
Int J Software Informatics, Volume 7, Issue 4 (2013), pp.629–654 Tel: +86-10-62661040

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2013 by ISCAS. All rights reserved. Email: ijsi@iscas.ac.cn, ijsi2007@gmail.com

Rational vs. Real Computation

Walid Gomaa

(INRIA Nancy Grand-Est Research Centre, France)

(Faculty of Engineering, Alexandria University, Alexandria, Egypt)

Abstract There have been several different approaches of investigating computation

over the real numbers. Among such computable analysis seems to be the most amenable to

physical realization and the most widely accepted model that can also act as a unifying

framework. Computable analysis was introduced by A. Turing [1936], A. Grzegorczyk

[1955], and D. Lacombe [1955]. A representation based approach to the field was then

developed by C. Kreitz and K. Weihrauch [1983]. Any typical representation is based on

using the rationals, a countable dense subset of the reals with finite representation, to

approximate the real numbers. The purpose of this article is to investigate the transition

phenomena between rational computation and the completion of such computation (in

some given representation) that induces a computability concept over the reals. This gives

deeper insights into the nature of real computation (and generally computation over

infinite objects) and how it conceptually differs from the corresponding foundational notion

of discrete computation. We have studied both the computability and the complexity-

theoretic transition phenomena. The main conclusion is the finding of a conceptual gap

between rational and real computation manifested, for instance, by the existence of

computable rational functions whose extensions to the reals are not computable and vice

versa. This gap can be attributed to two main reasons: (1) continuity and smoothness of

real functions play necessary roles in their computability and complexity-theoretic

properties whereas the situation is the contrary in rational computation and (2) real

computation is approximate and hence robust whereas rational computation is exact and

rigid. Despite these negative results, if we relax our framework to include relative

computation, then we can bridge the rational-real computation gap relative to ∆2 oracles

of the arithmetical hierarchy. We have shown that ∆2 is a tight bound for the rational-real

computational equivalence. That is, if a continuous function over the rationals is

computable, then its extension to the reals is computable relative to a ∆2 oracle; and vice

versa. This result can also be considered an extension of the Shoenfield’s Limit Lemma

from classical recursion theory to the computable analysis context.

Key words: computable analysis; modulus of continuity; polynomial time; discrete

computation; Oracle Turing machines; arithmetical hierarchy

Gomaa W. Rational vs. real computation. Int J Software Informatics, Vol.7, No.4 (2013):

629–654. http://www.ijsi.org/1673-7288/7/i176.htm

1 Introduction

There have been several different paradigms for investigating computation over
the real numbers. Unfortunately, unlike the situation with the discrete setting, there

Corresponding author: Walid Gomaa, Email: walid.gomaa@loria.fr, wgomaa@alex.edu.eg

Received 2009-10-05; Accepted 2010-05-05.

630 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

is no universal theory that unifies these approaches; even worse some of them seem
quite orthogonal and irreconcilable.

One of the earliest approaches to continuous real computation is the GPAC
(General Purpose Analog Computer). It is an analog continuous-time model that
was introduced by C. Shannon in 1941[31] as a mathematical model of the
differential analyzer which was a kind of a universal analog machine built at MIT in
1931. The GPAC is essentially a directed graph (not necessarily acyclic) whose
vertices are either adders, multipliers, integrators, or constant units. The model has
been refined and algebraically characterized in a series of studies by Pour-El
1974[30], Lipshitz and Rubel 1987[24], Graça and Costa 2003[15], and Graça 2004[14].

In analogy with classical recursion theory, where the Kleene’s class of recursive
functions can exactly capture the concept of discrete computability, C. Moore in 1996
introduced a class of recursive real functions [27] that would capture his notion of
real computability. He replaced primitive recursion by integration and extended the
minimalization (zero-finding) operator to the real space. However, unlike the discrete
case, Moore’s class is far too powerful and goes much beyond physical realizability.
For instance, it contains extensions of non-computable discrete functions, the whole
of the arithmetical hierarchy, and the whole of the analytical hierarchy. Another
critique directed at Moore’s class is that it lacked formality in some ways, as already
pointed out in Refs. [8,13,19]. Moore’s work though has spurred numerous subsequent
studies[5,6,7,9,14,19,25,28] that aim essentially at: (1) removing the ambiguities from the
original definition and (2) characterizing other approaches of real computation within
this recursive framework which would contribute towards a deeper understanding of
the nature of real computation and hence towards the development of a unified theory
of such a computation.

Notice that the previous two approaches do not directly admit clear notions of
the physical time/space complexity of computing real functions. However, other
notions of complexity can be defined in such models. For example, the complexity of
the derivation tree of functions in the Moore’s class where, for instance, the
minimum number of nesting of the minimalization operator can be taken as a
complexity measure.

A dramatically different approach to real computation is based on the use of
algebraic models such as the BSS model developed by Blum, Shub, and Smale in
1989[4]. In such models real numbers are treated as atomic entities that can be written
directly on the machine tape cells and over which real arithmetic operations can be
performed at unit cost. This implies that though these are mechanism-based models
(the use of Turing machines), they do not require a representation theory; they are
more or less a non-constructive realist approach to real computation. These models
are closely related to model theory and definability theory where the strength is
measured in terms of the basic operations allowed in the model, or in logic terminology,
on the underlying non-logical symbols and their corresponding interpretations in the
model. A survey about the class of BSS models was written by K. Meer and C.
Michaux[26]; this survey essentially focuses on the complexity-theoretic aspects of
these models. A less detailed survey of the main BSS model is given in Ref. [10];
this latter article focuses on extending the Grzegorczyk hierarchy to the reals through
that model. A more comprehensive treatment of the subject can be found in Ref. [3].

Walid Gomaa: Rational vs. real computation 631

The approach to real computation that we particularly consider in this article is
Computable Analysis which had been developed since the early days of computer
science and digital computation. It was introduced by A. Turing in 1936[33], A.
Grzegorczyk in 1955[16], and D. Lacombe in 1955[23]. An approach to the field based
on a representation theory was developed by C. Kreitz and Klaus Weihrauch
(1983,1985)[21,22]. Computable analysis is based on enhancing the normal Turing
machine model. The extended model can be though of in two different, though
equivalent, ways: either as a normal Turing machine equipped with oracles that
allow access to representations of the real inputs or as a normal Turing machine that
is allowed to run infinitely long where a representation of the input and a
corresponding representation of the output are written on one-way input and output
tapes respectively. So it is a mechanistic-based approach, however, unlike the
algebraic models, it is a reductionist constructive approach in the sense that the real
number is deconstructed into some finitary representation such as Cauchy sequences.

In the following let N,Z,Q,R denote the sets of natural numbers, integers,
rationals, and reals respectively. Given a function f : R → R, computability of f in
the context of computable analysis simply means the existence of a Turing machine
that when successively fed with increasingly accurate finite approximations of some
x ∈ R, it will be able to successively output increasingly accurate finite
approximations of the function value f(x). Turing machines is a discrete-time
discrete-space model of continuous computation; they are finite objects, hence only
countable number of real functions are computable. To the best of our knowledge
computable analysis is the most realistic and widely accepted approach to
continuous computation (at least from the conventional computability perspective)
and hence considered as the most suitable theoretical framework for numerical
algorithms. For a comprehensive treatment of the subject, especially from the
computability perspective, see Ref. [35]. By definition this approach admits natural
notions of time/space complexity; for a comprehensive treatment see Ref. [20].

A representation theory for computable analysis presumes the existence of two
functions: a representation function and a notation function. Generally there are
several representations for real numbers. For example, given x ∈ R, x can be
represented by a sequence of rational numbers converging to x. It can also be
represented by the set of rationals smaller than x or by the set of rationals greater
than x. A notation function is essentially a machine encoding of any finite initial
segment of the representation function. Assume the typical binary alphabet {0, 1}.
A notation function can be defined as: ν : {0, 1}∗ → D, where
D = { a

2b : a ∈ Z and b ∈ N} is the set of dyadic rationals (these are the rationals
with finite binary encodings). Now ν can induce a concrete representation function
(an actual encoding of some given representation): δ : {0, 1}N → R defined as
δ(s) = r if s = 〈s0#s1#s2# . . .〉 where ν({si : i ∈ N)} = {di ∈ D : i ∈ N and di < r}.
So δ is an encoding of the left cut representation. Different representations may
induce different computability concepts over the real numbers. For example, even
though Cauchy sequences and left cuts induce the same class of computable real
numbers, they induce different classes of polynomial time computable real numbers.

This notion of computation based on a representation theory can be generalized
to any metric space satisfying the following conditions[17,18]: (1) the space is

632 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

separable, that is, it contains a countable dense subset such as the rationals with
respect to the reals, we call this set the representing set, (2) the representing set has
a fixed enumeration {ri : i ∈ N}, and (3) the distance function d(ri, rj) is
computable uniformly from i and j.

