
Int J Software Informatics, Volume 7, Issue 4 (2013), pp.501–526 Tel: +86-10-62661040

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2013 by ISCAS. All rights reserved. Email: ijsi@iscas.ac.cn, ijsi2007@gmail.com

Type Directed Semantics for the Calculus of

Looping Sequences

Livio Bioglio1, Mariangiola Dezani-Ciancaglini1, Paola Giannini2,

and Angelo Troina1

1 (Dipartimento di Informatica, Università di Torino, Italy)
2 (Dipartimento di Informatica, Università del Piemonte Orientale, Italy)

Abstract The calculus of looping sequences is a formalism for describing the evolution

of biological systems by means of term rewriting rules. Here we enrich this calculus with

a type discipline which preserves some biological properties deriving from the requirement

of certain elements, and the repellency of others. In particular, the type system guarantees

the soundness of the application of reduction rules with respect to the elements which are

required (all requirements must be satisfied) and to the elements which are excluded (two

elements which repel each other cannot occur in the same compartment). As an example,

we model the possible interactions (and compatibility) of different blood types with different

antigens. The type system does not allow transfusion with incompatible blood types.

Key words: rewrite systems; calculus of looping sequences; type systems; systems biology

Bioglio L, Dezani-Ciancaglini M, Giannini P, Troina A. Type directed semantics for the

calculus of looping sequences. Int J Software Informatics, Vol.7, No.4 (2013): 501–526.

http://www.ijsi.org/1673-7288/7/i172.htm

1 Introduction

While the approach of biologists to describe biological systems by mathematical
means makes possible to reason on the behaviour of systems and to perform
quantitative simulations, such modelling becomes more difficult both in specification
and in analysis when the complexity of systems increases. This is one of the main
motivations for the application of Computer Science formalisms to the description of
biological systems[19]. Other motivations can be found in the fact that the use of
formal means of Computer Science permits the application of analysis methods that
are practically unknown to biologists, such as static analysis and model checking.

Many formalisms have either been applied to or have been inspired from biological
systems. The most notable are automata-based models[2,15], rewrite systems[11,17],
and process calculi[19,20,18,10]. Models based on automata have the great advantage of
allowing the direct use of many verification tools such as model checkers. On the other
side, models based on rewrite systems describe biological systems with a notation that

This work is sponsored by the BioBITs Project (Converging Technologies 2007, area: Biotechnology-
ICT), Regione Piemonte.

Corresponding author: Mariangiola Dezani, Email: dezani@di.unito.it

Received 2009-10-16; Accepted 2010-06-18.

502 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

can be easily understood by biologists. However, automata-like models and rewrite
systems are not compositional. Studying the behaviour of a system componentwise
is in general ensured by process calculi, included those commonly used to describe
biological systems.

In Refs. [7,6,16], Milazzo et al. developed a new formalism, called Calculus of
Looping Sequences (CLS for short), for describing biological systems and their
evolution. CLS is based on term rewriting with some features, such as a
commutative parallel composition operator, and some semantic means, such as
bisimulations[6,8], which are common in process calculi. This permits to combine the
notational simplicity of rewrite systems with the advantage of a form of
compositionality.

In chemistry, hydrophobicity is the physical property of a molecule (known as a
hydrophobe) that is repelled from a mass of water. Hydrophobic molecules tend to
be non-polar and thus prefer other neutral molecules and non-polar solvents.
Hydrophobic molecules in water often cluster together forming micelles. From the
other perspective, water on hydrophobic surfaces will exhibit a high contact angle
(thus causing, for example, the familiar dew drops on a hydrophobic leaf surface).
Examples of hydrophobic molecules include the alkanes, oils, fats, and greasy
substances in general. Hydrophobic materials are used for oil removal from water,
the management of oil spills, and chemical separation processes to remove non-polar
from polar compounds. Hydrophobicity is just an example of repellency in
Biochemistry. Other well-known examples may be found in the behaviour of anions
and cations, or at a different level of abstraction, in the behaviour of the rh antigen
for the different blood types.

As a counterpart, there may be elements, in nature, which always require the
presence of other elements (it is difficult to find a lonely atom of oxygen, they always
appear in the pair O2).

In Ref. [13], we brought these aspects at their maximum limit, and, by
abstracting away all the phenomena which give rise/arise to/from repellency (and
its counterpart), we assumed that for each kind of element of our reality we are able
to fix a set of elements which are required by the element for its existence and a set
of elements whose presence is forbidden by the element. We enriched CLS with a
type discipline which guarantees the soundness of reduction rules with respect to
some relevant properties of biological systems deriving from the required and
excluded kinds of elements. The key technical tool we use is to associate to each
reduction rule the minimal set of conditions an instantiation must satisfy in order to
assure that applying this rule to a “correct” system we get a “correct” system as
well. This semantics is more liberal (in the sense of allowing the application of more
rules) than the one of Ref. [3] in which only type preserving rules could be applied.
However, the constraints that need to be verified, in order to apply a rule, are more
complex than the ones of Ref. [3].

In this paper we show that the approach of Ref. [13] subsumes the one of Ref. [3]
and propose a semantics that uses both. The advantage being that in the reduction
process we first try to verify the constraints of Ref. [3], and in case they are not
satisfied we pass to verify the ones of Ref. [13]. We also propose a type inference
algorithm and show its soundness and completeness.

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 503

The required/excluded elements properties modelled in this paper assure,
through type inference, that only compatible elements are combined together in the
different environments of the biological system in consideration. Thus the type
system intrinsically yields a notion of correct (well-behaving) system according to
the expressed requirements.

While with our typed reductions from terms respecting the requests and
repellency conditions we generate only terms with the same property, in reality also
dangerous configurations can arise. We could adapt our typed semantics in order to
allow the creation of untypable terms. In these cases, we might be interested in
signalling that some dangerous transition has occurred. We refer to the conclusion
for a more technical discussion of this issue.

In the last few years there has been a growing interest in the use of type
disciplines to enforce biological properties. In Ref. [3] a type system has been
defined to ensure the well-formedness of links between protein sites within the
Linked Calculus of Looping Sequences (see Ref. [4]). In Ref. [14] three type systems
are defined for the Biochemical Abstract Machine, BIOCHAM (see Ref. [1]). The
first one is used to infer the functions of proteins in a reaction model, the second one
to infer activation and inhibition effects of proteins, and the last one to infer the
topology of compartments. In Ref. [13] we have defined a type system for the
Calculus of Looping Sequences (see Ref. [7]) to guarantee the soundness of reduction
rules with respect to the requirement of certain elements, and the repellency of
others. In Ref. [12] we have proposed a type system for the Stochastic Calculus of
Looping sequences (see Ref. [5]) that allows for a quantitative analysis and models
how the presence of catalysers (or inhibitors) can modify the speed of reactions.
Finally, in Ref. [9] we developed a type system to verify the excluded elements
property for BioAmbients[18].

1.1 Summary

The remainder of the paper is organised as follows. In Section 2 we briefly
introduce the calculus of looping sequences. In Section 3 we develop the type discipline
for required and excluded elements and we embed it into the semantics of the calculus.
In Section 4 we use the machinery of principal typing to infer the type of rewrite rules,
and check their applicability. In Section 5 we apply our typing discipline to regulate
the transfusion of different, possibly incompatible, blood types. Finally, we draw some
conclusion.

2 The Calculus of Looping Sequences

The Calculus of Looping Sequences (CLS) is essentially based on term rewriting,
hence a CLS model consists of a term and a set of rewrite rules. The term is intended
to represent the structure of the modelled system, and the rewrite rules to represent
the events that may cause the system to evolve.

We start with defining the syntax of terms. We assume a possibly infinite
alphabet E of symbols ranged over by a, b, c,

Definition 2.1 (Terms). Terms T and sequences S of CLS are given by the

1The present paper is an improved and extended version of Ref. [13].

504 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

following grammar:

T ::= S
∣∣ (S)L cT

∣∣ T |T
S ::= ε

∣∣ a
∣∣ S · S

where a is a generic element of E , and ε represents the empty sequence. We denote
with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a looping operator ()L, a parallel
composition operator | and a containment operator c . Sequencing can be used
to concatenate elements of the alphabet E . The empty sequence ε denotes the
concatenation of zero symbols. A term can be either a sequence or a looping
sequence (that is the application of the looping operator to a sequence) containing
another term, or the parallel composition of two terms. By definition, looping and
containment are always applied together, hence we can consider them as a single
binary operator ()L c which applies to one sequence and one term.

We call compartment any parallel composition of one or more terms. Given a
containment operator, (S)L cT , its looping sequence is S and its inner compartment
is the term T .

The biological interpretation of the operators is the following: the main entities
which occur in cells are DNA and RNA strands, proteins, membranes, and other
macro-molecules. DNA strands (and similarly RNA strands) are sequences of
nucleic acids, but they can be seen also at a higher level of abstraction as sequences
of genes. Proteins are sequences of amino acids which usually have a very complex
three-dimensional structure. In a protein there are usually (relatively) few
subsequences, called domains, which actually are able to interact with other entities
by means of chemical reactions. CLS sequences can model DNA/RNA strands and
proteins by describing each gene or each domain with a symbol of the alphabet.
Membranes are closed surfaces, often interspersed with proteins, which may contain
something. A closed surface can be modelled by a looping sequence. The elements
(or the subsequences) of the looping sequence may represent the proteins on the
membrane, and by the containment operator it is possible to specify the content of
the membrane. Other macro-molecules can be modelled as single alphabet symbols,
or as short sequences. Finally, juxtaposition of entities can be described by the
parallel composition of their representations.

