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Abstract We present a novel methodology for the analysis of activities engaged in an

organization such as the research conducted in a University department by mapping them

to a related hierarchical taxonomy such as Classification of Computer Subjects by ACM

(ACM-CCS). We start by collecting data of activities of the individual components of the

organization and present them as the components fuzzy membership profiles over the sub-

jects of the taxonomy. Our method generalizes the profiles in two steps. First step finds

fuzzy clusters of taxonomy subjects according to the working of the organization. Second,

each cluster is mapped to higher ranks of the taxonomy in a parsimonious way. Each of

the steps is formalized and solved in a novel way. We build fuzzy clusters of the taxonomy

leaves according to the similarity between individual profiles by using a novel, additive spec-

tral, fuzzy clustering method that involves a number of model-based stopping conditions,

in contrast to other methods. As the found clusters are not necessarily consistent with the

taxonomy, each is considered as a query set. To lift a query set to higher ranks of the tax-

onomy, we develop an original recursive algorithm for minimizing a penalty function that

involves “head subjects” on the higher ranks of the taxonomy together with their “gaps”

and “offshoots”. The method is illustrated by applying it to real-world data.
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1 Introduction

The last decade has witnessed an unprecedented rise of the concept of ontology
as a computationally feasible tool for knowledge management. For example, the usage
of Gene Ontology[6] for interpretation and annotation of various gene sets and gene
expression data is becoming a matter of routine in bioinformatics (see, for example,
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[21] and references therein). Taxonomies, that is, hierarchically organized sets of
concepts are an important ingredient of ontologies.

The goal of this paper is to develop a framework for representation of the activities
of an organization or any other system under consideration, in terms of a taxonomy
of the field. We first build profiles for entities constituting the system in terms of
the taxonomy topics and then thematically g eneralize them to higher ranks of the
taxonomy.

To represent a functioning structure over a taxonomy is to indicate those topics
in the taxonomy that most fully express the structure’s working in its relation to
the taxonomy. To make the representation thematically consistent and parsimonious,
we have developed a two-phase generalization approach. The first phase generalizes
over the system’s activities by building clusters of taxonomy topics according to the
functioning of the system. The second phase takes the clusters as query sets in the
taxonomy and parsimoniously maps them to higher ranks of the taxonomy. Both en-
tity profiles and thematic clusters derived at the first phase are fuzzy in order to better
reflect the real world objects, so that the mapping method applies to fuzzy clusters.
It should be pointed out that both building fuzzy profiles and finding fuzzy clus-
ters are research activities well documented in the literature; yet the issues involved
in this project led us to develop original schemes of our own including an efficient
method for fuzzy clustering combining the approaches of spectral and approximation
clustering[15].

We apply these constructions in two areas: (i) to visualize activities of Computer
Science research organizations; and (ii) to discern the complexes of mathematical
ideas according to classes taught in regular teaching courses in a university depart-
ment. We take the popular ACM Computing Classification System (ACM-CCS), a
conceptual four-level classification of the Computer Science subject area as a pre-
specified taxonomy for (i), and the three-layer Mathematics Subject Classification
MSC2010 developed by the Mathematical Reviews and Zentralblatt Mathematics
editors (see http://www.ams.org/mathscinet/msc/msc2010.html), for (ii). In what
follows the focus is mainly on the application (i) to research organizations.

The paper is organized as follows. Section 2 describes an e-system we developed
for getting fuzzy membership profiles of Computer Science researchers’s activities
defined in terms of the leaves of the ACM-CCS taxonomy. Section 3 describes our
method FADDI-S for deriving fuzzy clusters from the profiles. Section 3.3 presents an
experimental comparison of FADDI-S with other fuzzy clustering methods on real and
generated data. Section 4 presents our parsimonious lifting method to map a query
set to higher ranks in a taxonomy tree, and Section 5 describes the application of the
approach to some real world data. The conclusion and future work are in Section 6.

2 Taxonomy-Based Profiles

2.1 ACM-CCS taxonomy and its usage

In the case of investigation of activities of a university department or research
center, a research team’s profile can be defined as a fuzzy membership function on
the set of leaf-nodes of the taxonomy under consideration so that the memberships
reflect the extent of the team’s effort put into corresponding research topics.
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In this case, the ACM Computing Classification System (ACM-CCS)[1] is used as
the taxonomy. ACM-CCS comprises eleven major partitions (first-level subjects) such
as B. Hardware, D. Software, E. Data, G. Mathematics of Computing, H. Information

Systems, etc. These are subdivided into 81 second-level subjects. For example, item I.

Computing Methodologies consists of eight subjects including I.1 SYMBOLIC AND

ALGEBRAIC MANIPULATION, I.2 ARTIFICIAL INTELLIGENCE, I.5 PATTERN

RECOGNITION, etc. They are are further subdivided into third-layer topics as, for
instance, I.5 PATTERN RECOGNITION which is represented by seven topics including
I.5.3 Clustering, I.5.4 Applications, etc.