The purpose of this article is to compare between two notions of computability:
computability over the representing set and computability over the represented set.
This is exemplified here by investigating the space of real numbers with the dyadic
rationals as the representing set. This helps providing deeper insights into the
nature of real continuous computation (and henceforth, over any space of infinite
objects) and its physical realizability and how it differs from computation over the
discrete representing rationals. It turns out there is a conceptual gap between these
two notions manifested by: (1) the existence of computable rational-preserving real
functions whose restrictions to the rationals are not computable, (2) the existence of
computable (continuous) rational functions whose extensions to the reals are not
computable, and (3) the existence of polynomial time computable rational functions
whose extensions to the reals are not polynomial time computable and vice versa.
This last point can actually be generalized to any complexity class. The difference of
the two notions of computability is rooted in the fact that computation over the
representing set is exact whereas it is only approximate over the represented one.
On one hand approximate computation is robust which is advantageous from both
the computability and complexity perspectives. On the other hand it needs
additional information about the neighborhood of the point being computed which
in some cases might be hard to extract or even not effectively available.

Despite the negative results mentioned above about the incompatibility of the
rational and real computation (in the context of computable analysis), the situation
gets much better when we expand our framework to include relative computation. It
just requires us to climb up to the second level of the arithmetical hierarchy,
specifically ∆2 oracles, in order to reconcile rational and real computation. We will
show that rational and real computation are equivalent relative to ∆2 oracles. In
other words, if a continuous function over the rationals is computable, then its
extension to the reals is computable relative to a ∆2 oracle, and vice versa. It turns
out that ∆2 is a tight bound for such computational equivalence, that is, in general
oracles weaker than ∆2 are not strong enough. This result of relativizing
computable analysis to ∆2 oracles can also be viewed as an extension of the
Shoenfield’s Limit Lemma from classical recursion theory to the computable
analysis context. The classical Shoenfield’s Limit Lemma relates ∆2 sets to
computable functions over the integers.

The paper is organized as follows. Section 1 is an introduction. Section 2 defines
the computability and complexity notions over the rationals and shows the little role
that continuity and smoothness play in such concepts. Section 3 starts by formally
defining and adopting the Cauchy sequence representation of real numbers. It goes on
to define the basic computability and complexity notions over the reals and then shows
how continuity and smoothness are essential ingredients of such concepts. Section 4
compares between rational and real computation from the computability perspective
whereas Section 5 contrasts them from the complexity perspective. In Section 6
we introduce real numbers into the arithmetical hierarchy by allowing oracle-access

Walid Gomaa: Rational vs. real computation 633

to a special class of integer functions that represent real numbers. We then show
the computational equivalence between rational and real functions relative to ∆2

oracles in this modified hierarchy. This result can be viewed as an extension of the
Shoenfield’s Limit Lemma from classical recursion theory to the computable analysis
context. Finally, Section 7 concludes the paper and poses some questions and open
problems for future research.

2 Computation over the Rational Numbers

Let Σ = {0, 1,−, .} and Γ = {00, 01, 10, 11}. Define a function τ : Σ → Γ as
follows: τ(0) = 00, τ(1) = 11, τ(−) = 01, τ(.) = 10. For simplicity of notation assume
D to be the set of strings over the alphabet Σ that represent dyadic rationals (in lowest
forms). Define a function τ∗ : D→ Γ∗ as follows: τ∗(a0 · · · an) = τ(a0) · · · τ(an). For
any d ∈ D let len(d) denote the length of the binary string τ∗(d).

Definition 1. (Computability over D). Assume a function f : D→ D. We say
that f is computable if there exists a Turing machine M such that for every d ∈ D
the following holds:

M(τ∗(d)) = τ∗(f(d)) (1)

Furthermore, f is polytime (polynomial time) computable if the computation time of
M is bounded by p(len(d)) for some polynomial function p.

For any interval [a, b], let [a, b]D denote [a, b] ∩ D. Next a continuity notion is
defined for dyadic functions.

Definition 2. (Continuous dyadic functions). Assume a function f : D → D.
We say that f is continuous if f has a modulus of continuity, that is if there exists a
function m : N2 → N such that for every k, n ∈ N and for every x, y ∈ [−2k, 2k]D the
following holds:

if |x− y| ≤ 2−m(k,n), then |f(x)− f(y)| ≤ 2−n (2)

In the following we will refer to k as the extension argument and n as the
precision argument. Roughly speaking, these respectively represent the integer part
and the fractional part of a given real number. In the previous definition the
continuity of a dyadic function f over its entire domain is reduced to continuity over
successively enlarging compact subintervals of the domain. Compact domains are
usually controllable; for example, any continuous function is always bounded over
any compact subinterval of its domain. As will be seen below besides defining the
continuity of a function, the modulus also controls how smooth and well behaved
(especially from the real computation perspective) the function is. It is clear that
the completion of a continuous dyadic function gives a continuous real function with
the same domain plus the limit points and the same range plus the limit points, and
more importantly it has the same modulus. Unlike the case of real computation
where continuity is a necessary condition we can easily give an example of a
computable dyadic function that is discontinuous.

Proposition 1. There exists a discontinuous function f : D→ D such that f

is computable.
Furthermore, the continuity and smoothness of dyadic functions do not play any

role in the computational complexity of such functions. Let PN denote the class of

634 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

polytime computable N-functions. Assume a unary function g ∈ PN. Define a function
g̃ : D→ D as an extension of g as follows.

g̃(d) =

(
g(0) d ≤ 0

g(bdc) ow
(3)

It is obvious that g̃ is a discontinuous polytime computable dyadic function.

Proposition 2. There exists a discontinuous function f : D→ D such that f

is polytime computable.
Let P̃ = {g̃ : g ∈ PN}. For the rest of this section we will be talking exclusively

of continuous dyadic functions. The following proposition shows the existence of a
conceptual gap between the computation of integer functions and the computation of
continuous dyadic functions. Though both essentially have the same computational
model (normal Turing machine with discrete exact computation), the gap is due to
the different interpretations imposed over the machine computation.

Proposition 3. There exists a function f : D → D such that f is continuous
and polytime computable, however, it is not bounded by any function in P̃. In other
words for every g̃ ∈ P̃ the following holds for infinitely many d ∈ D: f(d) > g̃(d).

Proof. We will construct a function f such that through an interval [r, r + 1]D, for
r ∈ N, the function grows piecewise linear with predetermined breakpoints chosen
such that the length of f grows polynomially in terms of the length of the dyadic
input, however, it grows exponentially in terms of the length of the integer part of
the input. For any i ∈ N, let εi denote the fraction 0.(01)i. Consider any interval
[r, r + 1]D for r ∈ N. Let d0 = r, and let k = min{i ∈ N : r + 1 ∈ [0, 2i]}. For every
j ∈ {1, . . . , r} let dj = d0 + εj , δj = εj − εj−1 = 2−2j . The dj ’s will be breakpoints
through which the function increases piecewise linearly. Let e0 = dr + εr and for
every j ∈ {1, . . . , r} let ej = e0 − εj . The ej ’s will be breakpoints through which the
function decreases piecewise linearly, these are needed to maintain continuity. Define
the function f : D→ D as follows:

f(d) =

8>>>>>>>><>>>>>>>>:
0 d ≤ 0 or d ∈ N
2j d = dj , j ∈ {1, . . . , r}, r ∈ N
2j d = ej

δf(dj+1) + (δj+1 − δ)f(dj)
δj+1

dj < d < dj+1, δ = d− dj

δf(ej+1) + (δj+1 − δ)f(ej)
δj+1

ej+1 < d < ej , δ = ej − d

0 e0 ≤ d ≤ r + 1

(4)

Note that len(f(dj)) is sub-linear in len(dj), similarly for len(f(ej)), hence f is
polytime computable. Note that f(dr) = 2r = Ω(22len(r)

), hence f is not polytime
computable with respect to the N-points and therefore it can not be bounded by
any function in P̃. In the following we will give a modulus function for f . Define a
function m : N2 → N by (k, n) 7→ 3 · 2k + n. Let `j denote the interval [dj−1, dj] for
j ∈ {1, . . . , r}. Assume x, y ∈ [r, dr]D such that |x − y| ≤ 2−m(k,n) (other cases are

Walid Gomaa: Rational vs. real computation 635

either trivial or can be handled similarly). Note that f is monotonically increasing
piecewise linear over [r, dr]D and the slope of the line in interval `j , for j > 1, can be
computed as follows:

f ′j =
f(dj)− f(dj−1)

δj

=
2j − 2j−1

2−2j

= 23j−1

case 1: x, y ∈ `j : Note that δj = 2−2j ≥ δr = 2−2r. We have

|f(y)− f(x)| = |(y − x)
f(y)− f(x)

y − x
|

= |y − x|f ′j
≤ |y − x|f ′r
≤ 2−(3·2k+n)f ′r

≤ 2−(3·2k+n)23r−1

≤ 2−(n+1)

case 2: x ∈ `j and y ∈ `j+1 where 1 < j < r:

|f(x)− f(y)| ≤ |f(x)− f(dj)|+ |f(dj)− f(y)|
≤ 2−(n+1) + 2−(n+1), (from case 1)

= 2−n

The total length of the two smallest intervals `r, `r−1 is δr + δr−1 = 2−2r +
2−2(r−1) > 2−2(r−1) ≥ 2−(3r+n) ≥ |x− y|. Hence, it can not happen that x ∈ `i and
y ∈ `j with |j − i| > 1. Therefore, m is a modulus function for f . ¤

The previous proposition also shows an important aspect especially when relating
to real computability.