Brackets can be used to indicate the order of application of the operators, and
we assume ()L c to have precedence over | . In Fig. 1 we show some examples of
CLS terms and their visual representation, using (S)L as a short-cut for (S)L c ε.

Figure 1. (i) represents (a · b · c)L; (ii) represents (a · b · c)L c (d · e)L; (iii) represents

(a · b · c)L c ((d · e)L | f · g)

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 505

In CLS we may have syntactically different terms representing the same structure.
We introduce a structural congruence relation to identify such terms.

Definition 2.2 (Structural Congruence). The structural congruence
relations ≡S and ≡T are the least congruence relations on sequences and on terms,
respectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and (S1)
L cT ≡T (S2)

L cT

T1 |T2 ≡T T2 |T1 T1 | (T2 |T3) ≡T (T1 |T2) |T3 T | ε ≡T T

(ε)L c ε ≡T ε (S1 · S2)
L cT ≡T (S2 · S1)

L cT

Rules of structural congruence state the associativity of · and | , the
commutativity of the latter and the neutral role of ε. Moreover, the axiom
(S1 · S2)

L cT ≡T (S2 · S1)
L cT says that looping sequences can rotate. In the

following, for simplicity, we will use ≡ in place of ≡T .
We say that an element a is present in a sequence S if S ≡ S′ · a · S′′ for some

S′, S′′. An element a is present in a compartment T if T ≡ T ′ |T ′′ for some T ′, T ′′

and either T ′ = S or T ′ = (S)L c for some S and in both cases a is present in S.
Rewrite rules will be defined essentially as pairs of terms, with the first term

describing the portion of the system in which the event modelled by the rule may
occur, and the second term describing how that portion of the system changes when
the event occurs. In the terms of a rewrite rule we allow the use of variables. As a
consequence, a rule will be applicable to all terms which can be obtained by
properly instantiating its variables. Variables can be of three kinds: two of these are
associated with the two different syntactic categories of terms and sequences, and
one is associated with single alphabet elements. We assume a set of term variables
T V ranged over by X, Y, Z, . . ., a set of sequence variables SV ranged over by
x̃, ỹ, z̃, . . ., and a set of element variables X ranged over by x, y, z, All these sets
are possibly infinite and pairwise disjoint. We denote by V the set of all variables,
V = T V ∪ SV ∪ X , and with ρ a generic variable of V. Hence, a pattern is a term
that may include variables.

Definition 2.3 (Patterns). Patterns P and sequence patterns SP of CLS
are given by the following grammar:

P ::= SP
∣∣ (SP)L cP

∣∣ P |P
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E , and X, x̃ and x are generic elements of T V,SV and
X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to
patterns. An instantiation is a partial function σ : V → T . An instantiation must
preserve the kind of variables, thus for X ∈ T V, x̃ ∈ SV and x ∈ X we have
σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E , respectively. Given P ∈ P, with Pσ we denote
the term obtained by replacing each occurrence of each variable ρ ∈ V appearing in
P with the corresponding term σ(ρ). With Σ we denote the set of all the possible
instantiations and, given P ∈ P, with V ar(P) we denote the set of variables
appearing in P . Now we define rewrite rules.

506 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

Definition 2.4 (Rewrite Rules). A rewrite rule, <, is a pair of patterns,
denoted with P1 7→P2, where P1, P2 ∈ P, P1 6≡ ε and such that V ar(P2) ⊆ V ar(P1).

Example 2.5. An example of rewrite rule is
(a · x̃)L c (b |Y) 7→ b | (a · x̃)L cY .

This rule says that the element b, alone, can exit from a looping sequence containing
the element a.

A rewrite rule P1 7→P2 states that a term P1σ, obtained by instantiating variables
in P1 by some instantiation function σ, can be transformed into the term P2σ. We
define the semantics of CLS as a transition system, in which states correspond to
terms, and transitions correspond to rule applications.

We define the semantics of CLS by resorting to the notion of contexts.

Definition 2.6 (Contexts). Contexts C are defined as:

C ::= ¤
∣∣ C |T ∣∣ T |C ∣∣ (S)L cC

where T ∈ T and S ∈ S. The context ¤ is called the empty context. We denote with
C the infinite set of contexts.

By definition, every context contains a single hole ¤. Let us assume C, C ′ ∈ C.
With C[T] we denote the term obtained by replacing ¤ with T in C; with C[C ′] we
denote context composition, whose result is the context obtained by replacing ¤ with
C ′ in C. The structural equivalence is extended to contexts in the natural way (i.e.
by considering ¤ as a new and unique symbol of the alphabet E).

Rewrite rules can be applied to terms only if they occur in a legal context. Note
that the general form of rewrite rules does not permit to have sequences as contexts.
A rewrite rule introducing a parallel composition on the right hand side (as a 7→ b | c)
applied to an element of a sequence (e.g., m ·a ·m) would result into a syntactically
incorrect term (in this case m·(b | c)·m). To modify a sequence, a pattern representing
the whole sequence must appear in the rule. For example, rule a · x̃ 7→ a | x̃ can be
applied to any sequence starting with element a, and, hence, the term a ·b can be
rewritten as a | b, and the term a·b·c can be rewritten as a | b·c.

The semantics of CLS is defined as follows.

Definition 2.7 (Semantics). Given a finite set of rewrite rules R, the
semantics of CLS is the least relation closed with respect to ≡ and satisfying the
following (set of) rules:

< = P1 7→ P2 ∈ R P1σ 6≡ ε σ ∈ Σ C ∈ C
C[P1σ] −→ C[P2σ]

As usual we denote with −→∗ the reflexive and transitive closure of −→.
Given a set of rewrite rules R, the behaviour of a term T is the tree of terms to

which T may reduce. Thus, a model in CLS is given by a term describing the initial
state of the system and by a set of rewrite rules describing all the events that may
occur.

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 507

Figure 2. Instantiations and contexts of Example 2.8

Example 2.8. Starting from the term
d | (a)L c ((a · c)L c ((a · b · c)L c (b)))

we can apply the rule in Example 2.5 three times, using the instantiations and contexts
in Fig. 2, obtaining the behaviour

d | (a)L c ((a · c)L c ((a · b · c)L c (b)))−→ d | (a)L c ((a · c)L c (b | (a · b · c)L c ε)) (∗)
−→ d | (a)L c (b | (a · c)L c ((a · b · c)L c ε)) (∗∗)
−→ b | d | (a)L c ((a · c)L c ((a · b · c)L c ε)) (∗ ∗ ∗)

2.1 Modelling guidelines

CLS can be used to model biomolecular systems analogously to what is done,
e.g, by Regev and Shapiro in Ref. [20] for the π-calculus. An abstraction is a
mapping from a real-world domain to a mathematical domain, which may allow
highlighting some essential properties of a system while ignoring other, complicated,
ones. In Ref. [20], Regev and Shapiro show how to abstract biomolecular systems as
concurrent computations by identifying the biomolecular entities and events of
interest and by associating them with concepts of concurrent computations such as
concurrent processes and communications.

The use of rewrite systems, such as CLS, to describe biological systems is founded
on a different abstraction. Usually, entities (and their structures) are abstracted by
terms of the rewrite system, and events by rewrite rules.

In order to describe cells, it is quite natural to consider molecular populations
and membranes. Molecular populations are groups of molecules that are in the same
compartment of the cell. As we have said before, molecules can be of many types:
they could be classified as DNA and RNA strands, proteins, and other molecules.

DNA and RNA strands and proteins can be seen as non-elementary objects. DNA
strands are composed by genes, RNA strands are composed by parts corresponding to
the transcription of individual genes, and proteins are composed by parts having the
role of interaction sites (or domains). Other molecules are considered as elementary
objects, even if they are complexes.

Membranes are considered as elementary objects, in the sense that we do not
describe them at the level of the lipids they are made of. The only interesting
properties of a membrane are that it may have a content (hence, create a
compartment) and that it may have molecules on its surface.

CLS is a very scalable formalism. On the one hand, depending on the level of
detail one is interested in the analysis, an atomic element could range from the
quark level (in a very low level analysis) to a species individual (in the study of

508 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

population dynamics). On the other hand, a looping sequence can be used to model
cell compartmentalisation, or, from a macroscopic point of view, ecoregions bounded
by geographical frontiers (expressing the possible environments for a migrant
population). In the application of Section 5, we focus on a level in which a looping
sequence might either denote the surface of a cell (when modelling the red blood
cells) or of an organic tissue containing these kinds of cells.

We give now some examples of biomolecular events of interest and their
description in CLS. The simplest kind of event is the change of state of an
elementary object. Then, we consider interactions between molecules: in particular
complexation, decomplexation and catalysis. These interactions may involve single
elements of non-elementary molecules (DNA and RNA strands, and proteins).
Moreover, there can be interactions between membranes and molecules: in
particular a molecule may cross or join a membrane.

Table 1 Guidelines for the abstraction of biomolecular events into CLS.