Taxonomy structures such as the ACM-CCS are used, mainly, as devices for
annotation and search for documents or publications in collections such as that on
the ACM portal[1]. The ACM-CCS tree has been applied also as: (i) a gold standard
for ontologies derived by web mining systems such as the CORDER engine[26]; (ii)
a device for determining the semantic similarity in information retrieval[12] and e-
learning applications[17, 5]; and (iii) a device for matching software practitioners’ needs
and software researchers’ activities[4].

Here we concentrate on a different application of ACM-CCS – a generalized
representation of a Computer Science research organization that can be used for
various goals such as: (i) overviewing scientific subjects that are being developed in
the organization, (ii) assessing the scientific issues in which the character of activities
in organizations does not fit well onto the classification – these can potentially be
the growth points, and (iii) help with planning the restructuring of research and
investment.

2.2 E-Screen survey tool

Fuzzy membership profiles are derived from either automatic analysis of docu-
ments posted on the web by the teams or by explicitly surveying the members of the
department. The latter option is especially convenient in situations in which the web
contents do not properly reflect the developments, for example, in non-English speak-
ing countries with relatively underdeveloped internet infrastructures for the mainte-
nance of research results. We have developed an interactive survey tool that provides
two types of functionality: i) collection of data about ACM-CCS based research pro-
files of individual members; ii) statistical analysis and visualization of the data and
results of the survey on the level of a department. The respondent is asked to select
up to six topics among the leaf nodes of the ACM-CCS tree and assign each with
a percentage expressing the proportion of the topic in the total of the respondent’s
research activity for, say, the past four years. This describes the respondent’s activity
fuzzy membership profile. Figure 1 shows a screenshot of the baseline interface for a
respondent who has chosen six ACM-CCS topics during her survey session.

The set of profiles supplied by respondents forms an N × M matrix F where
N is the number of ACM-CCS topics involved in the profiles and M the number
of respondents. Each column of F is a fuzzy membership function, rather sharply
delineated because only six topics may have positive memberships in each of the
columns.
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Figure 1. Screenshot of the interface survey tool for selection of ACM-CCS topics.

3 Representing Research Organization by Fuzzy Clusters of ACM-CCS
Topics

3.1 Deriving similarity between ACM-CCS research topics

We represent a research organization by clusters of ACM-CCS topics to reflect
thematic communalities between activities of members or teams working on these
topics. The clusters are found by analyzing similarities between topics according to
their appearances in the profiles. The more profiles contain a pair of topics i and j

and the greater the memberships of these topics, the greater is the similarity score
for the pair.

Consider a set of V individuals (v = 1, 2, · · · , V ), engaged in research over some
topics t ∈ T where T is a pre-specified set of scientific subjects. The level of research
effort by individual v in developing topic t is evaluated by the membership ftv in
profile fv (v = 1, 2, · · · , V ).

Then the similarity wtt′ between topics t and t′ is defined as

wtt′ =
V∑

v=1

nv

nmax
ftvft′v, (1)

where the ratios of the number of topics chosen by individual v, nv, and nmax, the
maximum nv over all v = 1, 2, · · · , V , are introduced to balance the scores of individ-
uals bearing different numbers of topics.

To make the cluster structure in the similarity matrix sharper, we apply the
spectral clustering approach to pre-process the similarity matrix W using the so-
called Laplacian transformation[11]. First, an N × N diagonal matrix D is defined,
with (t, t) entry equal to dt =

∑
t′∈T wtt′ , the sum of t’s row of W. Then unnormalized

Laplacian and normalized Laplacian are defined by equations L = D −W and Ln =
D−1/2LD−1/2, respectively. Both matrices are semipositive definite and have zero
as the minimum eigenvalue. The minimum non-zero eigenvalues and corresponding
eigenvectors of the Laplacian matrices are utilized then as relaxations of combinatorial
partition problems[23, 11]. Of comparative properties of these two normalizations,
the normalized Laplacian, in general, is considered superior[11]. Since the additive
clustering approach described in the next section relies on maximum rather than
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minimum eigenvalues, we use the Laplacian PseudoINverse transformation, Lapin for
short, defined by

L+
n (W ) = Z̃Λ̃−1Z̃ ′

where Λ̃ and Z̃ are defined by the spectral decomposition Ln = ZΛZ ′ of matrix
Ln = D−1/2(D − W )D−1/2. To specify these matrices, first, set T ′ of indices of
elements corresponding to non-zero elements of Λ is determined, after which the
matrices are taken as Λ̃ = Λ(T ′, T ′) and Z̃ = Z(:, T ′). The choice of the Lapin
transformation can be explained by the fact that it leaves the eigenvectors of Ln

unchanged while inverting the non-zero eigenvalues λ 6= 0 to those 1/λ of L+
n . Then

the maximum eigenvalue of L+
n is the inverse of the minimum non-zero eigenvalue λ1

of Ln, corresponding to the same eigenvector.

3.2 Additive-Spectral fuzzy clustering

In spite of the fact that many fuzzy clustering algorithms have been developed
already[2, 10], most of them are ad hoc and, moreover, they all involve manually spec-
ified parameters such as the number of clusters or threshold of similarity without
providing any guidance for choosing them. We apply a model-based approach of ad-
ditive clustering, combined with the spectral clustering approach, to develop a novel
fuzzy clustering method that is both adequate and supplied with model-based param-
eters helping to choose the right number of clusters.

