
Int J Software Informatics, Vol.4, No.4, December 2010, pp. 401–418 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2010 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

An Agent Based Framework for Internetware

Computing

Liwei Zheng1, Jian Tang1, and Zhi Jin2

1 (Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing 100190, China)

2 (Key Laboratory of High Confidence Software Technologies (Peking University),

Ministry of Education, Beijing 100871, China)

Abstract Internetware intends to be a paradigm of Web-based software development. At

present, researches on Internetware have gained daily expanding attentions and interests.

This paper proposes an agent based framework for Internetware computing. Four principles

are presented that are followed by this framework. They are the autonomy principle, the

abstract principle, the explicitness principle and the competence principle. Three types

of agents with different responsibilities are designed and specified. They are the capability

providing agents, the capability planning agents and the capability consuming agents. In this

sense, capability decomposition and satisfaction turns to be a key issue for this framework

and becomes a communication protocol among these distributed and heterogenous agents.

A capability conceptualization is proposed and based on the conceptualization, an agent

coalition formation mechanism has been developed. This mechanism features that (1) all

the participants make their one decisions on whether or not joining the coalition based on

the capability realization pattern generated by the capability planning agents as well as the

benefits they can obtain; and (2) the coalition selection is conducted by a negotiation process

for satisfying the expectations of all the participants as the complexity of this problem has

been proven to be NP-complete.

Key words: internetware computing; multi agent system; coalition formation

Zheng LW, Tang J, Jin Z. An agent based framework for internetware computing. Int

J Software Informatics, 2010, 4(4): 401–418. http://www.ijsi.org/1673-7288/4/i67.htm

1 Introduction

As the Web becomes pervasive and software development on the Web is getting
popular, the Web will become not only the unified platform on which software systems
are deployed and executed and but also a virtual software development platform that
enables business and technology personnel to jointly build applications. As such, this
new revolutionary platform will eventually replace the traditional platform[25].

* This work is sponsored by the the National Natural Science Fund for Distinguished Young Scholars

of China under Grant No.60625204, the National Basic Research and Development 973 Program

under Grant No.2009CB320701, and the Key Projects of National Natural Science Foundation of
China under Grant Nos. 90818026 and 60736015.

Corresponding author: Zhi Jin, Email: zhijin@sei.pku.edu.cn

Received 2010-08-20; revised 2010-11-30; accepted 2010-12-25.

402 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Compared with the traditional software development and execution platform,
this new platform has different features such as the openness, dynamism and uncer-
tainty. So the software systems should be more autonomous, more sensitive to context
changes, more reactive, and more evolvable. Researchers in China named such a soft-
ware development and execution on this platform the Internetware computing[26] 8
years ago and are conducting a project on this issue with the sponsorship of the
National Basic Research Program in China. The mission of this project includes
studying, establishing and using systematic, disciplined, quantifiable approaches for
software development, execution and maintenance on World Wide Software Web.

At present, technical framework for Internetware has been researched in many
aspects. References [13,15] propose an architecture centric technical framework for
the definition, incarnation and engineering of Internetware. It gives a software model,
designed a middleware and proposes an engineering methodology for Internetware.
Self-adaptation is one of the basic features of Internetware. Focusing on this is-
sue, Ref.[15] proposes software architecture centric approach for Internetware’s self-
adaptation. The knowledge for self-adaptation has been captured, organized and
reasoned so that the automatic analysis and decision-making can be achieved.

Reference [10] proposes an agent-based approach to the open coordination soft-
ware model for Internetware. It concentrates on resource sharing and service inte-
grating in the open environment. As results, a programming model of agent-based
coordination has been devised, an agent-based middleware for multi-mode coordina-
tion and a dynamic software architecture centric software coordination mechanism
are provided. Furthermore, Ref.[11] focusses on the environment-driven model and
corresponding enabling techniques. A software structuring model for environment-
driven systems is presented for addressing the issue of how to deal with the openness,
dynamism and uncertainty of the environment. Another work[5] on agent based In-
ternetware model presents an architecture called EBDI (electronic business document
exchange) to describe the components which can autonomously plan themselves at
runtime to handle variable environments, and uses dynamic binding relationship to
illuminate the self-adaptive and evolutionary components.

Our previous work[22,24] propose to use agent to model the Internetware enti-
ties and use the agent coalition and collaboration to model the computing style of
Internetware. We call this agent-based computing style for Internetware comput-
ing the Agent-based Internetware Computing style (ABIC, for short). In Ref.[22],
we propose the requirements driven Internetware entities collaboration in ABIC. In
which, all of the available Interenetware entities are autonomous being represented
as software agents. When there are requirements for building an Internetware appli-
cation, those available software agents relevant to the requirements will collaborate
with each others and form the coalition and fulfill the requirements. That is for
allowing Internetware entities to identify the application development requirements
and interact with each other autonomously for satisfying the requirements. Further-
more, in Ref.[24], we model the Interentware entity collaboration as a task allocation
problem and give a negotiation-based solution for the task allocation problem among
self-interest Internetware entities on decentralized setting.

