
Int J Software Informatics, Vol.4, No.4, December 2010, pp. 351–365 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2010 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

Confidentiality Protection in

Cloud Computing Systems

Stephen S. Yau and Ho G. An

(Information Assurance Center, and School of Computing, Informatics and Decision Systems

Engineering, Arizona State University, Tempe, Arizona, USA)

Abstract Current cloud computing systems pose serious limitation to protecting users’

data confidentiality. Since users’ sensitive data is presented in unencrypted forms to remote

machines owned and operated by third party service providers, the risks of unauthorized

disclosure of the users’ sensitive data by service providers may be high. Many techniques

for protecting users’ data from outside attackers are available, but currently there exists no

effective way for protecting users’ sensitive data from service providers in cloud computing.

In this paper, an approach is presented to protecting the confidentiality of users’ data from

service providers, and ensures that service providers cannot access or disclose users’ confiden-

tial data being processed and stored in cloud computing systems. Our approach has three

major aspects: 1) separating software service providers and infrastructure service providers

in cloud computing, 2) hiding information of the owners of data, and 3) data obfuscation.

An example to show how our approach can protect the confidentiality of users’ data from

service providers in cloud computing is given. Experimental results are presented to show

that our approach has reasonable performance.

Key words: data confidentiality; cloud computing system architecture; data obfuscation

Yau SS, An HG. Confidentiality protection in cloud computing systems. Int J Software

Informatics, 2010, 4(4): 351–365. http://www.ijsi.org/1673-7288/4/i68.htm

1 Introduction

Cloud computing systems provide various Internet-based data storage and ser-
vices. Due to its many benefits, including cost effectiveness and high scalability
and flexibility, cloud computing has gained significant momentum recently as a new
paradigm for distributed computing for various applications, especially for business
applications. With the rapid growth of the Internet, service-oriented architecture
(SOA) and virtualization technologies, cloud computing leads to the vision of “In-
ternet as a supercomputer.” This vision incorporates the concepts of “software as a
servic”, “platform as a service”, and “infrastructure as a service.” However, cloud
computing has a major limitation to be broadly adopted due to the serious barrier
that current cloud computing systems cannot protect the confidentiality of users’ data
from service providers[1]. A recent survey[2] shows that most of cloud users fear the

* Corresponding author: Stephen S. Yau, Email: yau@asu.edu

Received 2010-08-31; revised 2010-12-15; accepted 2010-12-25.



352 International Journal of Software and Informatics, Vol.4, No.4, December 2010

leakage of their sensitive data in the cloud because their data is processed and stored
on remote machines owned and operated by various service providers, which the users
do not have any control. Since users’ data is processed and stored in cloud computing
systems in unencrypted form in current cloud computing systems, there are serious
risks of unauthorized uses of the users’ data by service providers.

There exist many techniques for confidentiality protection in various computing
systems for access control, identity management, end-to-end data confidentiality and
integrity assurance, etc. However, these techniques cannot be applied to cloud com-
puting systems for confidentiality protection because they were developed only for
protection from malicious third parties outside the systems. Since cloud computing
systems have service providers inside the systems as new threat on data confiden-
tiality, the basic ideas about data confidentiality must be changed and an effective
new technique for confidentiality protection from service providers of cloud computing
systems is needed.

In this paper, we will present an approach to protecting confidentiality of users’
data in cloud computing systems. In our approach, we do not consider confidentiality
protection from attackers outside cloud computing systems. Instead our approach
focuses on protecting confidentiality of users’ data from service providers inside the
cloud computing systems. We assume that cloud service providers may not be trust-
worthy and may collect users’ sensitive data in their systems. Our approach has the
following specific goals:

• Service users can make sure that their sensitive data, which the users specify
not to be shared with their service providers is not disclosed to their service
providers even if there is no cooperation from their service providers

• Our approach does not cause much overhead on service performance.

This paper is organized as follows. In Section 2, we will articulate users’ data
confidentiality protection from service providers in cloud computing systems. This
concept will be used to determine whether our approach can protect users’ confidential
data from service providers. In Section 3, the problems of current cloud computing
architecture in terms of protection of users’ data confidentiality will be discussed.
In Section 4, we will present our approach, including a new architecture for cloud
computing system and using data obfuscation to achieve the above both goals of
our approach. In Section 5, our data obfuscation and de-obfuscation developed for
protecting user’s data confidentiality in cloud computing will be discussed. In Section
6, we will present an example to show how the confidentiality of user’s data can be
protected by our approach in cloud computing systems. In Section7, experimental
results are presented to show that our approach has reasonable performance. In
Section 8, we will discuss the advantages and limitations of our approach as well as
future work.