Thematic similarities att′ between topics are but manifested expressions of some
hidden patterns within the organization which can be represented by fuzzy clusters
in exactly the same manner as the manifested scores in the definition of the similarity
wtt′ (1). We propose to formalize a thematic fuzzy cluster as represented by two
items: (i) a membership vector u = (ut), t ∈ T , such that 0 6 ut 6 1 for all t ∈ T ,
and (ii) an intensity µ > 0 that expresses the extent of significance of the pattern
corresponding to the cluster, within the organization under consideration. With the
introduction of the intensity, applied as a scaling factor to u, it is the product µu that
is a solution rather than its individual co-factors. Given a value of the product µut,
it is impossible to tell which part of it is µ and which ut. To resolve this, we follow
a conventional scheme: let us constrain the scale of the membership vector u on a
constant level, for example, by a condition such as

∑
t ut = 1 or

∑
t u2

t = 1, then the
remaining factor will define the value of µ. The latter normalization better suits the
criterion implied by our fuzzy clustering method and, thus, is accepted further on.

Our additive fuzzy clustering model follows that of [22, 13, 20] and involves K

fuzzy clusters that reproduce the pseudo-inverted Laplacian similarities att′ up to
additive errors according to the following equations:

att′ =
K∑

k=1

µ2
kuktukt′ + ett′ , (2)

where uk = (ukt) is the membership vector of cluster k, and µk its intensity.
The item µ2

kuktukt′ is the product of µkukt and µkukt′ expressing participation
of t and t′, respectively, in cluster k. This value adds up to the others to form the
similarity att′ between topics t and t′. The value µ2

k summarizes the contribution of
the intensity and will be referred to as the cluster’s weight.
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To fit the model in (2), we apply the least-squares approach, thus minimizing
the sum of all e2

tt′ . Since A is definite semi-positive, its first K eigenvalues and
corresponding eigenvectors form a solution to this if no constraints on vectors uk

are imposed. Additionally, we apply the one-by-one principal component analysis
strategy for finding one cluster at a time this makes the computation feasible and is
crucial for determining the number of clusters. Specifically, at each step, we consider
the problem of minimization of a reduced to one fuzzy cluster least-squares criterion

E =
∑

t,t′∈T

(btt′ − ξutut′)2 (3)

with respect to unknown positive ξ weight (so that the intensity µ is the square root
of ξ) and fuzzy membership vector u = (ut), given similarity matrix B = (btt′).

At the first step, B is taken to be equal to A. Each found cluster changes B

by subtracting the contribution of the found cluster (which is additive according to
model (2)), so that the residual similarity matrix for obtaining the next cluster is
equal to B − µ2uu′ where µ and u are the intensity and membership vector of the
found cluster. In this way, A indeed is additively decomposed according to formula
(2) and the number of clusters K can be determined in the process.

Let us specify an arbitrary membership vector u and find the value of ξ mini-
mizing criterion (3) at this u by using the first-order optimality condition:

ξ =

∑
t,t′∈T btt′utut′∑

t∈T u2
t

∑
t′∈T u2

t′
,

so that the optimal ξ is

ξ =
u′Bu

(u′u)2
(4)

which is obviously non-negative if B is semi-positive definite.
By putting this ξ in equation (3), we arrive at

E =
∑

t,t′∈T

b2
tt′ − ξ2

∑

t∈T

u2
t

∑

t′∈T

u2
t′ = S(B)− ξ2 (u′u)2 ,

where S(B) =
∑

t,t′∈T b2
tt′ is the similarity data scatter.

Let us denote the last item by

G(u) = ξ2 (u′u)2 =
(

u′Bu
u′u

)2

, (5)

so that the similarity data scatter is the sum:

S(B) = G(u) + E (6)

of two parts, G(u), which is explained by cluster (µ,u), and E, which remains unex-
plained.

An optimal cluster, according to (6), is to maximize the explained part G(u) in
(5) or its square root
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g(u) = ξu′u =
u′Bu
u′u

, (7)

which is the celebrated Rayleigh quotient: its maximum value is the maximum eigen-
value of matrix B, which is reached at its corresponding eigenvector, in the uncon-
strained problem.

This shows that the spectral clustering approach is appropriate for our problem.
According to this approach, one should find the maximum eigenvalue λ and corre-
sponding normed eigenvector z for B, [λ, z] = Λ(B), and take its projection to the
set of admissible fuzzy membership vectors.

Our clustering approach involves a number of model-based criteria for halting
the process of sequential extraction of fuzzy clusters. The process stops if either is
true:

1. The optimal value of ξ (4) for the spectral fuzzy cluster becomes negative.

2. The contribution of a single extracted cluster to the data scatter becomes too
low, less than a pre-specified τ > 0 value.

3. The residual data scatter becomes smaller than a pre-specified ε value, say less
than 5% of the original similarity data scatter.