Corollary 1. There exists a continuous function f : D → D such that f is
polytime computable and f does not have a polynomial modulus with respect to the
extension argument k.

Proof. Consider the function f constructed in the proof of Proposition 3. It can be
easily seen that any modulus function for f must be Ω(2k). ¤

Remark 1. By looking again into the proof of Proposition 3, we observe that
the apex of the graph of f can be taken as arbitrarily high as we want by letting j run
from 1 to α(r) for any monotonically increasing function α. This indicates that there
is no upper bound on the moduli of continuity of the polytime computable continuous
dyadic functions.

The following lemma shows the corresponding version of Corollary 1 with respect
to the precision argument.

636 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

Lemma 1. There exists a continuous function f : D → D such that f is
polytime computable and f does not have a polynomial modulus with respect to the
precision argument n.

Proof. Define a function α : N→ N by

α(i) =

(
0 i = 0 or i = 1

max{j ≤ i : blog2 log2 jc = log2 log2 j} ow
(5)

For every i ∈ N let di = 1− 2−i. Define a function f : D→ D as follows:

f(d) =

8>>><>>>:1 d ≤ d1

1
log2 α(i)

d = di, i > 1

2i+1
�
δf(di+1) + (2−(i+1) − δ)f(di)

�
di < d < di+1, δ = d− di

0 d ≥ 1

(6)

Then f(d) is constant at value 1 for d ≤ 1
2 and constant at value 0 for d ≥ 0. It is

piecewise linear decreasing over the interval [12 , 1]D with the di’s as the breakpoints. It
decreases very slowly (may even remain constant over many successive di’s), however,
it eventually reaches 0 at d = 1, thus it is continuous. Note that for every i, len(di) = i

and by definition len(f(di)) = O(log i). In addition α(i) is efficiently computable.
Hence, f is polytime computable. Finally, we need to show that f does not have
a polynomial modulus with respect to the precision parameter. Let `i denote the
subinterval [di−1, di]. Note that there are infinitely many `i’s over which f is strictly
decreasing. The goal is to compute the slope of the function over such subintervals.
Assume an arbitrary interval `i = [di−1, di] over which f is decreasing, then it must
be the case that i = 22j

for some j ∈ N.

|`i| = di − di−1

= 1− 2−i − 1 + 2−(i−1)

= 2−i = 2−22j

On the other hand

f(di−1)− f(di) = 2−(j−1) − 2−j

= 2−j

Hence, the slope of the line over `i is

|f ′i | =
2−j

2−22j

= 222j−j = 2i−j

which can not be captured by any polynomial function. ¤
Combining the proofs of Corollary 1 and Lemma 1 we have the following result

which shows that the smoothness of a continuous dyadic function does not affect its
complexity.

Walid Gomaa: Rational vs. real computation 637

Theorem 1. There exists a continuous polytime computable function f : D→
D such that f does not have a polynomial modulus with respect to both the extension
parameter k and the precision parameter n (that is if one variable is held constant
the function would not be polynomial in the other).

3 Computation over the Real Numbers

3.1 Representation of real numbers

Real numbers are infinite objects so in order to perform computations over them
using Turing machines, which are inherently finite discrete objects, we must have
some finitary representation (approximation) of a real number. Given x ∈ R, there
are several such representations for x among which are the following:

1. Binary expansion: x is represented by a function ψx : N ∪ {−1} → N ∪ {−1},
such that ψx(−1) ∈ {−1, 1} (the sign of x), ψx(0) ∈ N (the integer part of x),
and ψx(k) ∈ {0, 1} for every k ≥ 1. Then

x = ψx(−1) · (ψx(0) +
X
k≥1

ψx(k) · 2−k) (7)

Note that if x 6∈ D, then x has a unique binary expansion, otherwise, it has
two (for example, 1

2 has two expansions: 0.10N and 0.01N).
2. Left cut: x is represented by the set Lx = {d ∈ D : d < x}.
3. Cauchy function: x is represented by a Cauchy function ϕx : N → D that

binary converges to x

∀n ∈ N : |ϕx(n)− x| ≤ 2−n (8)

From these particular examples we see that x is represented either by a set of
finite objects or a by a function over finite objects. We say that x is computable with
respect to some representation R if there exists a Turing machine that either decides
the set or computes the function that represent x with respect to R. It should be
noted that all the above representations induce the same computability concept, that
is, they give the same class of computable real numbers. Examples of such numbers
include the rationals, algebraic numbers such as

√
2, and transcendental numbers

such as π and e. However, on the sub-computable and complexity-theoretic levels
they induce different classes. In particular we have:

Proposition 4. For any representation R, let polytime[R] denote the class of
polynomial time computable real numbers with respect to R. Then

polytime[BE] ≡ polytime[LC] (polytime[CF] (9)

For the remaining part of this article we adopt the Cauchy representation. For
x ∈ R let CFx denote the set of all Cauchy sequences that represent x.

3.2 Computability of real functions

Assume a function f : R→ R. Informally, the computability of f in the context
of computable analysis just means the existence of a Turing machine that when
successively fed with an arbitrary Cauchy sequence representing x ∈ R, it will be

638 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

able to successively output a Cauchy sequence representing f(x). For a
comprehensive treatment of the subject see Ref. [35]. Here is the formal definition.

Given a Cauchy sequence ψ let M
ψ

denote an oracle Turing machine M that has
access to oracle ψ.

Definition 3. (Computability of real functions). Assume a function f : R →
R. We say that f is computable if there exists a function oracle Turing machine M

such that for every x ∈ R, for every ϕx ∈ CFx, and for every n ∈ N the following
holds:

|Mϕx

(n)− f(x)| ≤ 2−n (10)

In order to have a well-defined notion of the time and space complexity of real
functions we assume that the length of the answer of any oracle function ϕx is always
polynomially bounded in terms of the question itself (its length in unary notation),
that is for every n ∈ N, len(ϕx(n)) ≤ r(n) + k for some polynomial function r, where
k is the length of the integer part of the input.

Definition 4. (Complexity of real functions). Assume a function f : R → R.
Assume a time-constructible function τ : N2 → N and a space-constructible function
σ : N2 → N.

1. We say that f has time complexity τ if there exists an oracle Turing machine
M

()
that computes f in the sense of Definition 3 and the computation time

of M
ϕx

(n) is bounded by τ(k, n), where k = min{j ∈ N : x ∈ [−2j , 2j]}.
2. We say that f has space complexity σ if there exists an oracle Turing machine

M
()

that computes f in the sense of Definition 3 and M
ϕx

(n) uses at most
σ(k, n) cells of the work tape, where k = min{j ∈ N : x ∈ [−2j , 2j]}.

Note that in the definition of space complexity we only counted the space used
on the work tape and excluded that used on the input, output, and oracle tapes. This
can be justified by: (1) assuming the input and output tapes are one-way and (2) the
previous assumption on the length of the answers on the oracle tape. When talking
about complexity in the following discussion we will focus in the most part on the
polynomial time class.

Example 1. Consider the function f : R → R, defined by f(x) = 2x. Note
that f(x) ¹ N is not polytime computable, hence its extension to the reals is not
polytime computable either.

Notation 1. For any x ∈ R, let ϕ∗x ∈ CFx denote the particular Cauchy
function

ϕ∗x(n) =
b2n · xc

2n
(11)

This particular Cauchy sequence corresponds to the binary expansion given by Eq. (7).
One of the basic results of computable analysis is that continuity is a necessary

condition for computing real functions and as we will see below the smoothness of the
function plays an essential role in its complexity. The following theorem relates the
computational and the analytic properties of real functions.