2 Protection of Users’ Data Confidentiality from Service Providers in
Cloud Computing Systems

In Ref.[3], confidentiality is defined as the assurance that sensitive information
is not disclosed to unauthorized persons, processes, or devices. Hence, we must make
sure that the users’ confidential data, which the users do not want to be accessed by



Stephen S. Yau, et al.: Confidentiality protection in cloud computing systems 353

service providers is not disclosed to service providers in the cloud computing systems,
including applications, platforms, CPU and physical memories.

It is noted that users’ confidential data is disclosed to a service provider only if
all of the following three conditions are satisfied simultaneously:

Condition 1) The service provider knows where the users’ confidential data is lo-
cated in the cloud computing systems.
Condition 2) The service provider has the privilege to access and collect the users’
confidential data in the cloud computing systems.
Condition 3) The service provider can understand the meaning of the users’ data.

This is due to the following reasons: In order to collect users’ data, the service
provider must know the location of the data in cloud computing systems and have
the privilege to access the data. Even if the service provider can collect users’ data
successfully, the service provider may not be able to understand the meaning of the
data unless the service provider has at the least some of the following information
to understand the meanings of the data: i) types of data, ii) functionalities and
interfaces of the application using the data and iii) format of the data

Hence, if we can prevent the service providers from satisfying all the above three
conditions, we can protect the confidentiality of users’ data in cloud computing sys-
tems from the service providers.

3 Problems with the Current Cloud Computing Architecture

The current cloud computing system consists of three layers: software layer, plat-
form layer and infrastructure layer, as shown in Fig.1. The software layer provides the
interfaces for users to use service provider’s applications running on a cloud infras-
tructure. The platform layer provides the operating environment for the software to
run using system resources. The infrastructure layer provides the hardware resources
for computing, storage, and networks. Platforms or infrastructures can be provided as
virtual machines. The following are the major problems of current cloud computing
systems:

Figure 1. Current cloud computing architecture

• Each service provider has its own software layer, platform layer and infrastruc-
ture layer. When a user uses a cloud application from a service provider, the



354 International Journal of Software and Informatics, Vol.4, No.4, December 2010

user is forced to use the platform and infrastructure provided by the same ser-
vice provider, and hence the service provider knows where the users’ data is
located and has full access privileges to the data.

• The user is forced to use the interfaces provided by the service provider, and
users’ data has to be in a fixed format specified by the service provider, and
hence the service provider knows all the information required for understanding
users’ data.

Therefore, we cannot prevent service providers from satisfying all of the three
conditions in Section 2.

4 Overview of our Approach

Our approach can be depicted in Fig.2. In our approach, we have the follow-
ing seven entities to protect the confideitiality of data processed and stored in cloud
computing systems: Software Cloud, Infrastructure Cloud, Software Service Broker,
Infrastructure Service Broker, Software Service Attestation Authority, Data Obfusca-
tor and Data De-obfuscator[16]. The Software Cloud and Infrastructure Cloud have
the same features of the software layer in the ordinary cloud computing architecture
discussed in Section 3. However, in our approach, we require that the software layer
and infrastructure layer are not managed by the same service provider. The Software
Service Brokers and Infrastructure Service Brokers have the same functionality of the
service brokers in service-oriented architecture (SOA), but they have the additional
function for identity-anonymization. The Software Service Attestation Authority,
Data Obfuscator and Data De-obfuscator are additional entities introduced in our
approach. Our approach makes sure that any of these entities in a cloud computing
system does not satisfy the three conditions simultaneously in Section 2. We will
describe each of these entities below:

• Software cloud: A Software Cloud provides the software as a service upon
users’ requests. Each software cloud may contain multiple software services, and
each software service can be discovered and accessed by users through Software
Service Broker. An authenticated user with proper credentials[4] can request
and acquire a service instance from the software cloud. A service instance is a
piece of compiled executable code. The executable code can be deployed and run
on any Infrastructure Cloud. In order to protect the intellectual property of the
software, the code is compiled using various code obfuscation technologies[5,6]

so that reverse engineering on the service instance is computationally infeasible.
This implies that infrastructure service providers cannot understand the func-
tionality and algorithms of the service instance by examining at the code when
the service instance is running on Infrastructure Cloud.

• Infrastructure cloud: An Infrastructure Cloud provides virtualized system
resources, such as CPU, memory, and network resources. An authenticated
user can request a virtual machine on which the user can deploy any platform
or operating system to execute a software service instance.

• Software service broker: A Software Service Broker has two major functions.
First, it helps users automatically discover and access available software services.



Stephen S. Yau, et al.: Confidentiality protection in cloud computing systems 355

Second, it helps users hide their identities from software cloud service providers.
A Software Service Broker provides identity anonymization service, by which
users can use pseudonyms instead of their true identities so that the users can
acquire service instances without revealing their identities. The anonymization
of user identities is very important for protecting the confidentiality of users’
data because the information about the data owners may reveal a lot of sensitive
information regarding the data.