The described one-by-one Fuzzy ADDItive-Spectral thematic cluster extraction
algorithm is referred to as FADDI-S. It combines three different approaches: additive
clustering[22, 13, 20], spectral clustering[23, 11, 29], and relational fuzzy clustering[2, 3] and
adds an edge to each. In the context of additive clustering, fuzzy approaches were
considered only by [20], yet in a very restricted setting: (a) the clusters intensities
were assumed constant there, (b) the number of clusters was pre-specified, and (c)
the fitting method was very local and computationally intensive - these all restric-
tions are overcome in FADDI-S. The spectral clustering approach is overtly heuristic,
whereas FADDI-S is model-based. The criteria used in relational fuzzy clustering are
ad hoc whereas that of FADDI-S is model-based, and, moreover, its combined belong-
ingness function values µu are not constrained by the unity as is the case in relational
clustering, but rather follow the scales of the similarity relation under investigation,
which is in line with the original approach by L. Zadeh[28].

3.3 Experimental comparison of FADDI-S with other methods

Fuzzy clustering affinity data The affinity data is a relational similarity data
obtained from a feature based dataset using a semi-positive definite kernel, usually the
Gaussian one. Specifically, given an N×V matrix Y = (ytv), t ∈ T and v = 1, 2, ..., V ,
non-diagonal elements of the similarity matrix W are defined by equation

wtt′ = exp(−
∑V

v=1(ytv − yt′v)2

2σ2
),

with the diagonal elements made equal to zero, starting from founding papers[23, 18].
The value ss = 2σ2 is a user-defined parameter, that is pre-specified to make the
resulting similarities wtt′ spread over interval [0,1].
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To compare our approach with other methods for fuzzy clustering of affinity data,
we pick up an example from a recent paper by Brouwer[3]. This example concerns a
two-dimensional data set, that we refer to as Bivariate4, comprising four clusters gen-
erated from bivariate spherical normal distributions with the same standard deviation
950 at centers (1000, 1000), (1000,4000), (4000, 1000), and (4000, 4000), respectively.
The data forms a cloud presented in Fig. 2.

Figure 2. Bivariate4: the data of four bivariate clusters generated from

Gaussian distributions according to[3].

This data was analyzed in [3] by using the matrix D of Euclidean distances be-
tween the generated points. Five different fuzzy clustering methods have been com-
pared, three of them relational, by Roubens[19], Windham[24] and NERFCFM[7], and
two of fuzzy c-means (FCM) with different preliminary pre-processing options of the
similarity data into the entity-to-feature format, FastMap and SMACOF[3]. Of these
five different fuzzy clustering methods, by far the best results have been obtained with
method FCM applied to a five-feature set extracted from D with FastMap method[3].
The adjusted Rand index[9] of the correspondence between the generated clusters and
those found with the FCM over FastMap method is equal on average, of 10 trials,
0.67 (no standard deviation is reported in [3]).

To compare FADDI-S with these, we apply Gaussian kernel to the data generated
according to the Bivariate4 scheme and pre-processed by the z-score standardization
so that similarities, after z-scoring, are defined as aij = exp(−d2(yi, yj)/0.5) where
d is Euclidean distance. This matrix then is Lapin transformed to the matrix W to
which FADDI-S is applied.

To be able to perform the computation using a PC MatLab, we reduce the
respective sizes of the clusters, 500, 1000, 2000, and 1500 totaling to 5000 entities
altogether in [3], tenfold to 50, 100, 200 and 150 totaling to 500 entities. The issue is
of doing a full spectral analysis of the square similarity matrices of the entity set sizes,
which we fail to do with our PC MatLab versions at a 5000 strong dataset. We also
experimented with fivefold and twofold size reductions. This should not much change
the results because of the properties of smoothness of the spectral decompositions[8].

Indeed, one may look at a 5000 strong random sample as a combination of two
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2500 strong random samples from the same population. Consider a randomly gener-
ated N × 2 data matrix X of N bivariate rows, thus leading to Lapin transformed
N × N similarity matrix W . If one doubles the data matrix by replicating X as
XX = [X;X], in MatLab notation, which is just a 2N ×2 data matrix consisting of a
replica of X under X, then its Lapin transformed similarity matrix will be obviously
equal to

WW =
[

W W

W W

]

whose eigenvectors are just doubles (z, z) of eigenvectors z of W . If the second part
of the double data matrix XX slightly differs from X, due to sampling errors, then
the corresponding parts of the doubled similarity matrix and eigenvectors also will
slightly differ from those of WW and (z, z). Therefore, the property of stability of
spectral clustering results[8] will hold for thus changed parts. This argument equally
applies to the case when the original sample is supplemented by four or nine samples
from the same population.

In our computations, five consecutive FADDI-S clusters have been extracted for
each of randomly generated ten Bivariate4 datasets. The very first cluster has been
discarded as reflecting just the general connectivity information, and the remaining
four were defuzzified into partitions so that every entity is assigned to its maximum
membership class. The average values of the Adjusted Rand index, along with the
standard deviations at Bivariate4 dataset versions of 500, 1000, and 2500 generated
bivariate points are presented in Table 1 for FADDI-S. The results support our view
that the data set size is not important if the proportions of the cluster structure are
maintained. According to the table, FADDI-S method achieves better results than
the ones obtained by the five fuzzy clustering methods reported in [3].