Along this line, this paper systematically tackles the issues concerned in ABIC.
The main contributions of this paper include: (1) summarizing and refining the gen-

Liwei Zheng, et al.: An agent based framework for internetware computing 403

eral principles of ABIC; (2) designing its architecture and structuring and specifying
the three main parties in ABIC; (3) developing a capability conceptualization as the
communication protocol among the three parties; and finally (4) figuring out the
collaboration mechanism by capability reasoning.

This paper is organized as follows. In section 2, we present the general principles
and give the architecture. Section 3 presents a capability conceptualization. That
will serve as the vocabularies for the agents’ reasoning on the capability competency.
Section 4 introduces the computing mechanism of ABIC. The coalition formation and
collaboration based on capability reasoning are the main issues among others. Section
5 discusses some related work. Finally, section 6 concludes the paper.

2 Principles and Architecture

2.1 General principles

Four general principles are followed when the framework for ABIC is developed.
They are the autonomy principle, the abstract principle, the explicitness principle and
the competence principle.

The autonomy principle states that all the Internetware entities are autonomous,
active and persistent and they can control their own resources and their own behaviors
and can even show the social ability through collaboration with each other through
dynamic discovery and negotiation. They can autonomously search for each others
and choose the roles that they will play in the collaboration for satisfying a desired
requirements so that the interactions between them can be established dynamically
and connected flexibly. In this sense, the autonomous Internetware entities can be
treated as agents.

The abstraction principle states that any complicated capability has its own
abstract realization patterns. Each abstract realization pattern defines a way for
decomposing a complicated capability into a set of simpler capabilities. It also assigns
the simpler capabilities to a set of roles and allows them to collaboratively realize
the complicated capability. These roles can taken by the competent autonomous
Internetware entities.

The explicitness principle states that all aspects of the autonomous Internetware
entities must be explicitly specified covering both the syntax and semantic. This
enables the semantic correctness of the Internetware entity interactions and the ca-
pability reasoning to be assessable.

The competence principle states that for an autonomous Internetware entity to
be able to dynamically join in an abstract realization pattern to collaborate with each
others meaningfully and correctly, it must be competent to understand the capability
required and to follow the interaction protocols instructed by the roles’ specifications,
which according to the explicitness principle, is accessible.

2.2 Architecture

Following the general principles, first abstraction we made is figuring out three
kinds of parties in the computing style. We use three types of agents to represent the
different parties. They are the capability providing agents, the capability planning
agents and the capability consuming agents. Within the framework, different parties

404 International Journal of Software and Informatics, Vol.4, No.4, December 2010

have different responsibilities:

• The capability consuming agents are the initiators. When a software consumer
wants to develop an application system to realize a capability, he/she creates
and deploys a capability consuming agent to ask for the realization of a required
capability.

• The capability providing agents are the realization bodies of the required capa-
bilities. When identifying the capability requests, they firstly determine whether
or not they are compete with the required capabilities. If yes and they are will-
ing to be the capability realizer, they make a bid (by joining some coalition if
the calling for capability realizers is from a capability planning agent) to these
capabilities.

• The capability planning agents are planners to produce realization plans for
the required capabilities. Each plan contains a decomposition of a particular
capability into a set of ordered part capabilities and a role model to realize
the capability which consists of a set of collaborative roles. This plan is also
responsible to assign the part capabilities to the roles to assure these roles can
collaborate with each other to realize the capability. When observing a required
capability that is what they are competent, they will compete with each others
to make a plan for the required capability.

From the viewpoint of and capability decomposition and the role model for
capability realization, a capability realization plan is an abstract capability re-
alization coalition of the required capability. It in fact is a pre-defined pattern
for realizing a particular capability. When all of the roles in an abstract coalition
have been taken by available capability providing agents, the concrete coalitions
consisting of the available capability providing agents will be formed to be the
candidate realization bodies of the required capability. Then the capability con-
suming agent will negotiate with the capability providing agents in the coalitions
for making the role allocation among the capability providing agents.

Figure 1 shows the architecture of this framework for ABIC. There are three agent
pools for containing three types of agents. The capability providing agents (CPrA) are
provided by Internetware entity providers. Each CPrA can realize certain capabilities.
The capability consuming agents (CCoA) are initiated by Internetware application
consumers. Each CCoA expresses a required capability that needs to be satisfied by
the to-be developed Internetware application. The capability planning agents (CPlA)
are provided by domain experts. Each CPlA is a capability realization pattern.

Among the three types of agents, both the capability providing agents and the
capability planning agents are pre-defined and relative stable during the computing
process. But, the capability consuming agents are dynamically initiated and undergo
a five-state lifecycle. This lifecycle can, in some sense, represent the ABIC mechanism:

• Initiated: The capability consuming agent is initiated by an Internetware ap-
plication consumer.

• Planned: The capability realization patterns for the required application capa-
bility have been proposed by capability planning agents.

Liwei Zheng, et al.: An agent based framework for internetware computing 405

• Coalition-formed: the coalitions of the capability realization patterns have been
formed. Each coalition consists of available capability providing agents.

• Role-allocated: a stable feasible coalition has been selected as the realization
body of the capability consuming agent.

• Destroyed: the Internetware application has been developed and the required
capability has been realized.

