we obtain the state

|ψ5〉=
(

1
t

t∑
i=1

cos 2πkig(σ)
m

)
|0〉⊗ log t |0〉+

+γ |0〉⊗ log t |1〉+
t∑

i=2

|i〉 (αi |0〉+ βi |1〉) ,

where γ, αi, and βi are some unimportant amplitudes.
The input σ is accepted if the measurement outcome is |0〉⊗ log t |0〉. Clearly, the

accepting probability is

Praccept(σ) =
1
t2

(
t∑

i=1

cos
2πkig(σ)

2n

)2

.

If f(σ) = 1 then g(σ) = 0 and the program accepts σ with probability 1.
Otherwise, the choice of the set K = {k1, . . . , kt} guarantees that

Praccept(σ) =
1
t2

(
t∑

i=1

cos
2πkig(σ)

2n

)2

< ε.

Thus, f can be computed by a q-qubit quantum OBDD, where q = log t+1. The
width of the program is 2q = 2t = O

(
log m

ε

)
.

The following functions have the aforementioned linear polynomials and thus are
effectively computed via the fingerprinting technique.

MODm The function MODm tests whether the number of 1’s in the input is 0
modulo m. The linear polynomial over Zm for this function is

n∑

i=1

xi.

The lower bound for the width of deterministic OBDDs computing this function is
Ω(m)[17]. Thus, our method provides an exponential advantage of quantum OBDD
over any deterministic one.

MOD′
m This function is the same as MODm, but the input is treated as binary

number. Thus, the linear polynomial is

n∑

i=1

xi2i−1.

The lower and upper bounds are equal to those of MODm.
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EQn The function EQn, which tests the equality of two n-bit binary strings, has
the following polynomial over Z2n

n∑

i=1

xi2i−1 −
n∑

i=1

yi2i−1.

This function is easy in the deterministic case for a clever choice of the variable
ordering. But for the ordering, where all of x’s are tested first, it is exponentially
hard. In quantum setting, this function can be effectively computed regardless of the
variable ordering.

Palindromen(x1, . . . , xn) This function tests the symmetry of the input, i.e.
whether x1x2 . . . xbn/2c = xnxn−1 . . . xdn/2e+1 or not. The polynomial over Z2bn/2c is

bn/2c∑

i=1

xi2i−1 −
n∑

i=dn/2e
xi2n−i.

The situation with lower and upper bounds for this function is similar to that of EQn.

PERMn The Permutation Matrix test function (PERMn) is defined on n2 variables
xij (1 6 i, j 6 n). It tests whether the input matrix contains exactly one 1 in each
row and each column. Here is a polynomial over Z(n+1)2n

n∑

i=1

n∑

j=1

xij

(
(n + 1)i−1 + (n + 1)n+j−1

)−
2n∑

i=1

(n + 1)i−1.

Note, that this function cannot be effectively computed by a deterministic OBDD
– the lower bound is Ω(2nn−5/2) regardless of the variable ordering[17]. The width of
the best known probabilistic OBDD, computing this function with one-sided error,
is O(n4 log n)[17]. Our algorithm has the width O(n log n). Since the lower bound
Ω(n− log n) follows from Theorem 1, our algorithm is almost optimal.

The following table provides the comparison of the width of quantum and
deterministic OBDDs for the aforementioned functions.

Table 1 The comparison of the width of quantum and deterministic OBDDs

for several known functions

OBDD QOBDD

MODm Ω(m) O(log m)

MOD′m Ω(m) O(log m)

EQn 2Ω(n) O(n)

Palindromen 2Ω(n) O(n)

PERMn Ω(2nn−5/2) O(n log n)

The following functions have linear polynomials as well, but we’re not aware of
exponential lower bounds in the deterministic case.
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Periods
n(x0, . . . , xn−1) This function equals 1 iff xi = xi+s mod n for all

i ∈ {0, . . . , n− 1}. The polynomial over Z2n is

n−1∑

i=0

xi

(
2i − 2i−s mod n

)
.

Semi − Simons
n(x0, . . . , xn−1) This function equals 1 iff xi = xi⊕s for all

i ∈ {0, . . . , n− 1}. The polynomial over Z2n is

n−1∑

i=0

xi

(
2i − 2i⊕s

)
.