Theorem 2. ([11]) Assume a function f : R → R. Then f is computable iff
there exist two functions: m : N2 → N and ψ : D× N→ D such that:

1. m is computable and it is a modulus function for f ,

Walid Gomaa: Rational vs. real computation 639

2. ψ is an approximation function for f , that is, for every d ∈ D and every n ∈ N
the following holds:

|ψ(d, n)− f(d)| ≤ 2−n (12)

Furthermore, if f is polytime computable, the result still holds with two additional
complexity requirements:

1. m is a polynomial function with respect to both the extension parameter k

and the precision parameter n, that is, m(k, n) = (k + n)b for some b ∈ N.
2. ψ(d, n) is computable in time p(|d|+ n) for some polynomial p.

Proof. The proof is an extension of the proof of [20, Corollary 2.21]. Assume the
existence of m and ψ that satisfy the given conditions. Assume an f -input x ∈ R and
let ϕx ∈ CFx. Assume n ∈ N. Let M

ϕx

(n) be an oracle Turing machine that does
the following:

1. let d1 = ϕx(2),
2. use d1 to determine the least k such that x ∈ [−2k, 2k] (taking into account

the error in d1),
3. let α = m(k, n + 1) (locating the appropriate component of the Cauchy

sequence of x),
4. let d = ϕx(α),
5. let e = ψ(d, n + 1) and output e.
Note that if m and ψ satisfy the complexity requirements, then every step of the

above procedure can be performed in polynomial time with respect to both k and n.
Now verifying the correctness of M

()
(n):

|e− f(x)| ≤ |e− f(d)|+ |f(d)− f(x)|
≤ 2−(n+1) + |f(d)− f(x)|, by definition of ψ

≤ 2−(n+1) + 2−(n+1), |d− x| ≤ 2−mk(n+1) and definition of m

= 2−n

This completes the first part of the proof. Now assume f is computable. Fix
some large enough k and consider any x ∈ [−2k, 2k]. Since f is computable, there
exists an oracle Turing machine M

()
that computes f . Fix some large enough n ∈ N.

Remember the definition of ϕ∗x in Notation 1, let

nx = max{j : ϕ∗x(j) is queried during the computation of M
ϕ∗x (n + 3)} (13)

Let dx = ϕ∗x(nx), then dx ∈ D and len(dx (mod 1)) ≤ nx. By the particular choice of
Cauchy sequences we have ϕ∗dx

(j) = ϕ∗x(j) for every j ≤ nx. Let `x = dx − 2−nx and
rx = dx + 2−nx . Then {(`x, rx) : x ∈ [−2k, 2k]} is an open covering of the compact
interval [−2k, 2k]. By the Heine-Borel Theorem, [−2k, 2k] has a finite covering C =
{(`xi

, rxi
) : i = 1, . . . , w}. Define m′ : N2 → N by

m′(k, n) = max{nxi
: i = 1, . . . , w} (14)

First we show that m′ is a modulus for f . Assume some x, y ∈ [−2k, 2k] such
that x < y and |x− y| ≤ 2−m′

k(n).
case 1: x, y ∈ (`xi

, rxi
) for some i ∈ {1, . . . , w}. Then |x− dxi

| < 2−nxi which implies

640 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

that ϕ∗x(j) = ϕ∗xi
(j) = ϕ∗dxi

(j) for every j ≤ nxi
, hence M

ϕ∗x (n + 3) = M
ϕ∗xi (n + 3) =

M
ϕ∗

dx
i (n + 3).
Now

|f(x)− f(dxi)| ≤ |f(x)−M
ϕ∗x (n + 3)|+ |Mϕ∗x (n + 3)− f(dxi)|

= |f(x)−M
ϕ∗x (n + 3)|+ |M

ϕ∗
dx

i (n + 3)− f(dxi)|
≤ 2−(n+3) + 2−(n+3)

= 2−(n+2)

Similarly, we can deduce that |f(y) − f(dxi)| ≤ 2−(n+2). Hence,
|f(x)− f(y)| ≤ |f(x)− f(dxi

)|+ |f(dxi
)− f(y)| ≤ 2−(n+2) + 2−(n+2) = 2−(n+1).

case 2: There is no i such that x, y ∈ (`xi
, rxi

). Notice that C is a covering and by
assumption |x−y| ≤ min{ 1

2 (rxi
−`xi

) : i = 1, . . . , w}. Hence there must exist i, j such
that x ∈ (`xi

, rxi
), y ∈ (`xj

, rxj
), and `xj

< rxi
. Choose an arbitrary z ∈ (`xj

, rxi
).

Then

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)|
≤ 2−(n+1) + |f(z)− f(y)|, applying case 1 to x, z ∈ (`xi , rxi)

≤ 2−(n+1) + 2−(n+1), applying case 1 to y, z ∈ (`xj
, rxj

)

= 2−n

Hence, m′ is a modulus function for f . Now remains to show m′ is computable.
Assume x ∈ (−2k, 2k). Then from the above discussion we know that M

ϕ∗x (n + 3) =

M
ϕ∗

dx (n + 3), hence the quantity nx can be redefined as follows (see Eq. (13)):

ndx = max{j : ϕ∗dx
(j) is queried during the computation of M

ϕ∗
dx (n + 3)} (15)

Then we can totally ignore any reference to the non-dyadic points

nd = max{j : ϕ∗d(j) is queried during the computation of M
ϕ∗

d (n + 3)} (16)

And the set S = {(le, re) : e ∈ [−2k, 2k]D} form an open covering of the compact
interval [−2k, 2k]. Finally, we need to show that a finite covering C ⊆ S of the compact
interval [−2k, 2k] can be effectively found. For every i ∈ N, let Di = {d ∈ D : len(d
(mod 1)) ≤ i}. Consider the following algorithm for finding a finite covering C:

1. for every i ∈ N do the following
(a) for every e ∈ [−2k, 2k]Di

do the following
− run M

ϕ∗e (n + 3) and compute ne and de,
− compute le = de − 2−ne and re = de + 2−ne ,

(b) let V =
S

e∈[−2k,2k]Di
(le, re)

(c) if V ⊇ [−2k, 2k], then
− compute m′(k, n) = max{ne : e ∈ [−2k, 2k]Di

},
− output m′(k, n) and halt.

Walid Gomaa: Rational vs. real computation 641

Note that the set [−2k, 2k]Di
contains only finitely-many points and so the Heine-

Borel Theorem guarantees that the above algorithm will eventually halt with a correct
finite covering the corresponding modulus value.

Assume some d ∈ D. Let M(d, n) be a machine which simulates the computation
of M

ϕd (n) (this can be done since d is a finite object). Then define the approximation
function ψ(d, n) as M(d, n).

From the complexity perspective assume that f is polytime computable. Then
there exists an oracle Turing machine M

()
such that the computation time of M

ϕx

(n)
is bounded by q(k, n) for some polynomial q. Hence, the value nx computed in the
above discussion is bounded by q(k, n + 3), therefore, q(k, n + 3) is a polynomial
modulus for f . By the definition of ψ(d, n) in the previous paragraph, it would be
polytime computable in len(d) + n. This completes the proof of the theorem. ¤

4 Rational vs. Real Computability

In this section we show that real computability is not simply an extension of the
corresponding notion over continuous rational functions. There is an inherent gap
between the computation concept over the rationals and over the reals. The following
theorem shows one side of this gap.

Theorem 3. There exists a dyadic-preserving function g : R→ R such that g

is computable, however, g ¹ D is not computable.

Proof. Let M be the set of all Turing machines. Let α : M → N be an effective
encodings of the machines in M. Let β̄ = 〈βi : i ∈ N〉 be an enumeration of the range
of α. Let λ denote the empty string. Define a function τ : N→ N as follows:

τ(k) =

(
0 α−1(βk)(λ) ↑
t + 1 α−1(βk)(λ) ↓ in t steps

(17)

Now define the function g : R→ R as follows:

g(x) =

8><>:min{τ(0), 2−τ(0)} x ≤ 0

min{τ(x), 2−τ(x)} x ∈ N
δg(k + 1) + (1− δ)g(k) k ≤ x ≤ k + 1, k ∈ N, δ = x− k

(18)

Then g is piecewise linear with breakpoints at the integers, hence it is a continuous
function. Furthermore, it has dyadic values at these breakpoints, hence it preserves
D. It is clear that g ¹ D is not computable, otherwise the halting set is decidable. Now
we show g(x) is computable as a real function. First, note that over its whole domain
g is bounded by 1

2 , hence it has a computable linear modulus that is independent
from the extension argument. Assume an input x ∈ R and let ϕ ∈ CFx. Assume
n ∈ N. Let M

ϕ

(n) be an oracle Turing machine that does the following:
1. let d = ϕ(n2),
2. if d ≤ 0, do the following:

(a) run the machine α−1(β0)(λ) for at most n2 steps,
(b) if α−1(β0) halts in t ≤ n2 steps, output 2−(t+1) and terminate,
(c) otherwise, output 0 and terminate,

642 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

3. if d = k for some k ∈ N≥1, do the following:
(a) run the machine α−1(βk)(λ) for at most n2 steps,
(b) if α−1(βk) halts in t ≤ n2 steps, output 2−(t+1) and terminate,
(c) otherwise, output 0 and terminate,

4. if k < d < k + 1 for some k ∈ N, do the following:
(a) using the previous two cases compute d1 and d2 as approximations to g(k)

and g(k + 1) respectively,
(b) let δ = d− k,
(c) compute e = δd2 + (1− δ)d1,
(d) output e and terminate.