Figure 1. Architecture of ABIC

3 Capability Conceptualization and Capability Satisfaction

3.1 Capability ontology

As shown in Fig.1, this paper assumes that each capability planning agent rep-
resents a kind of realization plan for a capability and is responsible to propose the
capability realization pattern. Behind this, we actually assume a domain capability
ontology that is shared by both parties in ABIC. Each capability planning agent con-
tains only an integral fragment of the knowledge in this ontology and the whole set of
the capability planning agents constitute a distributed representation of the ontology.

Figure 2. Capability upper ontology

406 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Figure 2 shows the capability upper ontology. It explicitly indicates the associ-
ations between the five concept categories: the capability, the workflow, the action,
the collaboration, and the role. They are:

• A capability can

– be a refinable capability that can be refined into a set of sub-type capabil-
ities

– be a composite capability that can be decomposed into a set of part capa-
bilities

– be an atomic capability if it has no any part capabilities and has no any
sub-type capability which has part capabilities

• A capability can be satisfied by at least one workflow

• A workflow consists of a set of actions

• An action has a certain capability

• An action is assigned to a role

• A capability can be realized by at least one collaboration

• A collaboration consists of a set of roles

• A role can realize at least one capability

With this capability upper ontology, the domain capability ontology can be rep-
resented accordingly. Let C = {c1, · · · , c|C|} be a set of domain capabilities. For any
composite capability c ∈ C, c has at least a capability realization pattern pattern(c)
that represents a way for realizing c. Any capability realization pattern consists of
three parts. The first two are the workflow of its part capabilities and the role model
for realizing these part capabilities. It also contains an assignment of the part capa-
bilities to its roles, i.e.

pattern(c) =< WFlow(c), RModel(c), Assignment(c) >

is a capability realization pattern of c.

WFlow(c) = (Cap, COrd,CapWeights, τ)

is a workflow for satisfying c. It is a directed acyclic graph with the part capabilities
as the nodes and the control flow as the edges. Cap ⊆ C is the set of part capabilities
of c. COrd expresses the control flow among the capabilities in Cap. Apart from the
capability decomposition, the workflow also assigns weights to the part capabilities.
Each weight attached with a particular part capability represents the importance
degree of this part capability in this workflow. CapWeights = {ω1, · · · , ω|Cap|} is a
set of weights where

∑
ωi = 1 (1 6 i 6 |Cap|). τ : Cap ↔ CapWeights is a bijective

function from Cap to CapWeights. That τ(ci) = ωj (ci ∈ Cap and 1 6 i, j 6 |Cap|)
means the weight of ci in this workflow is ωj .

RModel(c) = (Roles, Prots)

Liwei Zheng, et al.: An agent based framework for internetware computing 407

is a role model for realizing c. It consists of a set of roles and a set of interaction
protocols. Like the setting in Gaia[21], in ABIC, roles are abstract constructs in
capability realization bodies. All roles are atomic constructs and cannot be defined in
terms of other roles. Roles names all of the roles that will take part in the realization
of c. Prots specifies the interactions among the roles during the realization. It details
the interaction flow as well as the messages that will be exchanged in interactions.

Assignment(c)=assign(WFlow(c), RModel(c))

={assign(ci, rj)|ci ∈ WFlow.Cap, rj ∈ RModel.Roles}

is a set of the assignment of an action with a part capability in WFlow to a role in
RModel. All of the actions in WFlow need to be assigned to one role to implement.

Figure 3 examples a fragrant domain capability ontology[9]. It talks about the
capability of land-based shipping. The two main parts of this ontology fragrant are
a weighted workflow and a role model. It also contains the assignment of the part
capabilities to the roles. Table 3.1 gives the schema representation of this domain
capability ontology.

Figure 3. Shipping capability ontology

4.1 Capability satisfaction

With the capability conceptualization, some lightweight capability reasoning can
be supported. Let CAP contain all the domain capabilities. Let cap ∈ CAP a
capability, and capS ⊂ CAP a set of capabilities. capS satisfies cap if

408 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Table 1 Domain capability ontology of land-based shipping

Capability: Land-Based Shipping

Sub-Capability

Capability Importance Degree

register shipment 0.2

handle exceptions 0.1

check and change status 0.3

monitor shipment 0.2

report status 0.1

get feedback 0.1

Workflow

register shipment(Flag)

if Flag=success,

fork(check and change status, monitor shipment)

report status

get feedback

if Flag=fail,

handle exceptions

Role Model

Role Responsibility

Register
register shipment

handle exceptions

Monitor
monitor shipment

get feedback

Checker and Changer
check and change status

report status

Interaction

(Register, !shipmentID, Monitor)

(Register, !shipmentID, Checker and Reporter)

(Monitor, !location, Checker and Reporter)

(Checker and Reporter, ?location, Monitor)

• Cap is atomic in CAP and cap ∈ capS

• Cap is refinable, CapS = refine(cap) is the set of the sub-type capabilities of
cap, and there exists a capability c′ ∈ CapS such that capS satisfies c′

• Cap is decomposable, CapS = decompose(cap) is the set of the part capabilities
of cap, and for all the c′ ∈ CapS such that capS satisfies c′

4 ABIC Computing Mechanism

The previous sections give the main principles and the architecture. This section
focuses on the mechanism of ABIC.