Table 1 Adjusted Rand index values for FADDI-S at different sizes of

Bivariate4 dataset

Size Adjusted Rand index Standard deviation

500 0.70 0.04

1000 0.70 0.03

2500 0.73 0.01

A remark:
The entity-to-feature format of the Bivariate4 data suggests that relational cluster

analysis is not necessarily the best way to analyze it; a genuine data clustering method
such as K-Means may bring better results. Indeed, an application of the ”intelligent”
K-Means method from [12] to the original data size of N = 5000 has brought results
with the average adjusted Rand index of 0.75 (the standard deviation 0.045), which
is both higher and more consistent than the relational methods applied here and in
[3].

Finding community structure The research in finding community struc-
ture in ordinary graphs has been a subject of intense research (see, for example,
[17, 16, 25, 11]). The graph with a set of vertices T is represented by the similarity
matrix A = (att′) between graph vertices such that att′ = 1 if t and t′ are connected
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by an edge, and att′ = 0, otherwise. Then matrix A is symmetrized by the transfor-
mation (A + A′)/2 after which all diagonal elements are made zero, att = 0 for all
t ∈ T . We assume that the graph is connected; otherwise, its connected components
are to be treated separately.

The spectral relaxation involves subtraction of the “background” random inter-
actions from similarity matrix A = (att′). The random interactions are defined with
the same within-row summary values dt =

∑
t′∈T att′ as those used in Laplace matri-

ces. The random interaction between t and t′ is defined as the product dtdt′ divided
by the total number of edges[16]. The modularity criterion is defined as a usual, non-
normalized cut, that is the summary similarity between clusters to be minimized,
with thus transformed similarity data[16]. The modularity criterion has proven good
in crisp clustering. This approach was extended to fuzzy clustering in the space of
the first eigenvectors in [29].

Our approach allows for a straightforward application of FADDI-S algorithm to
the network similarity matrix A. It also involves a transformation of the similarity
data which is akin to the subtraction of background interactions in the modularity
criterion[16]. Indeed we find initially the eigenvector z1 corresponding to the maximum
eigenvalue λ1 of A itself. As is well known, this vector is positive because the graph is
connected. Thus z1 forms a fuzzy cluster itself, because it is conventionally normed.
We do not count it as part of the cluster solution, though, because it expresses just
the fact that all the entities are part of the same network. Thus, we proceed to the
residual matrix with elements att′ − λ1z1tz1t′ . We expect the matrix A to be rather
”thin” with respect to the number of positive eigenvalues, which should allow for a
natural halting the cluster extracting process when there are no positive eigenvalues
at the residual matrix W .

We apply the FADDI-S algorithm to Zachary karate club network data, which
serves as a prime test bench for community finding algorithms. This ordinary graph
consists of 34 vertices, corresponding to members of the club and 78 edges between
them - the data and references can be found, for example, in [17, 29]. The members
of the club are divided according to their loyalties toward the club’s two prominent
individuals: the administrator and instructor. Thus the network is claimed to consist
of two communities, with 18 and 16 differently loyal members respectively.

Applied to this data, FADDI-S leads to three fuzzy clusters to be taken into
account. Indeed, the fourth cluster accounts for just 2.4% of the data scatter, which
is less than the inverse of the number of entities τ = 1/34, reasonably suggested as
a natural threshold value. Some characteristics of the found solution are presented
in Table 2. All the membership values of the first cluster are positive - as mentioned
above, this is just the first eigenvector; the positivity means that the network is well
connected. The second and third FADDI-S clusters match the claimed structure of
the network: they have 16 and 18 positive components, respectively, corresponding
to the two observed groupings.

Table 2 Characteristics of Karate club clusters found with FADDI-S

Cluster Contribution, % λ1 Weight Intensity

I 29.00 3.36 3.36 1.83

II 4.34 2.49 1.30 1.14

III 4.19 2.00 0.97 0.98
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Let us compare our results with those of a recent spectral fuzzy clustering method
developed in [29]. The latter method finds three fuzzy clusters, two of them represent-
ing the groupings, though with a substantial overlap between them, and the third,
smaller, cluster consisting of members 5,6,7,11,17 of just one of the groupings – see
[29], p. 487. We think that this latter cluster may have come up from an eigenvector
embracing the members with the largest numbers of connections in the network. It
seems for certain that FADDI-S outperforms the method of [29] on Zachary club data.

4 Parsimonious lifting method

To generalize the contents of a thematic cluster, we propose a method for lifting
it to higher ranks of the taxonomy so that if all or almost all children of a node in
an upper layer belong to the cluster, then the node itself is taken to represent the
cluster at this higher level of the ACM-CCS taxonomy (see Fig.3). Depending on
the extent of inconsistency between the cluster and the taxonomy, such lifting can
be done differently, leading to different portrayals of the cluster on ACM-CCS tree
depending on the relative weights of the events taken into account. A major event is
the so-called “head subject”, a taxonomy node covering (some of) leaves belonging to
the cluster, so that the cluster is represented by a set of head subjects. The penalty
of the representation to be minimized is proportional to the number of head subjects
so that the smaller that number the better. Yet the head subjects cannot be lifted
too high in the tree because of the penalties for associated events, the cluster “gaps”
and “offshoots”, where their number depends on the extent of inconsistency of the
cluster versus the taxonomy.