3.1 Functions without Linear Polynomials

It appears that some functions don’t have a linear characteristic polynomial at
all. For example, consider a disjunction of n variables f = x1 ∨x2 ∨ . . .∨xn. If f had
some linear characteristic polynomial gf = c0 + c1x1 + . . . + cnxn then the following
would hold:

gf (0, 0, 0, . . . , 0) = c0 6= 0 mod m

gf (1, 0, 0, . . . , 0) = c1 + c0 = 0 ⇒ c1 = −c0 mod m

gf (0, 1, 0, . . . , 0) = c2 + c0 = 0 ⇒ c2 = −c0 mod m

gf (1, 1, 0, . . . , 0) = c1 + c2 + c0 = −c0 − c0 + c0 = −c0 = 0 mod m.

This contradiction proves the absence of a linear presentation for f . However,
the negation of f has a linear characteristic polynomial (e.g. g¬f =

∑n
i=1 xi over

Zn+1).
The example above illustrates a straightforward approach, when we try to analyze

the system of equations and inequalities obtained by substituting Boolean inputs to
the presumable linear polynomial. A more general approach is a matter of further
research.

4 Generalized Approach

The fingerprinting technique described earlier allows us to test a single property
of the input encoded by a characteristic polynomial. Using the same ideas we can test
the conjunction of several conditions encoded by a group of characteristic polynomials
which we call a characteristic of a function.

Definition 5. We call a set χm
f of polynomials over Zm a characteristic of

a Boolean function f if for all polynomials g ∈ χm
f and all σ ∈ {0, 1}n it holds that

g(σ) = 0 iff σ ∈ f−1(1).
From Lemma 1 it follows that for each Boolean function there is always a

characteristic consisting of a single characteristic polynomial.
We say that a characteristic is linear if all of its polynomials are linear.
Now we can generalize the Fingerprinting technique from section 2.1.2.
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Generalized Fingerprinting technique. For a Boolean function f we choose an
error rate ε > 0 and pick a characteristic χm

f = {g1, . . . , gl}. Then for arbitrary
binary string σ = σ1 . . . σn we create its fingerprint |hσ〉 composing t · l

(t = 2dlog2((2/ε) ln (2m))e = O
(

log m
ε

)
) single qubit fingerprints

∣∣hi,j
σ

〉
(1 6 i 6 t,

1 6 j 6 l): ∣∣hi,j
σ

〉
= cos πkigj(σ)

m |0〉+ sin πkigj(σ)
m |1〉

|hσ〉= 1√
t

t∑
i=1

|i〉 ∣∣hi,1
σ

〉 ∣∣hi,2
σ

〉
. . .

∣∣hi,l
σ

〉

Theorem 4.1. If χm
f is a linear characteristic then f can be computed by a

quantum OBDD of width O

(
2
|χm

f |
log m

ε

)
.

Proof. The proof of this result somewhat generalizes the proof of Theorem 2 to the
case of several target qubits. Here is the circuit:

Figure 3. A Quantum OBDD for computing Boolean function given by its linear

characteristic.

Thus, the proof follows the lines of the proof of Theorem 2. The differences are:

1. We exploit l = |χm
f | target qubits, one for each linear polynomial in χm

f .

2. We use single qubit rotations Rk
i,j = Rŷ

(
2πkicj,k

m

)
, where cj,k is the coefficient

of xj in k-th polynomial.

3. There is no final layer of Hadamard transformations.

Hence, upon the input σ = σ1 . . . σn this algorithm creates the fingerprint |hσ〉.
Afterwards, we measure |hσ〉 in the standard computational basis and accept the

input if the outcome of the last l qubits is the all-zero state. Therefore, the probability
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of accepting σ is

Praccept(σ) =
1
t

t∑

i=1

cos2
πkig1(σ)

m
· · · cos2

πkigl(σ)
m

.

If f(σ) = 1 then all of gi(σ) = 0 and we will always accept.
If f(σ) = 0 then there is at least one such j that gj(σ) 6= 0 and the choice of the

“good” set K guarantees that the probability of the erroneously accepting is bounded
by

Praccept(σ) = 1
t

t∑
i=1

cos2 πkig1(σ)
m · · · cos2 πkigl(σ)

m

6 1
t

t∑
i=1

cos2 πkigj(σ)
m = 1

t

t∑
i=1

1
2

(
1 + cos 2πkigj(σ)

m

)

= 1
2 + 1

2t

t∑
i=1

cos 2πkigj(σ)
m

6 1
2 +

√
ε

2 .

The number of qubits used by this QBP is q = log t + l, l = |χm
f |. Therefore, the

width of the program is 2q = t · 2l = O

(
2
|χm

f |
log m

ε

)
.

Since m is usually exponential in n, this approach can be effectively used when
the size of a characteristic is O(log log m).