4.1 The settings of the mechanism

As mentioned above, there are three types of agents in ABIC. They are the
capability providing agent, the capability consuming agent and the capability planning
agent. This section details the constituents of these agent types.

4.1.1 Capability providing agent

The capability providing agents are basic capability realization bodies. They are

Liwei Zheng, et al.: An agent based framework for internetware computing 409

responsible for realizing the required capabilities. For simulating the characteristics
of the agents’ benefit-pursuing mechanism, each capability providing agent has some
other properties besides the capabilities, i.e. each capability providing agent has a
set of minimum prospective payoffs. Each prospective payoff is the payment that
the agent wants to obtain when offering one of its capabilities. Thus, the capability
providing agent is described as

CPrA :=< CapPros, ExpPays,ExpCapPay >

in which

• CapPros = {cap1, · · · , capn} is a set of capabilities that can be realized by this
agent. Each capi (1 6 i 6 n) represents a capability;

• ExpPays = {ρ1, · · · , ρn} is a set of minimum prospective payoffs; and

• ExpCapPay : CapPros ↔ ExpPays is a bijective function from CapPros to
ExpPays. That ExpCapPay(capi) = ρj (1 6 i, j 6 n) means that the agent
wants get a payment ρ > ρj when it relizes capability capi

4.1.2 Capability consuming agent

The capability consuming agents are delegations of software capability consumers.
Any software capability consumer can initiates a capability consuming agent when
he/she wants to consume a software capability. Each capability consuming agent
needs to declare clearly the capability that is required to be realized and the pay-
ment that can be offered if the capability is realized. A capability consuming agent
is described as

CCoA :=< Cap, Payment >

in which

• Cap is a required capability;

• Payment = φ is a maximum payment that the agent can offer. This agent will
offer φ′ 6 φ as the payment if the required capability can be realized.

Generally speaking, any capability consuming agent can ask for more than one
capability and make different payment for each required capability. That we limit
only one required capability here is just for simplifying the description.

4.1.3 Capability planning agent

The capability planning agent is responsible to produce the abstract capability
realization pattern for a required capability submitted by a capability consuming
agent. Each abstract capability realization plan defines a set of its sub-capabilities
as well as the relationship (i.e. the control flow) among these sub-capabilities. It
also designs a role model (with interaction protocol) and assigns each of the sub-
capabilities to a role. The selected abstract capability realization plan will become
the proposal for allowing the capability providing agents to join in and then to form
a concrete capability realization coalition.

410 International Journal of Software and Informatics, Vol.4, No.4, December 2010

The capability planning agent can be represented as

CPlA =< Cap,CapS, Workf, RoleS, Coll, CapToRole >

in which

• Cap is the capability that the agent is going to make plan;

• CapS = {< cap1, ω1 >, · · · , < capn, ωn >} is a capability-weight set. Each
element is a part capability of Cap with its weight ωi (1 6 i 6 n). Here,
Σn

i=1ωi = 1.

• Workf : CapS×CapS is a workflow of the part capabilities. It defines the order
of the capability realizations, i.e. the precede relation between capabilities;

• RoleS = {rol1, · · · , roll} is a set of participants that will be involved for realizing
the capabilities in capS;

• Coll : RoleS × RoleS defines the interactions between participants during the
realization of Cap, i.e. the interaction relation between two roles with the
message transmitted.

• CapToRole : CapS → roleS is a surjective function assign which assigns a part
capability in capS to a role in Roles.

4.2 The process of the computing mechanism

Section 2 presents a five-state lifecycle for the capability consuming agents which
in fact is the computing process of ABIC mechanism. Among the five stages of the
process, the initiation, the plan making and the capability realization are straight-
forward in terms of the explanation of the previous sections. In following, we only
discuss the coalition formation and the role allocation.

4.2.1 Stable and feasible coalition

When an application capability request is issued by a capability consumer, a ca-
pability consuming agent is initiated. If the required application capability is atomic,
there is no need to form a coalition. This required application capability can be
directly allocated to a capability providing agent. Otherwise, it needs a capability
planning agent to propose a capability realization pattern. With this proposed ca-
pability realization pattern, the capability providing agents can ask for joining the
pattern to form coalitions that are competent to realize the application capability.

A coalition is an alliance among individuals during which they will cooperate
in joint action, although each in their own self-interest, joining forces together for
a common cause. How can the capability providing agents form temporarily such a
coalition around the proposed pattern for a required application capability?

More formally, given Cap is the required capability of capability consuming agent
CCoA and

CPlA =< Cap,CapS, Workf, RoleS, Coll, CapToRole >

Liwei Zheng, et al.: An agent based framework for internetware computing 411

is a capability realization pattern for Cap generated by capability planning agent
CPlA. In order to form a coalition upon CPlA, the capability providing agents
need firstly to know whether or not they are effective capability providing agents of
this pattern. Without loss of generality, let agt be a capability providing agent that
is willing to take part in the coalition and r ∈ RoleS a role in CPlA. With the
capability-role assignments in CapToRole, agt can judge whether or not it can be
competent to one of the role in the pattern, i.e. it is competent to a role if it has all
the capabilities that has been assigned to this role. Those capability providing agents
that are competent to roles in CPlA are effective agents of CPlA.