Biomolecular Event Examples of CLS Rewrite Rule

State change a 7→ b

x̃ · a · ỹ 7→ x̃ · b · ỹ
Complexation a | b 7→ c

x̃ · a · ỹ | b 7→ x̃ · c · ỹ
Decomplexation c 7→ a | b

x̃ · c · ỹ 7→ x̃ · a · ỹ | b
Catalysis c |P1 7→ c |P2 (where P1 7→ P2 is the catalysed event)

Membrane crossing a | (x̃)L cX 7→ (x̃)L c (a |X)

(x̃)L c (a |X) 7→ a | (x̃)L cX

x̃ · a · ỹ | (z̃)L cX 7→ (z̃)L c (x̃ · a · ỹ |X)

(z̃)L c (x̃ · a · ỹ |X) 7→ x̃ · a · ỹ | (z̃)L cX

Catalyzed a | (b · x̃)L cX 7→ (b · x̃)L c (a |X)

membrane crossing (b · x̃)L c (a |X) 7→ a | (b · x̃)L cX

x̃ · a · ỹ | (b · z̃)L cX 7→ (b · z̃)L c (x̃ · a · ỹ |X)

(b · z̃)L c (x̃ · a · ỹ |X) 7→ x̃ · a · ỹ | (b · z̃)L cX

Membrane joining (x̃)L c (a |X) 7→ (a · x̃)L cX

(x̃)L c (ỹ · a · z̃ |X) 7→ (ỹ · a · z̃ · x̃)L cX

Catalyzed (b · x̃)L c (a |X) 7→ (a · b · x̃)L cX

Table 1 lists some guidelines (taken from Ref. [8]) for the abstraction into CLS
rules of biomolecular events. Entities are associated with CLS terms: elementary
objects are modelled as alphabet symbols, non-elementary objects as CLS sequences
and membranes as looping sequences. Biomolecular events are associated with CLS
rewrite rules.

3 A Type Discipline for Required and Excluded Elements

We classify elements in E with basic types. Intuitively, given a molecule
represented by an element in E , we associate to it a type t which specifies the kind
of the molecule. We assume a fixed typing Γ for the elements in E .

1 Atoms, chemicals, molecules, protein domains, proteins, cells, etc. are other possible elements one

could model, at different levels of abstraction, as CLS simple alphabet symbols.

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 509

For each basic type t we assume to have a pair of sets of basic types (Rt, Et),
where t 6∈ Rt ∪ Et and Rt ∩ Et = ∅, saying that the presence of elements of basic type
t requires the presence of elements whose basic type is in Rt and forbids the presence
of elements whose basic type is in Et. We consider only local properties: elements
influence each other if they are either present in the same compartment or one is
present in the looping sequence and the other is present in the inner compartment of
a containment operator.

The type system derives the set of types of patterns (and therefore also terms),
checking that the constraints imposed by the required and excluded sets are satisfied.
Types are pairs (P, R): P is the set of basic types of elements that are present in
the top-level compartment of the term, and R is the set of basic types of elements
that are required to fulfill the requirements of the elements present in the top-level
compartment of the term. The set of excluded elements for a given set P of present
elements is given by EP =

⋃
t∈P Et.

Types, (P, R), are well formed if the required types, R, are required by the
present elements, P, and the constraints on required and excluded elements are not
contradictory. Pairs of types are compatible if required and excluded types are
compatible with the union of their present types. Pairs of compatible types can be
combined.

Definition 3.1 (Auxiliary definitions).

– A type (P, R) is well formed if

– R ⊆ ⋃
t∈P Rt, and

– P ∩ EP = P ∩ R = R ∩ EP = ∅.
– Well-formed types (P, R) and (P′, R′) are compatible (written (P, R) ./ (P′, R′)) if

– EP ∩ P′ = EP ∩ R′ = ∅, and

– EP′ ∩ P = EP′ ∩ R = ∅.
– Given two compatible types (P, R) and (P′, R′) we define their conjunction (P, R)t

(P′, R′) by

(P, R) t (P′, R′) = (P ∪ P′, (R ∪ R′) \ (P ∪ P′)).

Given a basic type t, ({t}, Rt), is well formed, indeed, it is the type of a compartment
containing only elements of type t. A requirement we could have asked is that of
repellency being symmetric, that is: for all t, t′, if t ∈ Et′ , then t′ ∈ Et. However,
such a requirement would not change the type system, since compatibility of types
encompasses this property.

Basis are defined by:

∆ ::= ∅
∣∣ ∆, x : ({t}, Rt)

∣∣ ∆, η : (P, R)

where η denotes a sequence or term variable. A basis ∆ is well formed if all types
in the basis are well formed. We check the safety of terms, sequences and more
generally patterns using the typing rules of Figure 3. It is easy to verify that, if we
start from well-formed basis, then in a derivation we produce only well-formed basis

510 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

and well-formed types. Note that terms and sequences are typable from the empty
basis.

Figure 3. Typing rules

All the rules are trivial except for the last one which types containment operators.
In this rule we can put a pattern P inside a containment operator with looping
sequence SP only if all the types required from P are provided by SP . This is
because the elements present in the inner compartment cannot interact with the
elements present outside the looping sequence.

It is easy to verify that the type system of Figure 3 enjoys weakening, i.e. that
∆ ` P : (P, R) and ∆ ⊆ ∆′ imply ∆′ ` P : (P, R).

Moreover also the following substitution properties will be handy.

Lemma 3.2. If ∆ ` C[P] : (P, R) then

1. ∆ ` P : (P′, R′) for some (P′, R′), and

2. ∆, X : (P′, R′) ` C[X] : (P, R), and

3. if P ′ is such that ∆ ` P ′ : (P′, R′), then ∆ ` C[P ′] : (P, R).

Proof. Easy by induction on the definition of contexts. ¤
We are interested in applying reduction rules only to correct terms, whose type

is well formed and whose requirements are completely satisfied. More formally:

Definition 3.3. A term T is correct if ` T : (P, ∅) for some P.

Example 3.4. Assuming E = {a, b, c, d} Γ = {a : ta, b : tb, c : tc, d : td}
Rb = {tc} Rc = {ta} Ed = {tb, tc} Ra = Rd = Ea = Eb = Ec = ∅ and using the
rules in Figure 3, the terms in lines (∗) and (∗∗) of Example 2.8 have type ({ta, td}, ∅),
so they are correct terms. However, the term in line (∗ ∗ ∗), does not have a type,
since the element b is in the same compartment of the element d, but the basic type
of b is in the set of the elements excluded by the presence of the basic type of d.

Rules such that the left-hand-side and the right-hand-side patterns have the same
type do not change the type of terms to which they are applied.

Definition 3.5 (∆-safe rules). A rewrite rule P1 7→ P2 is ∆-safe if ∆ ` P1 :
(P, R) and ∆ ` P2 : (P, R) for some (P, R).

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 511

When we apply a ∆-safe rule to a term we need to choose an instantiation which
agrees with ∆, i.e. σ must replace the variables in the domain of ∆ as prescribed by
∆. More formally:

Definition 3.6. An instantiation σ agrees with a basis ∆ (notation σ ∈ Σ∆) if
ρ : (P, R) ∈ ∆ implies ` σ(ρ) : (P, R).

As expected agreement between substitutions and basis assures type preservation,
as proved in the following lemma.

Lemma 3.7. If σ ∈ Σ∆, then ` Pσ : (P, R) if and only if ∆ ` P : (P, R).

Proof.

(⇐) By induction on ∆ ` P : (P, R). Consider the last applied rule.

– If the rule is (Tvar), the proof follows from σ ∈ Σ∆. For rules (Teps), (Tel)
the fact that P is a term implies that Pσ = P and, moreover, it is typable
from the empty environment.

– Rule (Tseq). In this case P = SP ·SP ′, (P, R) = (P′′, R′′) t (P′, R′), ∆ `
SP : (P′′, R′′), ∆ ` SP ′ : (P′, R′) and (P′′, R′′) ./ (P′, R′). By induction
hypotheses, ` SP σ : (P′′, R′′) and ` SP ′ σ : (P′, R′). Therefore, since
SP σ·SP ′ σ = (SP·SP ′) σ, applying rule (Tseq) we conclude ` (SP·SP ′) σ :
(P, R).

– For rules (Tpar), (Tcomp) the proof is similar.

(⇒) By induction on P .

– If P = ρ, the proof follows from σ ∈ Σ∆. If P = ε, or P = a, by weakening.

– Let P be SP ·SP ′. Since (SP ·SP ′) σ = SP σ ·SP ′ σ, the fact that `
(SP ·SP ′)σ : (P, R) implies that the last applied rule must be (Tseq).
Therefore, (P, R) = (P′′, R′′) t (P′, R′), (P′′, R′′) ./ (P′, R′), ` SP σ : (P′′, R′′),
and ` SP ′ σ : (P′, R′). By induction hypothesis on SP and SP ′ we get
∆ ` SP : (P′′, R′′), and ∆ ` SP ′ : (P′, R′). Applying rule (Tseq) we
conclude ∆ ` SP ·SP ′ : (P, R) t (P′, R′).

– If P = P ′ |P ′′ or P = (SP)L cP ′ the proof is similar.