The generalized approach can be used to construct an effective quantum OBDD
for the Boolean variant of the Hidden Subgroup Problem.

4.1 The upper bound for Hidden Subgroup Function

This problem was first defined and considered in Ref. [11], where the following
Boolean variant of the Hidden Subgroup Problem was defined.

Definition 6. Let K be a normal subgroup of a finite group G. Let X be a
finite set. For a sequence χ ∈ X |G| let σ = bin(χ) be its representation in binary. If
σ encodes no correct sequence χ = χ1 . . . χ|G|, then Hidden Subgroup function of σ is
set to be zero, otherwise:

HSPG,K (σ) =

{
1, if ∀ a, b ∈ G (aK = bK ⇐⇒ χa = χb);

0, otherwise.

Let f be the function encoded by the input sequence. We want to know if a
function f : G → X “hides” the subgroup K in the group G. Our program receives
G and K as parameters, and function f as an input string containing values of f it
takes on G. The values are arranged in lexicographical order. See Definition 6.

We make two assumptions. First, we assume that the set X contains exactly
(G : K) elements. Indeed, having read the function f , encoded in the input sequence
σ, we have X to be the set of all different values that f takes. Obviously, if |X| is
different from (G : K), then HSPG,K (σ) = 0. The second assumption, is that we
replace all values of f by numbers from 1 through (G : K). Thus, HSPG,K (x1, . . . , xn)
is a Boolean function of n = |G|dlog (G : K)e variables. With these two assumptions
the following theorem holds.
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Theorem 4.2. Function HSPG,K (x) can be computed with one-sided error
by a quantum OBDD of width O(n).

Proof. First we shall prove the following lemma.

Lemma 3. In order to correctly compute HSPG,K (x) it is enough to perform
the following calculations.

1. For every coset we check equalities for all input sequence values that have indices
from this coset;

2. From every coset we choose a representative, and check if the sum of values of
f on all the representatives equals to the following value

S =
G:K∑

i=1

i =
(G : K)((G : K) + 1)

2
.

Proof. One direction is straightforward. The other direction is also not difficult.
Suppose we have the two conditions of the lemma satisfied. Let aK and bK be two
different cosets with elements d ∈ aK and c ∈ bK, such that σd = σc. We fix c ∈ bK.
There are two cases possible:

1. For all d ∈ aK(σd = σc);

2. There exists d′ ∈ aK(σd 6= σc).

Apparently in the first case we indeed could choose any of the elements of a coset to
check inequalities. In the second case the first condition of the lemma would fail. The
reasoning for bK is analogous.

When the values of f are different on different cosets, obviously, the sum of these
values is the sum of numbers from 1 through G : K. Therefore, HSPG,K (σ) = 1 iff
both conditions of the lemma are satisfied.

According to the previous lemma, HSPG,K (x) has a characteristic consisting of
two polynomials over Z2n , checking conditions of the lemma. We shall construct them
explicitly to show they are linear.

We shall adopt another indexation of χ when convenient: χa,q is a value of f on
the q-th element of the coset aK.

Therefore, for a binary input symbol xj we define

– a = a(j) for the number of the corresponding coset;

– q = q(j) for the number of the corresponding element of the coset a;

– r = r(j) for the number of bit in the binary representation of χa,q

and start indexation from 0. Thus a ∈ {0, . . . , (G : K)− 1}, q ∈ {0, . . . , |aK| − 1}.
In this notation the polynomials are:

1. g1(x) =
∑

a

∑
q 2(|K|a+q)dlog G:Ke(χa,q − χa,q−1 mod |K|). Thus, g1(x) = 0 iff for

every coset a function f maps all the elements of a onto the same element of X.
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2. g2(x) =
(∑(G:K)

j=1 χij

)
−S, where χij is the representative chosen from the j-th

coset. Therefore, g2(x) checks whether the images of elements from different
cosets are distinct.

By the generalized fingerprinting technique we can construct quantum OBDD of
width O(n), computing HSPG,K (x) with one-sided error.

Note that our algorithm completely ignores the fundamental difference between
the Abelian and non-Abelian cases of the original Hidden Subgroup Problem. The
reason for this is in the type of Boolean variant we consider here. The Boolean
function HSPG,K (x) doesn’t compute the hidden subgroup, it just tests whether f

hides the subgroup or not. This test can be efficiently performed because it can
be reduced to the equality checks. Thus, the aforementioned difference between the
Abelian and non-Abelian cases doesn’t play any role here.
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