Then, the capability planning agent CPlA needs to decide if the coalitions can
be formed after the capability providing agents make their bids. A set of capability
providing agents CPrAS = {capProAgt1, · · · , capProAgtm} forms a coalition for
realizing Cap upon CPlA if there exists an one-to-many mapping from CPrAS to
RoleS in CPlA, i.e.

• Any role r ∈ RoleS has been bided by one and only one effective agent agt ∈
CPrAS; and

• Each of the agents agt ∈ CapProAgtS has bided at least one role r ∈ RoleS

that it is competent to.

We call CPrAS a coalition for Cap upon CPlA.
It is crucial for the agent-based Internetware computing to choose a socially de-

sirable outcome. Mechanism design is the art of designing the mechanism (i.e. rules
of the game) so that the agents are motivated to report their preference truthfully
and a desirable outcome is choose according to a given objective. Traditionally, mech-
anism design has been a manual endeavor where the designer uses his experience and
intuition to hypothesize that a certain rule set is desirable in some way and then
tries to prove that this is the case. Automated mechanism design was introduced by
Conitzer and Sandholm where the mechanism is automatically created for the set-
ting and objective. It models the mechanism design as a computational optimization
problem[17].

In multiagent settings of the Internetware computing, the three types of agents
have conflicting objectives and preferences. We extend the automated mechanism
design into the requirements driven mechanism design[22] by introducing instantiations
to the automated mechanism design setting. They are:

• A meaningful outcome is a realization pattern for the required capability of a
capability consuming agent.

• The type of the capability providing agent is a vector of the domain capabilities
that this agent can realize. The type of the capability consuming agent is a
vector of the domain capabilities that this agent wants to realize. We call the
vector of the domain capabilities the agent type.

• The objective function is defined to be benevolent, i.e. to pursue the happiness of
two sides, i.e. both the capability consuming agents and the capability providing
agents.

412 International Journal of Software and Informatics, Vol.4, No.4, December 2010

As such, the requirements driven automated mechanism design setting can be
defined. First, we are given

• Let (δ) be the type of the capability consuming agent CCoA, in which δ is a
domain capability.

• A finite set of outcomes O produced by capability planning agents, each of them
is a capability realization pattern of δ

• A finite set CPrAS of N capability providing agents for realizing the capability;

• For each capability providing agent capProAgti ∈ CPrAS,

– a finite set of capability types Θi

– a probability distribution γ over Θi

– a utility function ui : Θi ×O → R

• An objective function which maximizes both the satisfaction degree of the capa-
bility consuming agent CCoA and all the capability providing agents in CPrAS.

The requirements driven mechanism is a deterministic mechanism with payments.
Different from the general deterministic mechanism with payments, the requirements
driven mechanism concerns two kinds of agents and thus needs to consider two kinds
of payments. Concretely, with a fixed payment that can be offered by the capability
consuming agent, this agent cares about the quality that the capability realization,
while the capability providing agents care about the payments they can obtain when
realizing the capabilities. Thus, the requirements driven mechanism consists of:

• An outcome selection function

o : Θ1 ×Θ2 × · · · ×ΘN → O

• For each capability providing agent capProAgti, a payment selection function

πi : Θ1 ×Θ2 × · · · ×ΘN → R

where πi(θ1, · · · , θN) gives the payment obtained by capProAgti when the re-
ported types are θ1, · · · , θN ; and

• For capability consuming agent CapConAgt, a quality selection function

φ : Θ1 ×Θ2 × · · · ×ΘN → R

where φ(θ1, · · · , θN) gives the quality of realizing δ when the reported types are
θ1, · · · , θN .

With this setting, we can define the computational problem of the requirements
driven mechanism design as also an optimization problem that can be stated as fol-
lows. We are given a requirements driven automated mechanism design setting, an IR

Liwei Zheng, et al.: An agent based framework for internetware computing 413

notion and an IC notion, and we are asked whether there exists a deterministic mech-
anism that satisfies the IR and IC notions and maximizes the benevolent objective
function.

In Ref.[23], we sorted out such a benevolent objective function. Two criteria
have been defined. Let Coalition =< CPrAS, CCoA > be a coalition, for each
capProAgt ∈ CPrAS, the payment that it can be offered when it joins in the coalition
to realize some of the part capabilities is

P (capProAgt, CCoA) =
n∑

i=1

ωiφ

in which (1) φ is the maximum payment that CCoA can offer; and (2) ωi is the weight
of a part capability that will be assigned to capProAgt if it joins in the coalition1.

The capability consuming agent CCoA cares about the quality of the capability
realization. We borrowed Maximilien’s QoS Ontology[12] to define the quality of the
coalition. Assume that we take n quality items into account and use an unique quality
interval [0,M],M ∈ R for the n quality items. Let cap is a part capability of Cap.
Then, the quality of the realization of cap by capProAgt is

Q(capProAgt, cap) =
n∑

i=1

%iκi,

in which, κi ∈ [0,M] is the evaluation value for the ith quality item, %i (
∑n

i=1 %i = 1)
is the weight of preference for the ith quality item of the capability consuming agent.
To evaluate the quality of coalition, the capability consuming agent computes the
weighted sum of qualities that every part capabilities.