¤
Since ∆-safe rules do not modify the type of a term, typing creation and

degradation of elements is not possible. Moreover, also movements of elements
between membranes are very limited.

Example 3.8. Assuming the sets in Example 3.4 and the basis
∆ = {x̃ : ({tb, tc}, ∅), Y : (∅, ∅)}

the rule in Example 2.5 is a ∆-safe rule, because the left and the right side of the
rule have the same type:

∆ ` (a · x̃)L c (b |Y) : ({ta, tb, tc}, ∅) ∆ ` b | (a · x̃)L cY : ({ta, tb, tc}, ∅)
However, using the basis

∆′ = {x̃ : (∅, ∅), Y : ({ta}, ∅)}
the same rule is not a ∆′-safe rule, because left-hand-side and right-hand-side of the
rule do not have the same type:

512 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

∆′ ` (a · x̃)L c (b |Y) : ({ta}, ∅) ∆′ ` b | (a · x̃)L cY : ({ta, tb}, {tc})

To permit the application of rules that may introduce/remove/move elements
preserving safety, we introduce a restriction on rules based on the context of
application rather than, as for ∆-safety, the type of patterns involved in the rule. To
this extent we first characterize contexts by the types of terms that may fill their
hole, and then rules by the types of terms that their application produces.

Definition 3.9 (Typed Holes) Given a context C, and a well-formed type
(P, R), the type (P, R) is OK for the context C if X : (P, R) ` C[X] : (P′, ∅) for some P′.

The above notion guarantees that filling a context with a term whose type is OK
for the context we obtain a correct term: note that there may be more than one type
(P, R) such that (P, R) is OK for the context C.

We can classify reduction rules according to the types we can derive for the right
hand sides of the rules.

Definition 3.10 (∆-(P, R)-safe rules). A rewrite rule P1 7→ P2 is ∆-(P, R)-
safe if ∆ ` P2 : (P, R).

To ensure correctness, we can apply a rule to a typed term only if the instance of
the pattern on the right-hand-side of the rule has a type that is OK for the context.
This choice makes possible typing creation and degradation of elements. On the other
hand, at every application of the rule we must check if the type of the right-hand-side
of the rule is OK for the context.

Example 3.11. Assuming the sets in Example 3.4 and the basis
∆ = {x̃ : (∅, ∅), Y : (∅, ∅)}

the rule in Example 2.5 is ∆-({ta, tb}, {tc})-safe, because the right side of the rule
has type ({ta, tb}, {tc}).
Let C1 be the context (a · c) |¤, the type ({ta, tb}, {tc}) is OK for C1, since

X : ({ta, tb}, {tc}) ` C1[X] : ({ta, tb, tc}, ∅)
and so we can apply the rule in Example 2.5.

Instead, the type ({ta, tb}, ∅) is not OK for the context C2 = a |¤, since
X : ({ta, tb}, ∅) ` C2[X] : ({ta, tb}, {tc})

and so we cannot apply the rule in Example 2.5.
Since both ∆-safe and ∆-(P, R)-safe rules preserve correctness, our semantics uses

both.

Definition 3.12 (Typed Semantics). Given a finite set of rewrite rules R,
the typed semantics of CLS is the least relation closed with respect to ≡ satisfying
the following (sets of) rules:

< = P1 7→ P2 ∈ R is a ∆-safe rule P1σ 6≡ ε σ ∈ Σ∆ C ∈ C
(<-∆)

C[P1σ] =⇒ C[P2σ]

< = P1 7→ P2 ∈ R is a ∆-(P, R)-safe rule P1σ 6≡ ε

σ ∈ Σ∆ C ∈ C (P, R) is OK for C
(<-∆-(P, R))

C[P1σ] =⇒ C[P2σ]

Reduction preserves correctness, making possible typing of creation and
degradation.

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 513

Theorem 3.13. If ` T : (P, ∅) and T =⇒ T ′, then ` T ′ : (P′, ∅) for some P′.

Proof. We analyse the two sets of rules of the semantics separately. Let < = P1 7→
P2.

Rules (<-∆) From Definition 3.12, T = C[P1σ] and T ′ = C[P2σ] and σ ∈ Σ∆. By
hypothesis ` C[P1σ] : (P, ∅). Therefore, Lemma 3.2.(1) implies ` P1σ : (P′, R′)
for some (P′, R′), and from Lemma 3.7 we derive ∆ ` P1 : (P′, R′). By Definition
3.5, we get that ∆ ` P2 : (P′, R′). Applying Lemma 3.7, we derive that ` P2σ :
(P′, R′). Finally, from Lemma 3.2.(3) we obtain ` C[P2σ] : (P, ∅).

Rules (<-∆-(P, R)) From Definition 3.10, we have that ∆ ` P2 : (P, R). Lemma 3.7
and σ ∈ Σ∆ imply that ` P2σ : (P, R). Since, from Definition 3.12, (P, R) is OK
for C, we get that X : (P, R) ` C[X] : (P′, ∅) for some P′. Therefore, by Lemma
3.2.(3) we conclude that ` C[P2σ] : (P′, ∅).

Figure 4. Basis and typings of Example 3.14

Example 3.14. Using the sets in Example 3.4 we can study the behaviour
of the term in Example 2.8. That is the evolution of the initial term due to the
application of the (<-∆) and (<-∆-(P, R)) rules where < = P1 7→ P2, with

– P1 = (a · x̃)L c (b |Y), and

– P2 = b | (a · x̃)L cY

and ∆(1) is ∆ of the first line in Fig. 4, etc. Rule P1 7→ P2 is a ∆(1)-safe rule, since
∆(1) ` P1 : ({ta, tb, tc}, ∅), and ∆(1) ` P2 : ({ta, tb, tc}, ∅). Therefore, applying rule
(<-∆) we get

d | (a)L c ((a · c)L c ((a · b · c)L c (b))) =⇒ d | (a)L c ((a · c)L c (b | (a · b · c)L c ε))

the reduction in line (∗) of Example 3.4.
The rule P1 7→ P2 is not a ∆(2)-safe rule, since ∆(2) ` P1 : ({ta, tc}, ∅), and

∆(2) ` P2 : ({ta, tb, tc}, ∅). However, P1 7→ P2 is a ∆(2)-({ta, tb, tc}, ∅)-safe rule and
the context of the reduction C(2), in the second line of Fig. 2, is OK for ({ta, tb, tc}, ∅).
So, applying rule (<-∆-(P, R)) we get

d | (a)L c ((a · c)L c (b | (a · b · c)L c ε)) =⇒ d | (a)L c (b | (a · c)L c ((a · b · c)L c ε))

the reduction in line (∗∗) of Example 3.4.
Finally, for the third reduction neither of the conditions holds.

514 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

– Firstly, P1 7→ P2 is not ∆(3)-safe, since ∆(3) ` P1 : ({ta, tc}, ∅) and ∆(3) ` P2 :
({ta, tb}, {tc}).

– Secondly, even though P1 7→ P2 is ∆(3)-({ta, tb}, {tc})-safe, the context C(3) =
d |¤ is not OK for ({ta, tb}, {tc}).

Indeed the term in line (∗ ∗ ∗) of Example 3.4 cannot be typed.
It is possible to prove that given < = P1 7→ P2 if the requirements for applying

rule (<-∆) are satisfied, then also the requirements for applying rule (<-∆-(P, R)) are
satisfied.

Theorem 3.15
If P1 7→ P2 is a ∆-safe rule and P1σ 6≡ ε and σ ∈ Σ∆ and

C ∈ C and ` C[P1σ] : (P′, ∅), then there is a type (P, R) OK for C such that P1 7→ P2

is a ∆-(P, R)-safe rule.

Proof. From the hypothesis that P1 7→ P2 is a ∆-safe rule, and Definition 3.5 we
have that ∆ ` P1 : (P, R), and ∆ ` P2 : (P, R). Therefore, from Definition 3.10,
P1 7→ P2 is a ∆-(P, R)-safe rule. From σ ∈ Σ∆, ∆ ` P1 : (P, R) and Lemma 3.7 we
derive that ` P1σ : (P, R). The hypothesis ` C[P1σ] : (P′, ∅) and Lemma 3.2.(2) imply
that X : (P, R) ` C[X] : (P′, ∅), and so (P, R) is OK for C.

Given a set of rewrite rules R, the previous theorem proves that if a term is
reducible with the typed semantics whose reductions use only (<-∆) rules (< ∈ R),
then the term is also reducible with the typed semantics whose reductions use only
(<-∆-(P, R)) rules (< ∈ R). Example 3.14 shows that the vice versa is not true.
Moreover, a term reducible with the typed semantics whose reductions use both sets
of rules (<-∆) and (<-∆-(P, R)) is also reducible with the typed semantics whose
reductions use only rules (<-∆-(P, R)). The advantage to have both sets of rules is
that, to check that < = P1 7→ P2 may be applied to a well-typed term using rules
(<-∆) is more efficient that checking that rules (<-∆-(P, R)) are applicable. This is
because for both kinds of rules, once we have the substitution σ derived from the
matching of the pattern P1 with the term, we have to show that ∆ ` P1 : (P1, R1),
and ∆ ` P2 : (P2, R2) where σ ∈ Σ∆. Moreover, for rules (<-∆) we have to see
whether P2 σ has the same type as P1 σ, whereas for rules (<-∆-(P, R)), in addition
to find the type of P2 σ, we have to see whether this type is OK for the context. This
implies to derive the type of the context C. In the following section, we will show how
to use type inference to provide an algorithm for the typed semantics of Definition
3.12, that takes advantage from these considerations.