Figure 3. Two clusters of second-layer topics, presented with checked and diagonal-lined

boxes, respectively. The checked box cluster fits within one first-level category (with one gap

only), whereas the diagonal line box cluster is dispersed among two categories on the right.

The former fits the classification well; the latter does not.

The gaps are head subject’s children topics that are not included in the cluster.
An offshoot is a taxonomy leaf node that is a head subject (not lifted). It is not difficult
to see that the gaps and offshoots are determined by the head subjects specified in
an lifting (see Fig.4).

The total count of head subjects, gaps and offshoots, each weighted by both
the penalties and leaf memberships, is used for scoring the extent of the cluster misfit
needed for lifting a grouping of research topics over the classification tree. The smaller
the score, the more parsimonious the lifting and the better the fit. Depending on the
relative weighting of gaps, offshoots and multiple head subjects, different liftings can
minimize the total misfit, as illustrated in Fig.6 later.
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Figure 4. Three types of features in lifting a subject cluster within taxonomy.

Altogether, the set of topic clusters together with their optimal head subjects,
offshoots and gaps constitute a parsimonious representation of the organization. Such
a representation can be easily accessed and expressed. It can be further elaborated by
highlighting those subjects in which members of the organization have been especially
successful (i.e., publication in best journals or awards) or distinguished by a special
feature (i.e., industrial use or inclusion in a teaching program). Multiple head subjects
and offshoots, when they persist at subject clusters in different organizations, may
show some tendencies in the development of the science, that the classification has
not taken into account yet.

We have proved that a parsimonious lift of a subject cluster can be achieved by
recursively building a parsimonious representation for each node of the ACM-CCS
tree based on parsimonious representations for its children. In this, we assume that
any head subject is automatically present at each of the nodes it covers, unless they
are gaps (as presented in Fig. 4). Our algorithm is set as a recursive procedure over
the tree starting at leaf nodes.

The procedure determines, at each node of the tree, sets of head subject gain
and gap events to iteratively raise them to those of the parents, under each of two
different assumptions that specify the situation at the parental node. One assumption
is that the head subject has been inherited at the parental node from its own parent,
and the second assumption is that it has not been inherited but gained in the node
only. In the latter case the parental node is labeled as a head subject. Consider the
parent-children system as shown in Fig. 5, with each node assigned with sets of gap
and head subject gain events under the two inheritance of head subject assumptions.

Figure 5. Events in a parent-children system according to a parsimonious lift scenario.

Let us denote the total penalty, to be minimized, under the inheritance and non-
inheritance assumptions by pi and pn, respectively. A lifting result at a given node
is defined by a pair of sets (H, G), representing the tree nodes at which events of
head subject gains and gaps, respectively, have occurred in the subtree rooted at the
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node. We use (Hi, Gi) and (Hn, Gn) to denote lifting results under the inheritance
and non-inheritance assumptions, respectively. The algorithm computes parsimonious
representations for parental nodes according to the topology of the tree, proceeding
from the leaves to the root in the manner which is similar to that described in [14]
for a mathematical problem in bioinformatics.

For the sake of simplicity, we present only a version of the algorithm for crisp
clusters obtained by a defuzzification step. Given a crisp topic cluster S, and penalties
h, o and g for being a head subject, offshoot and gap, respectively, the algorithm is
initialized as follows.

At each leaf l of the tree, either Hn = {l}, if l ∈ S, or Gi = {l}, otherwise.
The other three sets are empty. The penalties associated are pi = 0, pn = o if Hn

is not empty, that is, if l ∈ S, and pi = g, pn = 0, otherwise. This is obviously a
parsimonious arrangement at the leaf level.

The recursive step applies to any node t whose children v ∈ V have been assigned
with the two couples of H and G sets already (see Figure 5 at which V consists of
three children): (Hi(v), Li(v); Hn(v), Ln(v)) along with associated penalties pi(v)
and pn(v).

(I) Deriving the pair Hi(t) and Gi(t), under the inheritance assumption, the one
of the following two cases is to be chosen depending on the cost:

(a) The head subject has been lost at t, so that Hi(t) = ∪v∈V Hn(v) and Gi(t) =
∪v∈V Gn(v) ∪ {t}. (Note different indexes, i and n in the latter expression.) The
penalty in this case is pi = Σv∈V pn(v) + g;

or
(b) The head subject has not been lost at t, so that Hi(t) = ∅ (under the

assumption that no gain can happen after a loss) and Gi = ∪v∈V Gi(v) with pi =
Σv∈V pi(v).