Then we can define the feasible coalition[23] as follows. Let Cap be the capa-
bility consumed by CCoA, Coalition =< CPrAS, CCoA > be a coalition for Cap,
CapS = {cap1, cap2, · · · , capm} be the set of part capabilities of Cap upon a capabil-
ity realization pattern. Assume that the weight of capi in CapS is ηi (

∑m
i=1 ηi = 1).

Let capProAgti be capable of realizing capj and Q(capProAgti, capj) denote the
quality of this realization. Let

Cap(capProAgti) = {capj |capj ∈ capS and capProAgti is capable of realizing capj}

Coalition is feasible, if and only if:

1.
n⋃

i=1

Cap(capProAgti) = CapS and
n⋂

i=1

Wi = ∅;

2. ∀j
(n⋃

i=1

Cap(capProAgti)
)
\Cap(capProAgtj) ⊂ Caps;

3.
m∑

j=1

ηj max
i

Q(capProAgti, capj) has the largest value of all coalitions.

1 The set of part capabilities that will be assigned to a capability providing agent contains all the

part capabilities of all the roles that the agent takes.

414 International Journal of Software and Informatics, Vol.4, No.4, December 2010

4.3 Role allocation and negotiation-based solution

After obtaining the potential capability realization coalitions, next step is finding
the optimal coalition of the best quality and all the capability providing agents can
get best payments. In Ref.[24], we modeled the coalition selection as an assignment
problem and has proved that the coalition selection in ABIC settings is NP-complete.

Also, in Ref.[24], we proposed a negotiation based solution for finding a feasible
coalition. Recalling and summarizing the ABIC settings. Let Cap be the capability re-
quired by CCoA, Coalition =< CPrAS,CCoA > a coalition for Cap upon a capabil-
ity realization pattern proposed by CPlA, CPrAS = {capProAgt1, . . . , capProAgtn}
the set of the capability providing agents, Roles = {r1, · · · , rm} the set of roles for
the capability providing agents in SAgts to take in CPlA, CapS = {cap1, · · · , capk}
the set of part capabilities of Cap in CPlA.

Suppose ρi (
k∑

i=1

ρi = 1) is the weight of capi (1 6 i 6 k), CapS(ri) ⊂ CapS is

the set of part capabilities that role ri needs to realize, Cap(capProAgti) ∈ CapS is
the capabilities that capPrvAgti is capable of realizing, and Q(capProAgti, capj) is
the realization quality of capj by capProAgti.

We define a Kripke structure[6,18] for this setting. A state s of the role as-
signment problem in ABIC setting is an m-dimensional vector (ρ1, . . . , ρm), where
ρi ∈ {1, . . . , n} indicates that role ri is assigned to capProAgtρi

. Then the Kripke
structure of the assignment problem in ABIC setting is defined as:

< S, S0, R, CPrAS, α, V >

where,

• S is a finite, non-empty state set;

• S0 ⊆ S is an initial state set;

• R ⊆ S×S is a total binary relation on S, which is called the transition relation;

• CPrAS = {1, . . . , n} is the set of capability providing agents;

• α : R → CPrAS labels each transition in R with a capability providing agent;

• V : S → 2Φ labels each state with the set of propositional variables that are
true in this state.

Then the semantics of the role assignment problem in ABIC setting and some
restrictions can be given.

S = {(ρ1, . . . , ρm)|capi ∈ Cap(capProAgtρi), i = 1, . . . , m}, i.e. any state in S is
an assignment.

S0 = {(ρ1, . . . , ρm)|max
j

∑
rj∈Ri

∑
capk∈Cap(rj)

pkQ(capProAgti, capk)}, i.e. any ini-

tial state in S0 is the state that every role is assigned to the capability providing agent
which has the best realization quality.

Let ((ρ1, ρ2, . . . , ρm), (ρ
′
1, ρ

′
2, . . . , ρ

′
m)) ∈ R. If ρi 6= ρ

′
i, (1 6 i 6 m), ρi and

ρ
′
i compete for the ith role. R contains only the transitions from which only one

capability providing agent can compete for a role. Furthermore, we use Computation

Liwei Zheng, et al.: An agent based framework for internetware computing 415

Tree Logic (CTL)[6] to express the objectives of the normative systems. That is, for
any 1 6 i 6 n, capability providing agent i’s objective γi can be expressed as A(¦ϕ),
where ϕ is in the form of si

1∨si
2∨ . . ., here si

j j = 1, 2 . . . is the state. That means that
the system will always get to one of the states si

1, si
2,. . . eventually. Under these states,

i will get the payment that is more than its reservation payoff. Then the objective of
our Kripke structure is γ1 ∧ γ2 ∧ . . . ∧ γn. Fulfilling this objective needs constraints
on the capability providing agents’ behaviors, i.e. on the transition relation. That
can be modeled as a normative system[2]. Formally, a normative system η ⊆ R is
defined in the context of a Kripke structure such that R\η is a total relation. That
is, (s, s

′
) ∈ η means transition (s, s

′
) is forbidden.