4 Type Inference

The definition of typed semantics (Definition 3.12) is not effective, since we do
not know how to choose ∆ for (<-∆) rules and ∆, P, R for (<-∆-(P, R)) rules. In the
present section we define inference rules for principal typing[21] in order to derive
which rules are ∆-safe and which ones are ∆-(P, R)-safe, where the choices of ∆, P, R
are guided by the term we want to reduce. This will allow us to get an algorithm for
checking the applicability of reduction rules to typed terms preserving typing.

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 515

We convene that for each variable x ∈ X there is an e-type variable ϕx ranging
over basic types, and for each variable η ∈ T V ∪ SV there are two variables φη, ψη

(called p-type variable and r-type variable) ranging over sets of basic types.
Moreover we convene that Φ ranges over formal unions and differences of sets of
basic types, e-type variables and p-type variables, and Ψ ranges over formal unions
and differences of sets of basic types and r-type variables. We denote by µ a generic
p-type, r-type or e-type variable.
A basis scheme Θ is a mapping from atomic variables to their e-type variables, and
from sequence and term variables to pairs of their p-type variables and r-type
variables:

Θ ::= ∅
∣∣ Θ, x : ϕx

∣∣ Θ, η : (φη, ψη).

The rules for inferring principal typings use judgements of the shape:

` P : Θ; (Φ,Ψ); Ξ

where Θ is the principal basis in which P is well formed, (Φ,Ψ) is the principal type
of P , and Ξ is the set of constraints that should be satisfied. Figure 5 gives these
inference rules.

Figure 5. Inference rules for principal typing

Example 4.1. We can use the inference rules in Figure 5 to infer the types of
the patterns of the rule in Example 2.5, where, again, we assume the basic types of
Example 3.4, obtaining

` P1 : Θ; ({ta} ∪ φx̃, ψx̃ \ ({tb} ∪ φY)); Ξ1

` P2 : Θ; ({ta, tb} ∪ φx̃, {tc} ∪ (ψx̃ \ φY)); Ξ2

where

Θ = { x̃ : (φx̃, ψx̃), X : (φY , ψY) }
Ξ1 = { ({ta}, ∅) ./ (φx̃, ψx̃), ({tb}, {tc}) ./ (φY , ψY),

({ta} ∪ φx̃, ψx̃) ./ ({tb} ∪ φY , {tc} ∪ ψY), {tc} ∪ ψY ⊆ {ta} ∪ φx̃ }
Ξ2 = { ({ta}, ∅) ./ (φx̃, ψx̃), ({ta} ∪ φx̃, ψx̃) ./ (φY , ψY), ψY ⊆ {ta} ∪ φx̃,

({tb}, {tc}) ./ ({ta} ∪ φx̃, ψx̃ \ φY) }

516 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

Soundness and completeness of our inference rules can be stated as usual. A type
mapping maps e-type variables to basic types, p-type variables and r-type variables to
sets of basic types. A type mapping m satisfies a set of constraints Ξ if all constraints
in m(Ξ) are satisfied.

Theorem 4.2 (Soundness of Type Inference). If ` P : Θ; (Φ,Ψ); Ξ and
m is a type mapping which satisfies Ξ, then m(Θ) ` P : (m(Φ),m(Ψ)).

Proof. By induction on derivations, and by cases on the last applied rule.

– For rules (Reps), (Rel), (Rvar1), and (Rvar2) the result is trivial.

– Rule (Rseq). In this case the conclusion of the rule is ` SP ·SP ′ : Θ ∪
Θ′; (Φ,Ψ) t (Φ′,Ψ′); Ξ ∪ Ξ′ ∪ {(Φ,Ψ) ./ (Φ′,Ψ′)}, and the assumptions are
` SP : Θ; (Φ,Ψ); Ξ and ` SP ′ : Θ′; (Φ′,Ψ′); Ξ′. Since m satisfies Ξ and

Ξ′, by induction hypothesis, and weakening, we derive that m(Θ ∪ Θ′) ` SP :
(m(Φ),m(Ψ)) and m(Θ∪Θ′) ` SP ′ : (m(Φ′),m(Ψ′)). Moreover, since m satisfies
{(Φ,Ψ) ./ (Φ′,Ψ′)}, we have that (m(Φ),m(Ψ)) ./ (m(Φ′),m(Ψ′)). So rule
(Tseq) can be applied, and m(Θ∪Θ′) ` SP ·SP ′ : (m(P),m(R))t (m(P′),m(R′)).

– For rules (Rpar), and (Rcomp) the result can be proved like for rule (Rseq).

Theorem 4.3 (Completeness of Type Inference). If ∆ ` P : (P, R), then
` P : Θ; (Φ,Ψ); Ξ for some Θ, (Φ,Ψ), Ξ and there is a type mapping m that satisfies
Ξ and such that ∆ ⊇ m(Θ), P = m(Φ), R = m(Ψ).

Proof. By induction on the derivation of ∆ ` P : (P, R).

– If the last rule of the derivation is (Teps), (Tel), or (Tvar) the result is obvious.
Note that, for (Tvar) in the inference we distinguish the case of element variables
(from sequence or term variables).

– Rule (Tseq). The conclusion of the rule is ∆ ` SP ·SP ′ : (P, R) t (P′, R′), and
the assumptions are ∆ ` SP : (P, R), ∆ ` SP ′ : (P′, R′) and the condition
(P, R) ./ (P′, R′). By induction hypothesis, there are Θ, Φ, Ψ, Ξ, Θ′, Φ′, Ψ′, Ξ′

such that ` SP : Θ; (Φ,Ψ); Ξ and ` SP ′ : Θ′; (Φ′,Ψ′); Ξ′. These are the
assumptions of rule (Rseq), whose conclusion is
` SP ·SP ′ : Θ ∪ Θ′; (Φ,Ψ) t (Φ′,Ψ′); Ξ ∪ Ξ′ ∪ {(Φ,Ψ) ./ (Φ′,Ψ′)}. Moreover,

by induction there is a type mapping m′ satisfying Ξ such that ∆ ⊇ m′(Θ),
P = m′(Φ) and R = m′(Ψ), and there is a type mapping m′′ satisfying Ξ′ such
that ∆ ⊇ m′′(Θ′), P′ = m′′(Φ′) and R′ = m′′(Ψ′). Therefore, we derive
∆ ⊇ m′(Θ) ∪ m′′(Θ′) and (P, R) t (P′, R′) = (m′(Φ),m′(Ψ)) t (m′′(Φ′),m′′(Ψ′)).
Since the basis m′(Θ) and m′′(Θ′) are both subsets of the same basis ∆, then
for all the (e-type, p-type or r-type) variables µ such that
µ ∈ dom(m′) ∩ dom(m′′) we get m′(µ) = m′′(µ). Therefore the mapping m

m(µ) =

{
m′(µ) if µ ∈ dom(m′)

m′′(µ) if µ ∈ dom(m′′)
is well defined.

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 517

Moreover, since m satisfies Ξ, Ξ′ and (Φ,Ψ) ./ (Φ′,Ψ′), then m satisfies also all
the constraints of the conclusion of the rule (Rseq).

– If the last rule is (Tpar) or (Tcomp) the proof is similar.

Now, we put our inference rules at work in order to decide the applicability of
typed reduction rules, for both ∆-safe and ∆-(P, R)-safe rules.

To decide applicability of ∆-safe rules, we characterize ∆-safe rules.

Lemma 4.4 (Characterization of ∆-safe rules). A rule P1 7→ P2 is a
∆-safe rule if and only if the type mapping m defined by

1. m(ϕx) = t if ∆(x) = ({t}, Rt)
2. m(φη) = P′ if ∆(η) = (P′, R′)

3. m(ψη) = R′ if ∆(η) = (P′, R′)

satisfies the set of constraints Ξ1 ∪ Ξ2 ∪ {Φ1 = Φ2} ∪ {Ψ1 = Ψ2}, where ` P1 :
Θ1; (Φ1,Ψ1); Ξ1 and ` P2 : Θ2; (Φ2,Ψ2); Ξ2.

Proof.

(⇐) Since ` P1 : Θ1; (Φ1,Ψ1); Ξ1, ` P2 : Θ2; (Φ2,Ψ2); Ξ2 and m satisfies Ξ1

and Ξ2, applying Theorem 4.2 we derive m(Θ1) ` P1 : (m(Φ1),m(Ψ1)), and
m(Θ2) ` P2 : (m(Φ2),m(Ψ2)). From the definition of m, we have that m(Θ2) ⊆
∆ and m(Θ2) ⊆ ∆, and by weakening we derive that ∆ ` P1 : (m(Φ1),m(Ψ1))
and ∆ ` P2 : (m(Φ2),m(Ψ2)). Moreover, from the fact that m satisfies {Φ1 =
Φ2} ∪ {Ψ1 = Ψ2}, we have that m(Φ1) = m(Φ2) = P and m(Ψ1) = m(Ψ2) = R.
Therefore, ∆ ` P1 : (P, R) and ∆ ` P2 : (P, R), and P1 7→ P2 is a ∆-safe rule.