We show the correctness of the above procedure. For simplicity neglect the error
|d − x| (this can be compensated for by the linear modulus). If either case 2.b or
case 3.b of the above algorithm holds, then M

ϕ

(n) outputs the exact value of g(x). If
either case 2.c or case 3.c holds, then either (1) g(x) = 0 in which case M

ϕ

(n) outputs
the exact value or (2) g(x) ≤ 2−(n2+2) in which case |Mϕ

(n) − g(x)| ≤ 2−n2
. As for

case 4 we have:

|e− g(x)| = |δd2 + (1− δ)d1 − δg(k + 1)− (1− δ)g(k)|
= |δ(d2 − g(k + 1)) + (1− δ)(d1 − g(k))|
≤ δ|d2 − g(k + 1)|+ (1− δ)|d1 − g(k)|
≤ δ2−n2

+ (1− δ)2−n2

≤ 2−n

This completes the proof of the theorem. ¤
The conceptual gap between rational and real computability as manifested by

the previous theorem is mainly due to the approximate nature of real computation
which makes it much more robust than the exact nature of rational computation. So
although the halting set is undecidable in the discrete exact sense, it is approximately
decidable in the continuous inexact sense. The following theorem illustrates the other
side of the coin: rational computability may induce real incomputability.

Theorem 4. There exists a continuous dyadic function f : D→ D such that f

is computable, however, the extension of f to R is not computable as a real function.

Proof. The proof depends on the use of Specker sequences: the construction of a
computable sequence of rational numbers whose limit is not computable. Assume a
set A ⊆ N such that A is r.e. but not recursive. Define a real number y =

P
n∈A 2−n.

Then y is not computable, otherwise A would be recursive which is a contradiction.
From recursion theory there exists a recursive injective function α : N→ N such that
A = range(α). Define the sequence

< yn =
X
i≤n

2−α(i) : n ∈ N > (19)

This is a computable sequence of rational numbers whose limit is y, however, its
convergence is not effective as y itself is not computable (in fact this sequence shows
that y is lower semi-computable). Consider the real number x =

√
2. This is a

computable real number and accordingly we are able to construct a nested sequence

Walid Gomaa: Rational vs. real computation 643

of rational intervals that converge to x. Define a function β : N→ N with β(n) equals
the minimum k such that k2 ≤ 2 · 22n ≤ (k + 1)2. Obviously, β is computable and

2−2nk2 ≤ 2 · 22n2−2n ≤ (k + 1)22−2n

(2−nk)2 ≤ 2 ≤ (2−n(k + 1))2

2−nk ≤
√

2 ≤ 2−n(k + 1)

For any n ∈ N, let Jn = [2−nβ(n), 2−n(β(n) + 1)]. The length of Jn is 2−n,
hence, the intervals Jn’s effectively converge to

√
2. To guarantee that the intervals

are nested we build a new sequence In =
T

k≤n Jk. For any In, let ln and rn denote
its left and right boundary respectively. Let δn = ln+1 − ln and let γn = rn − rn+1.
Now we are ready to define the function f : D→ D

f(d) =

8>>><>>>:y0 d ≤ l0 or d ≥ r0

yn d ∈ {ln, rn} for some n ∈ N
βyn+1+(δn−β)yn

δn
ln ≤ x ≤ ln+1, β = x− ln

βyn+1+(γn−β)yn

γn
rn+1 ≤ x ≤ rn, β = rn − x

(20)

So f is a piecewise linear function with breakpoints at the ln’s and rn’s, hence it
is continuous. The ln’s, rn’s, and yn’s are all computable rational points, hence f is
computable. Let f̃ be the extension of f to the reals. Then f̃(

√
2) = y. Whereas

√
2

is a computable real number, y is not computable, hence f̃ is not computable. ¤
Although there is a computable sequence of rational numbers that converge to y,

any such sequence does not converge effectively which makes it impossible to construct
a Turing machine which approximates f(

√
2) within a predetermined error bound;

that is a computable quantification of the error is not possible. This is equivalent to
the nonexistence of a computable modulus for f .

Corollary 2. The function f constructed in Theorem 4 does not have a
computable modulus.

Proof. Assume that f has a computable modulus m(k, n). Notice that
√

2 ∈ [−2, 2],
hence we can fix k = 1. Let d ∈ D such that |d − √2| ≤ 2−m(1,n). Let e = f(d).
Both d and e are computable dyadic rationals and by the definition of the modulus
we have |e − y| ≤ 2−n. This means we can use the computable modulus to obtain a
computable sequence that effectively converges to y which is a contradiction to the
un-computability of y. ¤

As seen from the last corollary though the continuous dyadic function does not
a computable modulus, this does not affect its own computability. This is due to the
fact that the exact nature of dyadic computation does not presuppose any knowledge
about the neighborhood of the point being computed. The situation is totally the
converse in real computation for its approximate nature, though does provide some
sort of robustness, requires apriori knowledge of computable information about the
neighborhood of the point being computed.

Remark 2. Notice that the function f̃ constructed in the proof of Theorem 4
is lower semi-computable. By slight changes f̃ can be made upper semi-computable

644 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

by redefining y as follows:

y = 1−
X
n∈A

2−n (21)

and the computable converging sequence can then be defined as follows (still the
convergence is not effective):

< yn = 1−
X
i≤n

2−α(i) : n ∈ N > (22)

Even f̃ can be made harder, that is neither lower nor upper semi-computable, as
follows. Consider another set B ⊆ N that is r.e. but not recursive, and let β be the
associated recursive function. Then B = range(β). Now define y as follows:

y =
X
n∈A

2−n −
X
n∈B

2−n (23)

Then we can define the computable converging sequence as follows (still the
convergence is not effective):

< yn =
X
i≤n

(2−α(i) − 2−β(i)) : n ∈ N > (24)

Notice that in all such choices of f̃ (lower but not upper semi-computable, upper but
not lower semi-computable, and neither upper nor lower semi-computable) it is still
the case that f̃ ¹ D is computable.

The results in this section affirm the existence of a conceptual difference
between rational and real computability manifested by the existence of a
computable real function whose restriction to the rationals is not computable and
the existence of a computable continuous rational function whose extension to the
reals is not computable. The next section illustrates similar phenomena at the
complexity level.

5 Polytime Rational vs. Polytime Real Computability

It is evident from the complexity-theoretic characterization of Theorem 2 that
polytime computable real functions must be smooth enough, that is they must have
polynomial moduli. In contrast Theorem 1 indicates the irrelevance of the smoothness
condition to the efficient computability of continuous dyadic functions, hence we have
the following result.

Theorem 5. There exists a continuous function f : D → D that is polytime
computable, however, its extension to R is not polytime computable as a real function.

Again by exploiting the robustness of approximate real computation, we can show
the converse of the previous theorem.

Theorem 6. There exists a dyadic-preserving function f : R→ R such that f

is polytime computable, however, f ¹ D is not polytime computable.