The negotiation framework focuses on the state transition in the Kripke structure,
i.e. a state transition is viewed as a proposal by an agent. In the process of negotiation,
one agent transits the state to another; another agent can accept or refuse it. If the
proposal is accepted, the state transition happens, otherwise, the first agent proposes
a new proposal for transiting the state to a new one.

The negotiation process is:

1. In according to the stable and feasible coalition, the capability consuming agent
chooses a state to make proposal, meaning he wants the assignment of that
state. It is the initial state of the Kripke structure, i.e. every role is assigned to
the capability providing agent which has the best realization quality.

2. The capability providing agents evaluate the state to see if it is satisfiable. The
capability providing agent who is willing to accept the state will do nothing;
otherwise, it will transit the state. The decision on being “accepted” or being
“refused” is made based on the reservation payoff. Those states that satisfy the
capability providing agent’s reservation payoff will be accepted but others will
be refused.

3. The capability providing agents which refuse the proposed state will negotiate
with others and then modify the states. They trigger the transitions in R. Any
capability providing agent i will not negotiate with those capability providing
agents which are assigned the role r that contains the capabilities that it is not
capable of realizing, i.e. Cap(r) 6⊂ Capi. And they may work out several states
that have already satisfied some of the agents but not all.

4. The capability consuming agent chooses one state that satisfies itself best (with
the greatest total quality) and after that it proposes the chosen state to the
capability providing agents. This proposed state starts a new round of negoti-
ation.

The negotiation will terminate in three possible situations.

• If all capability providing agents accept the capability consuming agent’s pro-
posal in some round, the negotiation ends with success.

• If the capability providing agents can not make a valid transition when it nego-
tiates with others, the negotiation ends with failure.

416 International Journal of Software and Informatics, Vol.4, No.4, December 2010

• If the capability consuming agent can not make a choice in the modified states,
i.e. all modified states worked out by the capability providing agents can not
achieve its reservation quality, the negotiation ends with failure.

The negotiation is proved to have good properties by simulation[24].

5 Related Work

The Internetware entities are intended to be independent, active, adaptive, and
have the capability to apperceive and influence the environment, the active Inter-
netware entities are more profitable for realizing the Internetware entity autonomous
aggregation and collaboration. Agents which are autonomous, reactive and sociable
can be one of the most appropriate software modality for Internetware. That is main
consideration when we develop the agent based Internetware computing framework.

Within the agent-based framework for Internetware computing, coalition forma-
tion and task allocation are two key issues among others. In the area of multiagent
systems, these issues have been investigated in recent years with different assump-
tions and emphases. However, most of them ignore the privacy of agents, and study
the problem in a centralized setting. For example, Ref.[8] develops a protocol that
enables agents to negotiate and form coalitions. It assumes that the agent has the
capability information of all others. Also the proposed protocol is centralized where
one manager is responsible for allocating the tasks. Ref.[13] provides the possibilities
of achieving efficient allocations in both cooperative and non-cooperative settings.
They propose an algorithm to find the optimal solution, but it is also centralized.

There are also some other works on Internetware model, such as the trust based
Internetware model[19]. While, these works are mainly based on the architecture-based
model for Internetware.

There are some related works relates coming from the area of service oriented
computing, especially the work on the service composition. There are mainly two
research directions. One is based on standardized description. Many XML-based
languages in industrial community are used to describe services, service composition
process, and the execution process such as RDF, OWL-WS, and BPEL4WS, etc.
have been developed. With the standard specification, the composition solutions is
mainly reuse-based. However, the composition solution is normally given manually
and the services passively wait for being invoked. The other is the composition based
on Semantic Web. Ontology is used in this kind of research to describe the service
capability and execution effects precisely[7]. Base on the precise descriptions sup-
ported by the domain ontology, the dependency relations between resources could be
obtained by reasoning. Using the descriptions and dependencies, service composition
is modeled. However, though this appraoch is adaptive in the dynamic environment,
the computing time cost is always too high to be accepted.

There are also some works which have similar setting with ABIC. For example,
Ref.[1] gives mediators who receive the task and have connections to other agents.
They break up the task into subtasks, and negotiate with other agents to obtain com-
mitments to execute these subtasks. Another work is Ref.[12], in which the agents are
selected according to their trust values but the selection is also centralized. Different
with these work, we have need no mediator so we should focus on modeling the whole

Liwei Zheng, et al.: An agent based framework for internetware computing 417

agent system and negotiation process but not just the decision process of a single
mediator; also the agents gain more flexibility in our setting.

6 Conclusion

This paper gives an agent based framework for internetware computing. Four
principles are presented that are followed when developing this framework. They
are the autonomy principle, the abstract principle, the explicitness principle and the
competence principle. Three types of agents are identified and precisely specified.
They are the capability providing agents, the capability planning agents and the
capability consuming agents. Different types of agents have different responsibilities
in the computing mechanism.