(⇒) Since P1 7→ P2 is a ∆-safe rule, we have that ∆ ` P1 : (P, R) and ∆ ` P2 : (P, R).
From Theorem 4.3, applied to ∆ ` P1 : (P, R), we derive that
` P1 : Θ1; (Φ1,Ψ1); Ξ1 and there is a type mapping m′ satisfying Ξ1 such that
∆ ⊇ m′(Θ1), P = m′(Φ1), R = m′(Ψ1). Applying Theorem 4.3 to ∆ ` P2 : (P, R)
we derive that ` P2 : Θ2; (Φ2,Ψ2); Ξ2 and there is a type mapping m′′

satisfying Ξ2 such that ∆ ⊇ m′′(Θ2), P = m′′(Φ2), R = m′′(Ψ2). Since the basis
m′(Θ1) and m′′(Θ2) are both subsets of ∆, then, the mapping m defined by

m(µ) =

{
m′(µ) if µ ∈ dom(m′)

m′′(µ) if µ ∈ dom(m′′)
is well defined. Moreover, m satisfies Ξ1 ∪ Ξ2, and since m′(Φ1) = P = m′′(Φ2),
m′(Ψ1) = R = m′′(Ψ2), then m also satisfies {Φ1 = Φ2} ∪ {Ψ1 = Ψ2}.

Example 4.5. Using Lemma 4.4, we can see that the constraints making
∆-safe the rule in Example 4.4 are

{ta} ∪ φx̃ = {ta, tb} ∪ φx̃ ψx̃ \ ({tb} ∪ φx̃) = {tc} ∪ (ψx̃ \ φY)
and the constraints in the sets Ξ1 and Ξ2 of Example 4.1.

518 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

To decide applicability of ∆-(P, R)-safe rules, we characterize the OK relation and
∆-(P, R)-safe rules.

Regarding the OK relation it is not necessary to consider the whole context,
but only the part of the context which influences the typing of the hole. The key
observation is that the typing of a term inside two nested looping sequences does not
depend on the typing of the terms outside the outermost looping sequence. We call
core of the context the subterm of the context including the hole and the part of the
context affecting the type of the hole. The following definition formalises this notion.

Definition 4.6. The core of the context C (notation core(C)) is defined by:

– core(C) = C if C ≡ ¤ |T1 or C ≡ (S1)
L c (¤ |T1) |T2;

– core(C) = C2 if C = C1[C2] where C2 ≡ (S2)
L c ((S1)

L c (¤ |T1) |T2).

Remark that core is unambiguously defined, since every context can be split in
an unique way into one of the three shapes of the previous definition.

Lemma 4.7 (Characterization of OK Relation). Let the context C be
such that ` C[T] : (P0, ∅) for some T, P0. A type (P, R) is OK for C if and only if the
type mapping m defined by

1. m(φX) = P,

2. m(ψX) = R,

satisfies the set of constraints

Ξ ∪ {Ψ = ∅ if φX or ψX occurs in Ψ},

where ` core(C)[X] : {X : (φX , ψX)}; (Φ,Ψ); Ξ.

Proof.

(⇐) Lemma 3.2.(1) and ` C[T] : (P0, ∅) imply that all subterms of core(C)[X] are
typable, i.e. that there are P1, R1, P′1, R

′
1, P2, R2, P′2, R

′
2 such that ` T1 : (P1, R1),

` S1 : (P′1, R
′
1), ` T2 : (P2, R2), ` S2 : (P′2, R

′
2) in the last case of the definition

of core(C)[X], and suitable subsets of these typing judgements in the other two
cases.

By Definition 4.6 we have the following cases.

– C = core(C) and

– either core(C) = ¤ |T1 and Φ = φX ∪ P1 and Ψ = ψX ∪ R1,
– or core(C) = (S1)

L c (¤ |T1) |T2 and Φ = P′1 ∪ P2 and Ψ = (R′1 ∪ R2) \
(φX ∪ P1).

Since m satisfies {Ψ = ∅ if φX or ψX occurs in Ψ}, then m(Ψ) = ∅. From
Theorem 4.2, since ` core(C)[X] : {X : (φX , ψX)}; (Φ,Ψ); Ξ and m

satisfies Ξ, we derive that X : (P, R) ` core(C)[X] : (m(Φ), ∅). Moreover,
since C[X] = core(C)[X], we have that X : (P, R) ` C[X] : (m(Φ), ∅).
Therefore, the type (P, R) is OK for the context C.

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 519

– core(C) = (S2)
L c ((S1)

L c (¤ |T1) |T2) and Φ = P′2 and Ψ = R′2 \ (P′1 ∪ P2).
From ` C[T] : (P0, ∅) by Lemma 3.2.(1) and .(2) we get
X : (P′, R′) ` core(C)[X] : (P′′, R′′) for some P′, R′, P′′, R′′. This implies by
the Completeness Theorem (Theorem 4.3) that there is a mapping m′

such that m′(P′2) = P′′ and m′(R′2 \ (P′1 ∪ P2)) = R′′. Since P′2 and
R′2 \ (P′1 ∪ P2) do not contain variables, we get P′2 = P′′ and
R′2 \ (P′1 ∪ P2) = R′′, independently from the types assumed for the variable
X. This implies by Lemma 3.2.(3) and .(2) X : (P, R) ` C[X] : (P0, ∅), so
we conclude that (P, R) is OK for the context C.

(⇒) By Definition 3.9, since (P, R) is OK for C, then X : (P, R) ` C[X] : (P′, ∅)
for some P′. Theorem 4.3 implies that ` C[X] : Θ′; (Φ′,Ψ′); Ξ′ and there
is a type mapping m that satisfies Ξ′ and such that {X : (P, R)} ⊇ m(Θ′),
m(Φ′) = P, m(Ψ′) = ∅. By definition Θ′ = {X : (φX , ψX)}, so we get
m(φX) = P and m(ψX) = R. Being core(C)[X] a subterm of C[X] by
Lemma 3.2.(1) we get X : (P, R) ` core(C)[X] : (P′′, R′) for some P′′, R′.
Theorem 4.3 implies that ` core(C)[X] : {X : (φX , ψX)}; (Φ,Ψ); Ξ and
by construction Ξ ⊆ Ξ′, so m satisfies also Ξ. If core(C) = C, then Ψ = Ψ′,
which implies m(Ψ) = ∅. Otherwise neither φX nor ψX occurs in Ψ.

It is easy to check that if core(C) ≡ (S2)
L c ((S1)

L c (¤ |T1) |T2), and ` T1 :
(P1, R1), ` S1 : (P′1, R

′
1), ` T2 : (P2, R2), ` S2 : (P′2, R

′
2), then to prove that C is OK we

have to verify the following six constraints:

– (φX , ψX) ./ (P1, R1)

– (P′1, R
′
1) ./ ((φX , ψX) t (P1, R1))

– ((ψX ∪ R1) \ (φX ∪ P1)) ⊆ P′1

– (P′1, R
′
1 \ (φX ∪ P1)) ./ (P2, R2)

– (P′2, R
′
2) ./ ((P′1, R

′
1 \ (φX ∪ P1)) t (P2, R2))

– (((R′1 \ (φX ∪ P1)) ∪ R2) \ (P′1 ∪ P2)) ⊆ P′2.

The set of constraints is smaller when the core context has one of the simpler shapes.

Example 4.8. Using Lemma 4.7, the constraints making the type associated
with the p-type and r-type variable X OK for the contexts in Example 2.8 are:

(A) ({ta, tc}, ∅) ./ (φX , ψX) ψX ⊆ {ta, tc}
(B) ({ta}, ∅) ./ (φX , ψX) ψX ⊆ {ta}
(C) ({td}, ∅) ./ (φX , ψX) ψX = ∅.

Lemma 4.9 (Characterization of ∆-(P, R)-safe rules). A rule P1 7→ P2 is
∆-(P, R)-safe if and only if the type mapping m defined by

1. m(ϕx) = t if ∆(x) = ({t}, Rt),

520 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

2. m(φη) = P′ if ∆(η) = (P′, R′),

3. m(ψη) = R′ if ∆(η) = (P′, R′),

satisfies the set of constraints Ξ2 ∪ {Φ2 = P,Ψ2 = R}, where ` P2 : Θ2; (Φ2,Ψ2); Ξ2.

Proof.

(⇐) Let ` P2 : Θ2; (Φ2,Ψ2); Ξ2 and m satisfies Ξ2 ∪ {Φ2 = P,Ψ2 = R}. From
Theorem 4.2 we derive that m(Θ) ` P2 : (P, R). By definition of m we get
m(Θ2) = ∆. Therefore ∆ ` P2 : (P, R), and P1 7→ P2 is a ∆-(P, R)-safe rule.

(⇒) Let P1 7→ P2 be a ∆-(P, R)-safe rule, then ∆ ` P2 : (P, R). From Theorem 4.3, we
have that ` P2 : Θ2; (Φ2,Ψ2); Ξ2, for some Θ2,Φ2,Ψ2,Ξ2, and there is a type
mapping m′ satisfying Ξ such that ∆ ⊇ m′(Θ2), P = m′(Φ2), and R = m′(Ψ2).
Therefore m′ satisfies Ξ2 ∪ {Φ2 = P,Ψ2 = R}. From definition of m, we get
m(Θ2) = ∆, and since ∆ ⊇ m′(Θ2), also m satisfies Ξ2 ∪ {Φ2 = P,Ψ2 = R}.