Proof. Define f : R→ R as follows:

Walid Gomaa: Rational vs. real computation 645

f(x) =

8>>><>>>:0 x ∈ N or x ≤ 0
1
2 + 2−2k

x = j + 1
2 forj ∈ N and k = min{i ∈ N : x < 2i}

2(x− j)f(j + 1
2) j ≤ x ≤ j + 1

2

2(j + 1− x)f(j + 1
2) j + 1

2 ≤ x ≤ j + 1
(25)

Then f is piecewise linear with breakpoints at j’s and (j + 1
2)’s for j ∈ N. It is

zero at the integer points (and the negative reals) and 1
2 + εj at the midpoints where

εj is a very small value that depends on the binary length of j. The idea is that real
computation is inherently approximate hence to get the exact correct value at j+ 1

2 the
precision input n has to be large enough (much larger than the extension parameter)
making the complexity polynomial in terms of n although it is exponential in terms of
the extension parameter. And therefore the overall complexity is polynomial. On the
other hand rational computation does not involve this precision parameter leaving the
overall computation exponential in terms of the only remaining extension parameter.
Now we give the technical details. It is clear that f preserves D (it takes dyadic values
at the breakpoints). Let g = f ¹ D. Assume some x ∈ dom(g) such that x = j + 1

2 for
some j ∈ N. Let k = len(j). From the definition of f , len(g(x)) = Ω(2k). Hence g

is not polytime computable as a dyadic function. Now remains to show f is polytime
computable as a real function. Assume some x ∈ R and assume some ϕ ∈ CFx. Let
M

()
be an oracle Turing machine such that M

ϕ

(n) does the following:
1. Let d = ϕ(n + 3),
2. Determine the least k such that d + 1 < 2k,
3. If j ≤ d ≤ j + 1

2 for some j ∈ N, then
(a) If n ≥ 2k − 10, then output 2(d− j)(1

2 + 2−2k

),
(b) else output (d− j),

4. If j + 1
2 ≤ d ≤ j + 1 for some j ∈ N, then

(a) If n ≥ 2k − 10, then output 2(j + 1− d)(1
2 + 2−2k

),
(b) else output (j + 1− d),

5. Otherwise output 0 and terminate.
Clearly M

ϕ

(n) runs in polynomial time with respect to n and k. We need to show
its correctness. Assume ε = |x− d| ≤ 2−(n+3). We have the following cases.
case 1: x, d ∈ [j, j + 1

2]. If n ≥ 2k − 10, then

|Mϕ

(n)− f(x)| = |2(d− j)f(j +
1
2
)− 2(x− j)f(j +

1
2
)|

= 2f(j +
1
2
)|x− d|

≤ 2(
1
2

+ 2−2k

)2−(n+3)

= 2−(n+3) + 2−(2k+n+2)

≤ 2−(n+2)

If n < 2k − 10, then

|Mϕ

(n)− f(x)| = |(d− j)− 2(x− j)(
1
2

+ 2−2k

)|

646 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

= 2|1
2
(d− j)− (x− j)(

1
2

+ 2−2k

)|

= 2|1
2
d− 1

2
j − 1

2
x +

1
2
j − 2−2k

(x− j)|

= 2|1
2
(d− x)− 2−2k

(x− j)|

≤ 2(|1
2
(d− x)|+ |2−2k

(x− j)|)

≤ 2−(n+3) + 2−2k

≤ 2−(n+2)

case 2: x, d ∈ [j + 1
2 , j + 1]. This case is symmetrical with case 1.

case 3: One of x or d is in [j, j + 1
2] and the other is in [j + 1

2 , j + 1].
Then

|Mϕ

(n)− f(x)| ≤ |Mϕ

(n)− f(j +
1
2
)|+ |f(j +

1
2
)− f(x)|

≤ 2−(n+2) + 2−(n+2), from previous cases

= 2−(n+1)

Similar calculations for the case when either x or d is in [j + 1
2 , j + 1] and the other

in [j + 1, j + 3
2] with f(j + 1

2) replaced by f(j + 1).
Hence, f is polytime computable as a real function and this completes the proof of
the theorem. ¤

Theorems 5 and 6 both reaffirm the conclusion drawn in the previous section by
asserting that polynomial time computability of real functions is not simply an
extension of the corresponding rational notion; this is in spite of the fact that real
computation is an effective approximation (in the sense of computable analysis) of
rational computations. This can be justified by the following observations: (1) the
notion of ‘modulus of continuity’ does not play any role in the efficient
computability of dyadic functions; there exist efficiently computable continuous
dyadic functions that have arbitrarily large moduli, (2) on the contrary smoothness
of real functions essentially determine their computational complexity, (3) there are
two factors controlling the complexity of computing dyadic functions (and finite
objects in general): how hard it is to compute every single bit of the output and the
length of the output, and (4) on the other hand there are three factors controlling
the complexity of computing a real function: (i) the first, same as in the dyadic
case, is how hard it is to compute every single bit of the output, (ii) the second,
partially similar to the dyadic case, is the length of the integer part of the output
(the length of the fractional part is already controlled by the required precision
which is an input to the machine), and (iii) the third factor (and this is the one
absent from the dyadic case) is how hard it is to access the input and this is
essentially controlled by the modulus function.

We can further strengthen the results in this section as follows. First, we
formally mention how the complexity of real functions is strongly tied to its moduli
of continuity.

Proposition 5. Assume a function f : R→ R such that the time complexity
of f is bounded by τ : N2 → N. Then the function τ(k, n + 3) is a modulus for f .

Walid Gomaa: Rational vs. real computation 647

Proof. Follows immediately from the proof of Theorem 2 where we see towards the
end of that proof that the modulus value nx can be bounded by the computation time
of the machine computing f . ¤

We can then have the following generalization of the deterministic complexity-
theoretic gap between real and rational computation.

Theorem 7. Assume a time-constructible function τ : N2 → N. Then

1. There exists a continuous function f : D → D whose computation time is τ -
bounded, however, the time complexity of its extension to R is not τ -bounded.

2. There exists a dyadic-preserving function f : R→ R whose computation time is
τ -bounded, however, the time complexity of f ¹ D is not τ -bounded.

Proof. From Remark 1 it is evident that we can construct a continuous
τ -computable function f : D → D such that f does not have a τ modulus. Let f̃ be
the extension of f to R. Then f̃ does not have a τ modulus, hence by Proposition 5
f̃ is not τ -computable. By looking back at the proof of Theorem 6 we can slightly
modify the definition of the function f by setting f(j + 1

2) = 1
2 + 2−2τ(k,k)

. Then the
resulting function would be τ -computable, however, its restriction to D is not. ¤

Similar results can be obtained for deterministic space complexity.

Theorem 7. Assume a space-constructible function σ : N2 → N. Then

1. There exists a continuous function f : D → D whose space complexity is σ-
bounded, however, the space complexity of its extension to R is not σ-bounded.

2. There exists a dyadic-preserving function f : R→ R whose space complexity is
σ-bounded, however, the space complexity of f ¹ D is not σ-bounded.

Proof. This follows from the previous theorem using the constructions given in the
above proofs and using the fact that deterministic space complexity of σ is included
in deterministic time complexity of 2O(σ)[32,1]. ¤

6 Shoenfield’s Limit Lemma: Computable Analysis Version

We have seen in Section 4 that rational and real computability are not equivalent.
However, it is compelling to ask how inherent and deep this incompatibility is. If we
relax the notion of computability to include the whole of the arithmetical hierarchy,
in other words if we allow relative computation, then what can we say about the
rational-real computational equivalence?

Let AH denote the arithmetical hierarchy. For a comprehensive treatment of AH

see Ref. [29]. Remember that a relation R ∈ AH is Σ2 if

R(x1, . . . , xn) ⇐⇒ ∃ȳ∀z̄S(x1, . . . , xn, ȳ, z̄) (26)

where ȳ and z̄ are finite sequences of variables and S is a computable relation. On
the other hand R is Π2 if

R(x1, . . . , xn) ⇐⇒ ∀ȳ∃z̄S(x1, . . . , xn, ȳ, z̄) (27)

648 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

R is ∆2 if and only if it is both Σ2 and Π2. In this section we answer the question
posed above about the rational-real computational equivalence. We show that: (1)
rational and real computation are equivalent modulo (relative to) ∆2 relations and
(2) ∆2 is a tight bound for that equivalence, that is, in general rational and real
computation are not equivalent modulo relations weaker than ∆2. Furthermore, we
present a computable analysis version of the Shoenfield’s Limit Lemma.

Theorem 9. (Shoenfield’s Limit Lemma[29]). Assume a set A ⊆ N. Then A

is ∆2 if and only if its characteristic function is the limit of a computable function
g : N2 → N. That is

cA(k) = lim
j→∞

g(j, k) (28)

By filling the gaps with piecewise linear segments the function g in the previous
theorem can be taken to be either a computable rational function or a computable
real function.

Definition 5. (Encoding of rational numbers). For any a, b ∈ N, let 〈a, b〉
denote the Cantor pairing function, that is

〈a, b〉 =
(a + b)(a + b + 1)

2
+ b (29)

Notice that 〈., .〉 is a bijection from N2 to N. Let 〈a, b, c〉 denote the tupling
〈〈a, b〉 , c〉. Let νD : N→ D be the following representation of dyadic numbers:

νD(〈n1, n2, n3〉) =
n1 − n2

2n3
(30)

To simplify the notation in the following discussion let ók denote νD(k) for any k ∈ N.

Notation 2. For any x ∈ R, let ψx : N→ N be a Cauchy sequence representing
x where |ùψx(n)− x| ≤ 2−n.

Next we define a real variation of the arithmetical hierarchy; the aim is to give
the arithmetical relations access to real arguments. This introduction of real numbers
into AH is based on the representation theory perspective of real numbers as the limits
of functions over the naturals.