The case that corresponds to the minimum of the two pi values is returned then.
(II) Deriving the pair Hn(t) and Gn(t), under the non-inheritance assumption,

the one of the following two cases is to be chosen that minimizes the penalty pn:
(a) The head subject has been gained at t, so that Hn(t) = ∪v∈V Hi(v)∪{t} and

Gn(t) = ∪v∈V Gi(s) with pn = Σv∈V pi(v) + h;
or (b) The head subject has not been gained at t, so that Hn(t) = ∪v∈V Hn(v)

and Gn = ∪v∈V Gn(v) with pn = Σv∈V pn(v).
After all tree nodes t have been assigned with the two pairs of sets, accept the
Hn, Ln and pn at the root. This gives a full account of the events in the tree.
This algorithm leads indeed to an optimal representation; its extension to a fuzzy

cluster is achieved through using the cluster memberships in computing the penalty
values at tree nodes.

5 An Application to a Real World Case

Let us illustrate the approach by using the data from surveys conducted in two
Computer Science organizations: (A) the research Centre of Artificial Intelligence,
Faculty of Science & Technology, New University of Lisboa (CENTRIA-UNL) and
(B) Department of Computer Science and Information Systems, Birkbeck, University
of London.
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Because one of the organizations, A, is a research center whereas the other, B, is
a university department, one should expect that the total number of research topics
in A is smaller than that in B, and, similarly, the number of clusters in A should be
less than that in B. Indeed, research centers are usually created for a limited set of
research goals, whereas university departments must cover a wide range of topics in
teaching, which necessarily affects the research efforts. These appear to be true: the
number of ACM-CCS topics scored in A is 46 versus 54 in B. With the algorithm
FADDI-S applied to the 46 × 46 and 54 × 54 similarity matrices, two fuzzy clusters
(in case of Center A) and four fuzzy clusters (in case of Department B) have been
sequentially extracted, after which the residual similarity matrix has become definite
negative (stopping condition (1) of FADDI-S).

To give the reader a feel of the results, the cluster membership values sorted in
the descending order are given in Table 3 for the research center A. For each of the
topics in the table, we present both its ACM-CCS code and the string attached to
it according to ACM-CCS. The sum of clusters’ contributions total to about 50% for
center A, and 60% for Department B, which is a good result for clustering.

Each of the found clusters are mapped to and lifted in the ACM-CCS tree by
applying the cluster lifting procedure with penalties for head subjects (h), offshoots
(o) and gaps (g) of: h = 1, o = 0.8, and g = 0.15. We summarize the results for
CENTRIA in Tables 4 and 5 showing the parsimonious representation of CENTRIA
clusters in terms of head subjects, offshoots, and gaps. Specifically, cluster 1 is of
‘Pattern Recognition’ and ‘Information Systems’ with offshoots including ‘Learning’,
‘Natural Language Processing’, ‘Applications’, ‘Physical Sciences and Engineering’.
Cluster 2 is of ‘Mathematics of Computing’ and its offshoots include ‘Mathematical
Logics’, ‘General in Artificial Intelligence’, ‘Deduction and theorem proving’ as well
as ‘Life and Medical Sciences’.

Figure 6 shows the representation of CENTRIA’s cluster 1 in the ACM-CCS
taxonomy with penalties of h = 1, o = 0.8, and g = 0.15, in terms of its head
subjects, gaps and offshoots (i.e. head subjects that are leafs).

The parsimonious representation of the four clusters found at the Department B
over the ACM-CCS tree corresponds to head subjects of ‘Software Engineering’ (clus-
ter 1), ‘Computer Applications’ (cluster 2), ‘Data Storage Representations’, ‘General
(in Information Systems)’, ‘General (in Computing Methodologies)’ (cluster 3), and
‘Theory of Computing’, ‘Artificial Intelligence’, ‘Pattern Recognition’ (cluster 4).

Overall these results are consistent with the informal assessment of the research
conducted in each of the research organizations. Moreover, the sets of research topics
that have been chosen by individual members at the ESSA survey follow the cluster
structure rather closely, falling mostly within one of them.

6 Conclusion

We have proposed a novel method for knowledge generalization that employs
a taxonomy tree. The method constructs fuzzy membership profiles of the entities
constituting the system under consideration in terms of the taxonomy leaves, and
then it generalizes them in two steps. These steps are:

(i) fuzzy clustering research topics according to their thematic similarities, ignor-
ing the topology of the taxonomy, and
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Table 3 FADDI-S results at data of similarity of research topics in CENTRIA