The previous lemmas imply the following theorem asserting the condition of
applicability of the rewrite rules.

Theorem 4.10 (Applicability of rewrite rules). Let

` P1 : Θ1; (Φ1,Ψ1); Ξ1 and ` P2 : Θ2; (Φ2,Ψ2); Ξ2 and
` core(C)[X] : {X : (φX , ψX)}; (ΦC ,ΨC); ΞC and P1σ 6≡ ε.

Then the rule P1 7→ P2 can be applied to the term C[P1σ] such that ` C[P1σ] : (P0, ∅)
(for some P0) if and only if the type mapping m defined by

1. m(ϕx) = t if σ(x) : t ∈ Γ,

2. m(φη) = P′ if ` σ(η) : (P′, R′),

3. m(ψη) = R′ if ` σ(η) : (P′, R′),

satisfies

(a) either the set of constraints Ξ1 ∪ Ξ2 ∪ {Φ1 = Φ2} ∪ {Ψ1 = Ψ2},
(b) or the set of constraints

Ξ2 ∪ ΞC ∪ {Φ2 = φX ,Ψ2 = ψX} ∪ {ΨC = ∅ | if φX or ψX occurs in ΨC}.
Proof. We define the basis ∆ as follows:

x : ({t}, Rt) ∈ ∆ if σ(x) : t ∈ Γ, and

η : (P′, R′) ∈ ∆ if ` σ(η) : (P′, R′).

In this way we get that σ ∈ Σ∆ and the type mapping m is such that:

1. m(ϕx) = t iff x : ({t}, Rt) ∈ ∆

2. m(φη) = P′ iff η : (P′, R′) ∈ ∆

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 521

3. m(ψη) = R′ iff η : (P′, R′) ∈ ∆.

Let < = P1 7→P2.

(⇐) If the mapping m satisfies the the set of constraints Ξ1∪Ξ2∪{Φ1 = Φ2}∪{Ψ1 =
Ψ2}, then by Lemma 4.4 the rule P1 7→ P2 is ∆-safe and we get C[P1σ] =⇒
C[P2σ] by applying rule (<-∆).

If the mapping m satisfies the the set of constraints Ξ2 ∪ ΞC ∪ {Φ2 = φX ,Ψ2 =
ψX} ∪ {ΨC = ∅ | if φX or ψX occurs in ΨC}, then by Lemma 4.7 the context
C is OK for (P, R) and by Lemma 4.9 the rule P1 7→ P2 is ∆-(P, R)-safe; we get
C[P1σ] =⇒ C[P2σ] by applying rule (<-∆-(P, R)).

(⇒) If C[P1σ] =⇒ C[P2σ] by applying rule (<-∆), then the rule P1 7→ P2 is ∆-safe
and then the mapping m satisfies the the set of constraints Ξ1 ∪ Ξ2 ∪ {Φ1 =
Φ2} ∪ {Ψ1 = Ψ2} by Lemma 4.4.

If C[P1σ] =⇒ C[P2σ] by applying rule (<-∆-(P, R)), then the rule P1 7→ P2 is
∆-(P, R)-safe and the context C is Ok for (P, R), then the mapping m satisfies
the the set of constraints
Ξ2 ∪ ΞC ∪ {Φ2 = φX ,Ψ2 = ψX} ∪ {ΨC = ∅ | if φX or ψX occurs in ΨC} by
Lemmas 4.7 and 4.9.

The mapping m may be easily defined from the derivation of a type for P1σ, and
the checking that m satisfies a set of constraints requires only some substitutions.

Note that the sets of constraints for typing the left-hand-side and the right-hand-
side of ∆-safe rules, and the right-hand-side of ∆-(P, R)-safe rules, can be inferred once
for all. Instead, the set of constraints for typing the core context of an application
of a ∆-(P, R)-safe rule has to be inferred when trying to apply the rule. However, as
previously remarked, this set of constraints includes at most six constraints.

Theorem 3.15 implies that, during inference, we can first check if the rule is ∆-
safe, using the constraints associated with the rule, and if this is not the case check
whether the rule is a ∆-(P, R)-safe rule (for some (P, R)), and if the type is OK for the
context. We can summarise the idea in the following algorithm, where ∆ is defined
in the proof of Theorem 4.10:

– In the initial phase, for every rule < = P1 7→ P2 ∈ R, we infer ` P1 :
Θ; (Φ1,Ψ1); Ξ1 and ` P2 : Θ; (Φ2,Ψ2); Ξ2.

– When trying to reduce the well-typed term C[P1 σ] with < = P1 7→ P2, we first
check whether the conditions of (<-∆) hold, that is:

1. we check whether the type mapping m, defined by

m(ϕx) = t if σ(x) : t ∈ Γ,
m(φη) = P′ if ` σ(η) : (P′, R′),
m(ψη) = R′ if ` σ(η) : (P′, R′),

satisfies Ξ2: if not P2 σ is not well typed, and neither (<-∆) nor
(<-∆-(P, R)) would be applicable (C[P1 σ] is not reducible via P1 7→ P2);

522 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

2. we check if m satisfies {Φ1 = Φ2}∪ {Ψ1 = Ψ2}. If this is the case, the rule
is a ∆-safe rule, and then we can apply (<-∆),

3. otherwise we check whether the conditions of (<-∆-(P, R)) hold, where
P = m(Φ2) and R = m(Ψ2); in order to do this

(a) we infer ` core(C)[X] : {X : (φX , ψX)}; (ΦC ,ΨC); ΞC , and
(b) we check whether m satisfies

ΞC ∪ {Φ2 = φX ,Ψ2 = ψX} ∪ {ΨC = ∅ if φX or ψX occurs in ΨC}.
If this is the case, the context C is OK for (P, R), so we can use rule
(<-∆-(P, R)), otherwise neither rule (<-∆) nor (<-∆-(P, R)) is
applicable (C[P1 σ] is not reducible via P1 7→ P2).

As we can see, the only check that the algorithm would not perform if we were to use
only rules (<-∆-(P, R)), instead of both sets of rules, is the one in point 2. But the
fact that the rule is ∆-safe implies that we do not have to perform the checks that
follows (points 3.a and 3.b). In particular inferring the type for the context would be
not needed.

Figure 6. Type mappings of Example 4.11

Example 4.11. We use the algorithm described above on the terms of
Example 3.14: the constraints for ∆-safe rules and OK relations for the contexts are
reported in Examples 4.5 and 4.8, respectively. The type mappings derived from the
instantiation are reported in Fig. 6.

(1) The type mapping in line (1) of Fig. 6 satisfies

– the constraints in Ξ2 associated with P2 (see Example 4.1) and

– the constraints that make the rule a ∆-safe rule (see Example 4.5).

(2) The type mapping in line (2) of Fig. 6

– satisfies the constraints in Ξ2 associated with P2,

– does not satisfy the constraint {ta} ∪ φx̃ = {ta, tb} ∪ φx̃ that make the
rule a ∆-safe rule (see Example 4.5) because

{ta, tc} 6= {ta, tb, tc}
– satisfies the set of constraints (B) for the context (see Example 4.8), since

(ta, ∅) ./ ({ta, tb, tc}, ∅) ∅ ⊆ {ta}
(3) The type mapping in line (3) of Fig. 6

– satisfies the constraints in Ξ2 associated with P2,

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 523

– does not satisfy the constraint {ta} ∪ φx̃ = {ta, tb} ∪ φx̃ that make the
rule a ∆-safe rule (see Example 4.5) because

{ta} 6= {tb, tc}
– does not satisfy the set of constraints (C) for the context (see Example

4.8), since

({td}, ∅) ./ ({ta, tb}, ∅) does not hold.

5 Example

A blood type is a classification of blood based on the presence or absence of
inherited antigenic substances on the surface of red blood cells: these antigens are the
A antigen and the B antigen. Blood type A contains only A antigens, blood type B
contains only B antigens, blood type AB contains both and the blood type O contains
none of them: this classification is called ABO blood type system.

The immune system will produce antibodies that can specifically bind to a blood
group antigen that is not recognized as self: individuals of blood type A have Anti-B
antibodies, individuals of blood type B have Anti-A antibodies, individuals of blood
type O have both Anti-A and Anti-B antibodies, and individuals of blood type AB
have none of them. These antibodies can bind to the antigens on the surface of the
transfused red blood cells, often leading to the destruction of the cell: for this reason,
it is vital that compatible blood is selected for transfusions.

Another antigen that refines the classification of blood types is the RhD antigen:
if this antigen is present, the blood type is called positive, else it is called negative.
Unlike the ABO blood classification, the RhD antigen is immunogenic, meaning that
a person who is RhD negative is very likely to produce Anti-RhD antibodies when
exposed to the RhD antigen, but it is also common for RhD-negative individuals not
to have Anti-RhD antibodies. All these aspects led to the red blood cell compatibility
table in Table 2.

Table 2 Red blood cell compatibility.