Definition 6. (A Real Version of the Arithmetical Hierarchy) Let α ∈ N.
Assume a relation R ∈ Σα of arity n. Then

R(x1, . . . , xn) ⇐⇒ ∃ȳ1∀ȳ2 . . .QȳαS(x̄, ȳ1, . . . , ȳα)

⇐⇒ ∃ȳ1∀ȳ2 . . .QȳαS(u1, . . . , um)
(31)

where Q is either ∃ or ∀ depending on whether α is odd or even respectively, S is a
computable relation (that is S ∈ Σ0) of arity m, and each ui is either one of the free
variables xj or is a bound variable in some sequence ȳk. Let x ∈ R be arbitrary and
assume some arbitrary Cauchy sequence ψx for x. Define a new relation Rψx

i1,...,ik
for

k ∈ N and 1 ≤ i1 < . . . < ik ≤ m as follows:

Rψx

i1,...,ik
(x1, . . . , xn) ⇐⇒ ∃ȳ1∀ȳ2 . . .QȳαS(. . . , ψx(ui1), . . . , ψx(uik

), . . .) (32)

that is the arguments at the positions i1, . . . , ik are replaced by the values of ψx

applied to these arguments. This can be viewed as replacing the integer arguments

Walid Gomaa: Rational vs. real computation 649

at these locations by (a representation of) the real number x. By convention if k = 0,
we take Rψx

i1,...,ik
to be the original oracle-less relation R. For every α ∈ N, define

Σψx
α = {Rψx

i1,...,ik
: R ∈ Σα, k ∈ N, 1 ≤ i1 < · · · < ik ≤ arity(S), S ∈ Σ0 used to define R}

(33)
Define Πψx

α and ∆ψx
α in a similar manner and let AHψx denote the resulting

version of the arithmetical hierarchy.
The following theorem establishes ∆ψx

2 as an upper bound for the rational-real
computational equivalence.

Theorem 10. Assume a continuous function f : D → D. Let f̃ be the
extension of f to the reals. Then f and f̃ are computationally equivalent moduluo a
∆ψx

2 oracle (that is, the computability of one implies the computability of the other
relative to a ∆ψx

2 oracle).

Proof. Assume f is computable, then we need to show that f̃ is computable relative
to a ∆ψx

2 oracle. Assume an arbitrary x ∈ R and assume an arbitrary Cauchy sequence
ψx for x. By the continuity of f we have

f̃(x) = lim
n→∞

f(ùψx(n)) (34)

Define a binary relation R ⊆ N2 as follows:

R(i, j) ⇐⇒ ∃k∀l(l ≥ k → |f(ól)−ói| ≤ 2−j) (35)

By the computability of f , R is a Σ2 relation with the computable relation
S(i, j, k, l) ≡ l ≥ k → |f(ól)−ói| ≤ 2−j used to define it. Define an Σψx

2 real variation
of R as follows:

Rψx

4 (i, j) ⇐⇒ ∃k∀l(l ≥ k → |f(ùψx(l))−ói| ≤ 2−j) (36)

By the continuity of f , Rψx

4 can be redefined as a Πψx

2 relation:

Rψx

4 (i, j) ⇐⇒ ∀k∃l(l ≥ k ∧ |f(ùψx(l))−ói| ≤ 2−j) (37)

Hence, Rψx

4 is a ∆ψx

2 relation. For any pair of numbers i, j ∈ N, if it is the case
that Rψx

4 (i, j) holds then Equation (34) and Equation (36) imply

|f̃(x)−ói| ≤ 2−j (38)

Hence, given Rψx

4 as an oracle, f̃(x) can be computed with a precision argument
n as follows:

- let i = 0,
- repeat forever

- if R(i, n) holds then output ói and exit (see Equation (38).
- else let i = i + 1,

650 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

For the other direction assume that f̃ is computable, then we need to show that
f is computable relative to a ∆2 oracle. Notice that by definition f̃ preserves D. By
the computability of f̃ there exists an oracle Turing machine M () such that for every
x ∈ R, for every Cauchy sequence ϕx ∈ CFx, and every n ∈ N the following holds:

|Mϕx

(n)− f̃(x)| ≤ 2−n (39)

Let d ∈ D and assume a Cauchy sequence ϕ∗d for d defined by: ϕ∗d(i) = b2idc
2i for

every i ∈ N. Let N be a Turing machine that simulates the operation of M
ϕ∗

d (n), that

is N(d, n) = M
ϕ∗

d (n) and during the operation of N it simulates the query-answer
step simply by computing ϕ∗d(i). Define a Π1 relation R ⊆ N2 as follows:

R(i, j) ⇐⇒ ∀l|ój −N(ói, l)| ≤ 2−l, note that this implies f(ói) = ój (40)

Then R is also a Σ2 relation and can be redefined as a Π2 relation

R(i, j) ⇐⇒ ∀k∃l(l ≥ k ∧ |ój −N(ói, l)| ≤ 2−l) (41)

Hence, R is a ∆2 relation. Using R as an oracle the function f(x) can be computed
as follows:

- let j = 0,
- let i ∈ N be such that x = ói,
- repeat forever

- if R(i, j) holds then output ój and exit (see Equation (40)).
- else let j = j + 1,

This completes the proof of the theorem.
The previous theorem established ∆2 as an upper bound for the rational-real

computational equivalence, the following one completes this result by showing that
∆2 is also a lower bound. Hence, ∆2 is a tight bound for such equivalence.

Theorem 11. There is a continuous function h : D2 → D such that h is
computable and the extension of h to the reals is not computable relative to any
oracle strictly weaker than ∆ψx

2 .

Proof. Assume an arbitrary ∆2 set A ⊆ N such that A is not in the first level of
the arithmetical hierarchy. Then by Theorem 9 there exists a computable function
g : N2 → N such that cA(k) = limj→∞ g(j, k). Let θ be a computable irrational
number and let s̄l =

di

l ∈ D : i ∈ N, di
l < θ

�
and s̄r =

di

r ∈ D : i ∈ N, di
r > θ

�
be two

computable sequences that effectively converge to θ: limi→∞ di
l = limi→∞ di

r = θ.
Define a function h : D2 → D as follows:

h(x, y) =

8><>:g(j, y) y ∈ N, x = dj
l

g(j, y) y ∈ N, x = dj
r

piecewise linear otherwise

(42)

By the computability of g we can easily deduce that h is computable. Let h̃

be the extension of h to the reals. Then for any k ∈ N we have h̃(θ, k) is either 0
or 1 depending on whether or not k ∈ A. By the definition of A and since θ is a
computable real number, h̃ is only computable relative to ∆ψx

2 oracle. ¤

Walid Gomaa: Rational vs. real computation 651

7 Conclusion and Future Work

A theoretical foundation of computation over the real numbers has been
investigated since the early days of digital and analog computation. Different
research schools have emerged ranging from non-constructive approaches motivated
by the algebraic models of computation such as the BSS stream of models to the
constructive ones such as computable analysis; and ranging from discrete-time
discrete-space Turing machines to continuous-time analog models such as the GPAC.

Among these different approaches computable analysis seems to be the most
practical and most widely accepted. A representation theory was developed by C.
Kreitz and K. Weihrauch [1983] as a foundation for computable analysis. This theory
is based on the use of topological notions, in particular continuity and separable
spaces, to represent (hence approximate) the potentially infinite objects over which
computation is to be carried out. Concerning the real space, there are generally
several representations of real numbers of which the Cauchy sequence is the most
widely used and hence adopted in this article. This representation corresponds to the
standard topology over the real line.

Any representation of a computable metric space depends on the existence of
an effectively enumerable countable dense subset of the space. This being the
rationals in the real Euclidean space; for example, a Cauchy sequence representing
some x ∈ R is a sequence of rational numbers that converge to x. In this article we
have investigated the transition phenomena between the computation concept over
the representing set of rational numbers and the corresponding concept over the
represented set of real numbers. This was motivated by: (1) the importance of
rational numbers in defining, and making possible, the computation concept over
the reals; in some sense real computation can be considered as the completion of a
sequence of rational computations, (2) the transition phenomena arising in
theoretical computer science are interesting topics of research that can be
interrelated, for example, with physical transition phenomena, and (3) to provide
more understanding and deeper insights into the nature of real computation and
generally the nature of computation over any space containing infinite objects; this
can be used, for example, in the effort towards giving an algebraic
machine-independent characterizations of the feasible real complexity classes, in
particular the class of polynomial time computable real functions.