For the purpose to supporting the agents’ communicating and reasoning, a capa-
bility conceptualization has been developed which offers the sharable vocabulary for
the heterogenous and distributed parties of the computing mechanism.

Based on these, we design the coalition formation for the self-interested agents on
the decentralized setting, and give a negotiation-based solution for the task allocation
in coalition selection.

In this paper, the task assignment problem is solved by providing a suitable
normative system[24]. This builds the bridge between ABIC with the available works
on normative systems, games, mechanisms, etc. With these works, some interesting
issues like robustness[3] or applying power indices[4] can be introduced into ABIC.
That will make ABIC more powerful and robust. Including different negotiation
strategies for different agents might be also an interesting issue for making ABIC
more practical.

References

[1] Abdallah S, Lesser V. Modeling task allocation using a decision theoretic model. Proc. of

the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS-2005). 2005. 719–726.

[2] Agotnes T, van der Hoek W, Wooldridge M. Normative system games. Proc. of the Sixth

International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2007).

2007.

[3] Agotnes T, van der Hoek W, Wooldridge M. Robust normative systems. Proc. of the Seventh

International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2008).

2008.

[4] Agotnes T, van der Hoek W, Tennenholtz M, et al. Power in normative systems. Proc. of

the Eighth International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS-2009). 2009.

[5] Chang Z, Mao X, Qi Z. Component model and its implementation of internetware based on

agent. Journal of Software, 2008, 19(5): 1113–1124 (in Chinese).

[6] Emerson EA. Temporal and modal logic. MIT Press, Cambridge, MA, USA, 1991.

[7] Hou L, Jin Z, Wu B. Modeling and verifying Web services driven by requirements: an ontology-

based approach. Science in China (Series F: Information Sciences), 2006, 49(6): 792–820.

[8] Kraus S, Shehory O, Taase G. Coalition formation with uncertain heterogeneous information.

Proc. of the Second International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-2003). 2003. 1–8.

[9] Liu Z. Requirement elicitation and modeling for service-oriented requirement engineering [MS

Thesis]. Arizona State University.

[10] Lu J, Tao X, Ma X, et al. On agent-based software model for internetware. Science in China

418 International Journal of Software and Informatics, Vol.4, No.4, December 2010

(Series F: Information Sciences), 2005, 35(12): 1233–1253 (in Chinese).

[11] Lu J, Ma X, Tao X, et al. On environment-driven software model for internetware. Science in

China (Series F: Information Sciences), 2008, 51(6): 683–721.

[12] Maximilien EM, Singh M P. Toward autonomic web services trust and selection. Proc. of the

2nd International Conference on Service Oriented Computing (ICSOC-2004). 2004. 212–221.

[13] Manisterski E, David E, Kraus S, et al. Forming efficient agent groups for completing complex

tasks. Proc. of the Fifth International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-2006). 2006. 834–841.

[14] Mei H, Huang G, Zhao H, et al. A software architecture centric engineering approach for

Internetware. Science in China (Series F: Information Sciences), 2006, 49(6): 702–730.

[15] Mei H, Huang G, Han L, et al. A software architecture centric self-adaptation approach for

Internetware. Science in China (Series F), Springer, 2008, 51(6): 722–742.

[16] Shehory O, Kraus S. Methods for task allocation via agent coalition formation. Artificial Intel-

ligence, 2005, 101(1-2): 165–200.

[17] Sandholm T. Automated mechanism design: a new application area for search algorithms. Proc.

of the International Conference on Principles and Practice of Constraint Programming (CP).

2003.

[18] Shrot T, Aumann Y, Kraus S. Easy and hard coalition formation problems - parameterized

complexity analysis Proc. of the Eighth International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS-2009). 2009. 443–450.

[19] Wang Y, Lu J, Xu F, et al. A trust measurement and evolution model for internetware. Journal

of Software, 2006, 17(4): 682–690 (in Chinese).

[20] Wooldridge M. Agent-based software engineering. IEE Proc. on Software Engineering, 1997,

144: 26–37.

[21] Wooldridge M, Jennings NR, Kinny D. The gaia methodology for agent-oriented analysis and

design. Journal of Autonomous Agents and Multi-Agent Systems, 2000, 3(3): 285–312.

[22] Zheng L, Jin Z. Requirements driven agent collaboration. Proc. of the 6th International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS-2007), 2007.

[23] Tang J, Zheng L, Jin Z. Web services composing by multiagent negotiation. Journal of System

Science and Complexity, 2008, 21(4): 597–608.

[24] Tang J, Jin Z. Assignment problem in requirements driven agent collaboration and its implemen-

tation. Proc. of the 9th International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-2010), 2010: 839–846.

[25] Tsai W, Jin Z, Bai X. Internetware computing: issues and perspective. International Journal of

Software and Informatics, 2009, 3(4): 415–438.

[26] Yang F, Mei H, Lu J, Jin Z. Some discussion on the development of software technology. ACTA

ELECTRONICA SINICA, 2002, 30(z1).

[27] Yang F, Lu J, Mei H. Technical framework for internetware: an architecture centric approach.

Science in China (Series F: Information Sciences), 2002, 51(6): 610–622.