Recipient Donor

O- O+ A- A+ B- B+ AB- AB+

O-
√

O+
√ √

A-
√ √

A+
√ √ √ √

B-
√ √

B+
√ √ √ √

AB-
√ √ √ √

AB+
√ √ √ √ √ √ √ √

We want to study the possibility of blood transfusion in a system consisting of
a set of closed tissues. These tissues, containing blood cells and antibodies according
to the rules described above, can join each other and exemplify a transfusion of
different blood types. We model a red blood cell as a looping sequence containing

524 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

the element c on the surface and, depending on the blood type, the elements a, b and
r as the A antigen, the B antigen and the RhD antigen, respectively. We represent
the antibodies as the single elements ā, b̄ and r̄, modelling, respectively, the Anti-A,
Anti-B and Anti-RhD antibodies. Finally, we model a tissue (which can contains the
red cells) as a looping sequence having only the element t on the surface. To avoid
undesirable behaviours, using CLS without types, we must write as many rules as
the different combinations of the different blood types shown in Table 2. Using the
typed extension of CLS, according to the antigen and antibodies requirements and
exclusions, we just create the basic types shown in Table 3 and we can use the single
rule

(t)L cX | (t)L cY 7→ (t)L c (X |Y)

to model tissues transfusion.

Table 3 Elements, basic types, R and E sets for red blood cell compatibility.

element basic type R set E set

c tc ∅ ∅
a ta tc ∅
b tb tc ∅
r tr tc ∅
ā tā tc ta

b̄ tb̄ tc tb

r̄ tr̄ tc tr

t tt ∅ ∅

Let the system be a set of eight tissues, containing each possible recipient
combination of blood with antibodies:

(t)L c ((c)L c ε | ā | b̄ | r̄) |
(t)L c ((c · a)L c ε | b̄ | r̄) | (t)L c ((c · b)L c ε | ā | r̄) | (t)L c ((c · r)L c ε | ā | b̄) |

(t)L c ((c · a · b)L c ε | r̄) | (t)L c ((c · a · r)L c ε | b̄) | (t)L c ((c · b · r)L c ε | ā | r̄) |
(t)L c ((c · a · b · r)L c ε).

They cannot react with each other, because the antibodies of the ones exclude the
antigens of the others. If in the system arrives a donor, as a tissue without antibodies,
having blood type O-:

(t)L c ((c)L c ε),
it can singularly react with each tissue, because it does not have antigens, whereas if
in the system arrives a donor having blood type O+:

(t)L c ((c · r)L c ε),
it can singularly react with the tissues that do not contain the Anti-RhD antibody r̄.
As further example, if in the system arrives a donor having blood type A+:

(t)L c ((c · a · r)L c ε),
it can singularly react with each tissue that does not contain Anti-RhD and Anti-A
antibodies r̄ and ā, so tissues containing A+ and AB+ blood types.

6 Conclusions

The most common approach of biologists to describe biological systems is based
on the use of deterministic mathematical means (like, e.g., ODE), and makes it

Livio Bioglio, et al.: Type directed semantics for the calculus of looping sequences 525

possible to abstractly reason on the behaviour of biological systems and to perform
a quantitative in silico investigation. This kind of modelling, however, becomes
more and more difficult, both in the specification phase and in the analysis
processes, when the complexity of the biological systems taken into consideration
increases. This has probably been one of the main motivations for the application of
Computer Science formalisms to the description of biological systems[19].

In this paper we introduced a type system for CLS and used it to define a typed
semantics in which the applicability of rules is determined by type conditions on the
applied rules and on the context of application. We defined a type inference system
and an algorithm to perform reductions.

As seen in Section 5, the use of a typed semantic for CLS permits to transfer the
complexity of biological properties from rules to types, and so to study the behaviour
of the systems using only simple and general rules: we focused on disciplines deriving
by the requirement/exclusion of certain elements, even if in nature it is not easy to
find elements which completely exclude or require other elements. Our abstraction,
however, allows us to deal with a simple qualitative model, and to observe some
basic properties of biological systems. A more detailed analysis could also deal with
quantities. In this case, typing is useful in modelling quantitative aspects of CLS
semantics on the line of [5]. In particular, in [12], we show a simple example on how
types could be used to model repellency also by quantitative means, that is slowing
down undesired interactions.

As a future work, we plan to investigate type disciplines assuring different
properties for CLS and to apply this approach to other calculi for describing
evolution of biological systems, in particular to P-systems[17].

In nature, request and repellency could be seen as practical suggestions, that if
not followed could drive to undesirable behaviour, such as, like in our blood
transfusion example, the death of the system. In practice, one could not generally
forbid terms having requests or repellency collisions: even if it is not desirable, one
could accidentally transfuse incompatible blood types. On the contrary, our typed
semantics completely exclude these kinds of situations. According to this idea, we
can modify our typed semantics, allowing transitions which lead to untypable terms,
but signalling that some errors, or some undesired states, as been reached. For
example, we could modify the transitions driven by ∆-safe rules behaviour and
∆-(P, R)-safe rules behaviour, with the following two rules that raise an error when
some undesired reduction is performed:

P1 7→ P2 ∈ R is not a ∆-(P, R)-safe rule P1σ 6≡ ε

σ ∈ Σ∆ C ∈ C
C[P1σ]

typabilityError−−−−−−−−−−→ C[P2σ]

P1 7→ P2 ∈ R is a ∆-(P, R)-safe rule P1σ 6≡ ε

σ ∈ Σ∆ C ∈ C (P, R) is not OK for C

C[P1σ] contextError−−−−−−−−−→ C[P2σ]
and modifying the algorithm in Section 4, raising an error in point 3.b. In this way
the modeller knows that some unwanted behaviour is happening in the system and
readjust it to avoid the undesired situations.

526 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

As highlighted from the previous considerations, the notion that a given element
repels another is not fixed and immutable, but could arise, in an evolutionary way,
from the failure of some rules. That is, instead of fixing the sets of required and
excluded elements once and for all, in our reductions we could have sets that get
modified by the (failure or success) of rule applications. The new sets could be used
later on to influence the reductions of the system.

References

[1] Biocham. http://contraintes.inria.fr/BIOCHAM/

[2] Alur R, Belta C, Kumar V, Mintz M. Hybrid modeling and simulation of biomolecular networks.

Hybrid Systems: Computation and Control, Springer, 2001, 2034: 19–32.

[3] Aman B, Dezani-Ciancaglini M, Troina A. Type Disciplines for Analysing Biologically Relevant

Properties. MeCBIC’08. ENTCS. Elsevier. 2009, 227. 97–111.

[4] Barbuti R, Maggiolo-Schettini A, Milazzo P. Extending the calculus of looping sequences to

model protein interaction at. ISBRA’07, LNBI. 2006, 4463. 638–649. Springer.

[5] Barbuti R, Maggiolo-Schettini A, Milazzo P, Tiberi P, Troina A. Stochastic calculus of looping

sequences for the modelling and simulation of cellular pathways. Trans. on Computational

Systems Biology, 2008, IX: 86–113.

[6] Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A. Bisimulation congruences in the calculus

of looping sequences. ICTAC’06, LNCS 4281, Springer, 2006. 93–107.

[7] Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A. A calculus of looping sequences for

modelling microbiological systems. Fundamenta Informaticæ, 2006, 72(1-3): 21–35.

[8] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. Bisimulations in calculi modelling

membranes. Formal Aspects of Computing, 2008, 20(4-5): 351–377.

[9] Capecchi S, Troina A. Types for BioAmbients. FBTC’10, EPTCS, 2009, 19: 103–115.

[10] In: Cardelli L, Danos V, Schachter V, eds. Brane calculi - interactions of biological membranes.

Computational Methods in Systems Biology. LNCS 3082, Springer, 2005. 257–280.

[11] Danos V, Laneve C. Core formal molecular biology. ESOP’03. LNCS 2618, 2003. 302–318.

[12] Dezani-Ciancaglini M, Giannini P, Troina A. A Type System for a Stochastic CLS. MeCBIC’09.

EPTCS. 2009, 11. 91–106.

[13] Dezani-Ciancaglini M, Giannini P, Troina A. A Type System for Required/Excluded Elements

in CLS. DCM’09. EPTCS. 2009, 9. 38–48.

[14] Fages F, Soliman S. Abstract interpretation and types for systems biology. Theoretical

Computer Science, 2008, 403(1): 52–70.

[15] Matsuno H, Doi A, Nagasaki M, Miyano S. Hybrid Petri Net representation of gene regulatory

networks. PSB’00. World Scientific Press, 2000. 338–349.

[16] Milazzo P. Qualitative and Quantitative Formal Modeling of Biological Systems[PhD thesis].

University of Pisa. 2007.

[17] Păun G. Membrane Computing. An Introduction. Springer-Verlag. 2002.

[18] Regev A, Panina EM, Silverman W, Cardelli L, Shapiro E. Bioambients: An abstraction for

biological compartments. Theoretical Computer Science, 2004, 325(1): 141–167.

[19] Regev A, Shapiro E. Cells as computation. Nature, September 2002, 419(6905): 343.

[20] Regev A, Shapiro E. The π-calculus as an abstraction for biomolecular systems. Modelling in

Molecular Biology, Natural Computing Series. Springer. 2004. 219–266.

[21] Wells J. The Essence of Principal Typings. ICALP’02. LNCS 2380, Springer-Verlag. 2002.

913–925.