As a result of such investigation we have found an inherent conceptual
discrepancy between real computation and its foundational rational computation.
This was manifested by the incompatibility of the corresponding computable and
complexity-theoretic classes. For example, there exist computable
rational-preserving real functions whose restrictions to the rationals are not
computable and vice versa there exist computable continuous rational functions
whose extensions to the reals are not computable. Similar results hold on the
complexity level. The constructions used in the proofs were very explicit in
justifying why such discrepancies exist. On one hand real computation is
approximate which makes it very robust with regard to computability and efficiency
considerations whereas the exactness and rigidity of rational computation make it
very sensitive to such considerations. On the other hand this robustness of real
computation requires computable knowledge of neighborhoods (small open balls) of

652 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

the points being computed which might not be available or hard to extract, in
particular at the irrational points.

A question that follows directly from the discovery of such discrepancy between
rational and real computability is how deep this gap is; in other words, can this gap
be quantified? In order to resolve this issue we resorted to relative computation:
the use of oracles from the arithmetical hierarchy. We have shown that ∆2 oracles,
that is the second level of the arithmetical hierarchy, are enough to achieve rational-
real computational equivalence. More precisely, we have shown that: if a continuous
rational function is computable, then its extension to the reals is computable relative
to a ∆2 oracle, and vice versa. Even stronger ∆2 has been shown to be a lower bound
for this rational-real computational equivalence, hence it is a tight bound. From
another perspective these results can be viewed as an extension of the Shoenfield’s
Limit Lemma from classical recursion theory to the computable analysis context. The
classical Shoenfield’s Limit Lemma characterizes a ∆2 set as the limit of a computable
function over the integers.

Several research directions can be pursued. A function algebra is the smallest
class of functions containing a set of basic functions and their closure under a finite
set of operations. Many computable analysis classes of functions have been captured
by function algebras which have the advantage of giving natural
machine-independent characterizations of such classes. However, as far as we know,
no such characterizations of the feasible computable analysis complexity classes, in
particular the polynomial time class, have been achieved. The work done in this
article can provide insights and starting points, for example, by first algebraically
characterize the appropriate classes of continuous rational functions taking into
consideration that their extensions to the reals still maintain the same
complexity-theoretic properties. Classes of rational functions can be syntactically
constructed based on ideas from the work done by S. Bellantoni and S. Cook in
1992[2] which defines an algebra of string functions that captures polynomial time
integer computation. A preliminary work towards developing a function algebra for
the computable analysis polynomial time class can be found in Ref. [12].

In this article we assumed the Cauchy sequence representation of real numbers.
Another possible research problem would be to investigate other kinds of
representations and see whether the above results still hold. An evidence that might
suggest the contrary, that is some of those results may not hold or at least have
weaker forms, is Proposition 4 which states the inequivalence of the left cut and
Cauchy sequence representations with regard to the polynomial time complexity
class. Representations that may be considered include left cuts, binary expansions,
p-adic expansions, continued fractions, etc[35,36].

Generalizations of the results obtained in this article can be worked out in other
computable metric spaces with possible different representations (and hence different
induced notions of computation over such spaces). One example could be the class
of probability measures over the Borel subsets of [0, 1] which had been studied in
Ref. [34].

In Section 6 we have tightly bounded the rational-real computability gap by
relativizing to ∆2 oracles. Similarly, we need to investigate whether we can bound
the complexity gap. More concretely, given a continuous function f over the rationals

Walid Gomaa: Rational vs. real computation 653

that is, for example, computable in polynomial time. Then can we have an upper
bound on the complexity of the extension of f to the reals? Conversely, we can ask the
same question starting from a known complexity over the reals and then restricting
to the rationals.

References

[1] Allender E, Loui M, Regan K. Complexity theory. In: Tucker A, ed. Computer Science

Handbook. CRC Press. 2004. 83–112.

[2] Bellantoni S, Cook S. A new recursion-theoretic characterization of the polytime functions.

Computational Complexity, 1992, 2: 97–110.

[3] Blum L, Cucker F, Shub M, Smale S. Complexity and real computation(1 edition). Springer.

1997.

[4] Blum L, Shub M, Smale S. On a theory of computation over the real numbers; NP completeness,

recursive functions and universal machines. Bulletin of the American Mathematical Society,

1989, 21(1): 1–46.

[5] Bournez O, Hainry E. Recursive analysis characterized as a class of real recursive functions.

Fundamenta Informaticae, 2006, 74(4): 409–433.

[6] Campagnolo M. Computational complexity ofreal valued recursive functions and analog circuits

[PhD thesis]. Instituto Superior Técnico, 2001.

[7] Campagnolo M, Moore C. Upper and lower bounds on continuous-time computation. In:

Antoniou I, Calude C, Dinneen M, eds. Second International Conference on Unconventional

Models of Computation. Springer-Verlag. 2001. 135–153.

[8] Campagnolo M, Moore C, Costa J. Iteration, inequalities, and differentiability in analog

computers. Journal of Complexity, 2000, 16(4): 642–660.

[9] Campagnolo M, Ojakian K. The elementary computable functions over the real numbers:

applying two new techniques. Archives for Mathematical Logic, 2008, 46(7–8): 593–627.

[10] Gakwaya J. A survey of the grzegorczyk hierarchy and its extension through the BSS model of

computability [Technical report]. Royal Holloway, University of London. 1997. NeuroCOLT

Technical Report Series.

[11] Gomaa W. Characterizing polynomial time computability of rational and real functions. In:

Cooper B, Danos V, eds. Proc. of DCM 2009, volume 9 of Electronic Proc. in Theoretical

Computer Science. 2009. 54–64.

[12] Gomaa W. Polynomial Time Computation in the Context of Recursive Analysis. LNCS 6324,

2010. 146–162.

[13] Graça D. The general purpose analog computer and recursive functions over the reals [Master’s

thesis]. Instituto Superior Técnico, 2002.

[14] Graça DS. Some recent developments on Shannon’s general purpose analog computer.

Mathematical Logic Quarterly, 2004, 50: 473–485.

[15] Graça DS, Costa JF. Analog computers and recursive functions over the reals. Journal of

Complexity, 2003, 19(5): 644–664.

[16] Grzegorczyk A. Computable functionals. Fundamenta Mathematicae, 1955, 42: 168–202.

[17] Hoyrup M, Rojas C. An application of Martin-Löf randomness to effective probability theory.

Proc. of CiE 2009. Springer. 2009.

[18] Hoyrup M, Rojas C. Applications of effective probability theory to Martin-Löf randomness.

Proc. of ICALP 2009. Springer. 2009.

[19] Kawamura A. Differential recursion. ACM Trans. on Computational Logic, 2009, 10(3): 1–20.

[20] Ko KI. Complexity Theory of Real Functions. Birkhäuser. 1991.

[21] Kreitz C, Weihrauch K. A unified approach to constructive and recursive analysis. Computation

and Proof Theory, volume 1104 of Lecture Notes in Mathematics. Springer. 1984. 259–278.

[22] Kreitz C, Weihrauch K. Theory of representations. Theoretical Computer Science, 1985, 38:

35–53.

[23] Lacombe D. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs

variables réelles III. Comptes Rendus de l’Académie des sciences Paris, 1955, 241: 151–153.

654 International Journal of Software and Informatics, Volume 7, Issue 4 (2013)

[24] Lipshitz L, Rubel LA. A differentially algebraic replacement theorem, and analog computability.

Proc. of the American Mathematical Society, 1987, 99(2): 367–372.

[25] Loff B, Costa J, Mycka J. Computability on reals, infinite limits and differential equations.

Applied Mathematics and Computation, 2007, 191(2): 353–371.

[26] Meer K, Michaux C. A survey on real structural complexity theory. Bulletin of the Belgian

Mathematical Society, 1997, 4(1): 113–148.

[27] Moore C. Recursion theory on the reals and continuous-time computation. Theoretical

Computer Science, 1996, 162(1): 23–44.

[28] Mycka J, Costa J. Real recursive functions and their hierarchy. Journal of Complexity, 2004,

20(6): 835–857.

[29] Odifreddi P. Classical Recursion Theory. North Holland. 1999.

[30] Pour-El. Abstract computability and its relation to the general purpose analog computer.

Trans. of the American Mathematical Society, 1974, 199: 1–28.

[31] Shannon CE. Mathematical Theory of the Differential Analyzer. Journal of Mathematics and

Physics MIT, 1941, 20: 337–354.

[32] Stockmeyer L. Classifying the computational complexity of problems. The journal of symbolic

logic, 1987, 52(1).

[33] Turing A. On Computable Numbers, With an Application to the Entscheidungsproblem. Proc.

of the London Mathematical Society, 1936, 2(42): 230–265. (correction ibid. 1937. 43. 544–

546).

[34] Weihrauch K. Computability on the probability measures on the borel sets of the unit interval.

Theoretical Computer Science, 1999, 219: 421–437.

[35] Weihrauch K. Computable Analysis: An Introduction. Springer, 2000.

[36] Zheng X. A Computability Theory of Real Numbers. LNCS 3988, 2006. 584–594.