Cluster 1

Eigenvalue 46.50

Contribution 35.2%

Intensity 5.57

Weight 31.04

Membership Code Topic

0.69911 I.5.3 Clustering

0.3512 I.5.4 Applications in I.5 PATTERN RECOGNITION

0.27438 J.2 PHYSICAL SCIENCES AND ENGINEERING (Applications in)

0.1992 I.4.9 Applications in I.4 IMAGE PROCESSING AND COMPUTER VISION

0.1992 I.4.6 Segmentation

0.19721 I.2.6 Learning

0.17478 H.5.2 User Interfaces

0.17478 I.6.4 Model Validation and Analysis in I.6 SIMULATION AND MODELING

0.16689 I.2.7 Natural Language Processing

0.16689 I.5.1 Models in I.5 PATTERN RECOGNITION

0.14453 I.5.2 Design Methodology (Classifiers)

0.13646 H.5.0 General in H.5 INFORMATION INTERFACES AND PRESENTATION

0.13646 H.0 GENERAL in H. Information Systems

0.13646 H.4.0 General in H.4 INFORMATION SYSTEMS APPLICATIONS

0.02867 I.2.11 Distributed Artificial Intelligence

Cluster 2

Contribution 15.2%

Eigenvalue 32.90

Intensity 4.52

Weight 20.41

Membership Code Topic

0.46756 J.3 LIFE AND MEDICAL SCIENCES (Applications in)

0.40619 I.2.8 Problem Solving, Control Methods, and Search

0.34435 F.2.1 Numerical Algorithms and Problems

0.32681 F.4.1 Mathematical Logic

0.30067 G.1.6 Optimization

0.25967 D.3.3 Language Constructs and Features

0.23748 G.2.2 Graph Theory

0.18722 G.3 PROBABILITY AND STATISTICS

0.17359 B.2.3 Reliability, Testing, and Fault-Tolerance

0.17359 B.7.3 Reliability and Testing

0.17203 I.2.0 General in I.2 ARTIFICIAL INTELLIGENCE

0.1537 G.1.0 General in G.1 NUMERICAL ANALYSIS

0.11827 I.2.3 Deduction and Theorem Proving

0.10195 G.1.7 Ordinary Differential Equations

0.06175 K.2 HISTORY OF COMPUTING

0.00726 D.1.6 Logic Programming
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Table 4 Parsimonious representation of CENTRIA Cluster 1

HEAD SUBJECTS

H. Information Systems

I.5 PATTERN RECOGNITION

OFFSHOTS

I.2.6 Learning

I.2.7 Natural Language Processing

I.4.6 Segmentation

I.4.9 Applications

I.6.4 Model Validation and Analysis

J.2 PHYSICAL SCIENCES AND ENGINEERING

GAPS

H.1 MODELS AND PRINCIPLES

H.2 DATABASE MANAGEMENT

H.3 INFORMATION STORAGE AND RETRIEVAL

H.4.1 Office Automation

H.4.2 Types of Systems

H.4.3 Communications Applications

H.4.m Miscellaneous in H.4 - INFORMATION SYSTEMS APPLICATIONS

H.5.1 Multimedia Information Systems

H.5.3 Group and Organization Interfaces

H.5.4 Hypertext/Hypermedia

H.5.5 Sound and Music Computing

H.5.m Miscellaneous in H.5 - INFORMATION INTERFACES AND PRESENTATION (e.g., HCI)

H.m MISCELLANEOUS in H. - Information Systems

I.5.0 General in I.5 - PATTERN RECOGNITION

I.5.5 Implementation

I.5.m Miscellaneous in I.5 - PATTERN RECOGNITION

(ii) lifting clusters mapped to the taxonomy to higher ranked categories in the
tree.

These generalization steps thus cover both sides of the representation process:
the empirical – related to the structure under consideration – and the conceptual –
related to the taxonomy hierarchy.

Potentially, this approach could lead to a useful instrument for comprehensive
visual representation of developments in any field of organized human activities.

However, there are a number of issues remaining to be tackled. They relate to
all main aspects of the project: (a) data collection, (b) thematic clustering and (c)
lifting. On the data collection side, the mainly manual e-survey ESSA tool should
be supported by an automated analysis and rating of relevant research documents
including those on the internet. The FADDI-S method, although already experimen-
tally proven competitive to a number of existing methods, should be further explored
and more thoroughly investigated. The issue of defining right penalty weights for par-
simonious cluster lifting should be addressed. Moreover, further investigation should
be carried out with respect to the extension of this approach to more complex than
taxonomy, ontology structures.
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Table 5 Parsimonious representation of CENTRIA Cluster 2

HEAD SUBJECTS

G. Mathematics of Computing

OFFSHOOTS

B.2.3 Reliability, Testing, and Fault-Tolerance

B.7.3 Reliability and Testing

D.3.3 Language Constructs and Features

F.2.1 Numerical Algorithms and Problems

F.4.1 Mathematical Logic

I.2.0 General in I.2 - ARTIFICIAL INTELLIGENCE

I.2.3 Deduction and Theorem Proving

I.2.8 Problem Solving, Control Methods, and Search

J.3 LIFE AND MEDICAL SCIENCES

GAPS

G.0 GENERAL in G. - Mathematics of Computing

G.1.1 Interpolation

G.1.2 Approximation

G.1.3 Numerical Linear Algebra

G.1.4 Quadrature and Numerical Differentiation

G.1.5 Roots of Nonlinear Equations

G.1.8 Partial Differential Equations

G.1.9 Integral Equations

G.1.10 Applications

G.1.m Miscellaneous in G.1 - NUMERICAL ANALYSIS

G.2.0 General in G.2 - DISCRETE MATHEMATICS

G.2.1 Combinatorics

G.2.3 Applications

G.2.m Miscellaneous in G.2 - DISCRETE MATHEMATICS

G.4 MATHEMATICAL SOFTWARE

G.m MISCELLANEOUS in G. - Mathematics of Computing

Figure 6. Parsimonious lift of CENTRIA cluster 1 within the ACM-CCS tree
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