• Infrastructure service broker: An Infrastructure Service Broker has two
major functions similar to a Software Service Broker. It helps users automati-
cally discover and use available infrastructure services. It also provides identity
anonymization service to prevent the system from revealing users’ true identi-
ties.

• The software service attestation authority (SSAA): The SSAA is a third
party authority to verify that a service instance does not perform any malicious
activity that may disclose users’ confidential data. For example, a software
service developer may have injected a hidden function on the software service
which transmits user’s confidential data to an unauthorized third party during
its processing without the user’s consent. Since users do not know whether a
service instance will act as described in the service description, the SSAA needs
to help users test the service instance before users using it. When a service
instance is deployed on the Service Testing Platform of SSAA, the SSAA tests
whether the service instance performs exactly what the service provider claims,
and whether the service instance may transmit users’ data to any unauthorized
entity.
The testing can be done by i) verifying whether the service instance satisfies
the web service description language (WSDL) specification of the service, and
ii) monitoring all the network traffics the software service produces during its
processing. An approach to automated web service testing based on syntactic
and semantic analysis of WSDL specification was presented in Ref.[7]. After
completing the testing of the service instance, SSAA issues a digital certificate
for the tested service instance. A certificate is attached to the service instance
so that users will know whether the service instance has passed the SSAA’s
testing.

• Data obfuscator: A Data Obfuscator is a middleware provided by a user that
can be deployed on a virtual machine in an Infrastructure Cloud. The service
instance in an Infrastructure Cloud can use system resources only through the
interfaces of the Data Obfuscator. The Data Obfuscator has the following se-
curity functionality to ensure that users’ confidential data is not disclosed to
infrastructure service providers:
i) Sets up an encryption key with the user. The key is chosen by the user and
not revealed to any process, platform or device of the cloud computing system.
ii) Encrypts any data being stored in the physical storage of the cloud comput-
ing system or being transmitted through the network.
iii) Obfuscates users’ sensitive data being processed in the service instances. The
obfuscated data cannot be de-obfuscated in the platforms or physical devices of
an Infrastructure Cloud so that its infrastructure provider cannot understand



356 International Journal of Software and Informatics, Vol.4, No.4, December 2010

the meaning of the users’ sensitive data. The details of the data obfuscation
will be discussed in Section 5.

• Data De-obfuscator: A Data De-obfuscator de-obfuscates obfuscated data so
that a user can see the plain data. A Data De-obfuscator remains in the user’s
personal computer all the time.

Figure 2. Our approach to protecting confidentiality of users’ data in cloud computing. The

numbers in the figure correspond to the steps of our approach described at the end of Section 4.

Our approach is based on three features: 1) separation of software service providers
and infrastructure service providers, 2) hiding information about the owner of data
and 3) data obfuscation. With these three features, our approach can ensure that
at least one of the three conditions in Section 2 is not satisfied in each of the seven
entities in cloud computing system due to the following reasons:

• Although a software service provider knows the functionality of a service in-
stance and the data format of users’ input and can satisfy Condition 3), since
software service instances are deployed to Infrastructure Cloud through its Soft-
ware Service Broker and Infrastructure Service Broker, the software service
provider does not know where users’ data is located, and does not have the
privilege to access the data. Thus, the software service provider cannot satisfy
Conditions 1) and 2).

• Although an infrastructure service provider knows the locations of users’ specific
confidential data and has the privilege to access the data being processed and
stored in the infrastructure cloud, the infrasture service provideer cannot under-
stand the meaning of the data because i) he/she does not know the functionality
of the deployed software instance and the format of the users’ specific confiden-
tial data, ii) the deployed software instance cannot be reverse-engineered, iii)



Stephen S. Yau, et al.: Confidentiality protection in cloud computing systems 357

the infrastructure service provider does not know the identity of the data owners,
and iv) the users’ specific confidential data is obfuscated while processed and
stored in the infrastructure. Hence, the infrastructure service provider cannot
satisfy Condition 3).

• Because the Software Service Broker does not know where users’ data is located,
and does not have the privilege to access user’s data, the Software Service Broker
cannot satisfy Conditions 1) and 2).

• Because an Infrastructure Service Broker does not know the functionality of
deployed software instance, the data format of user’s data, and does not have
the privilege to access the data, the Infrastructure Service Broker cannot satisfy
Conditions 2) and 3).

Our approach is depicted in Fig.2, where the numbers are corresponding to the
steps. It can be summarized as follows:
S1) i) A user requests any Software Service Broker to find a software service by
providing the specification of the software service[8]. ii) The Software Service Bro-
ker performs automatic service discovery[9] to find a service instance in the Software
Cloud that satisfies the user’s requested service requirement specification. iii) The
Software Service Broker acquires the discovered software instance using an anony-
mous credential[10].
S2) i) The Software Service Broker deploys the acquired service instance to the test-
ing platform of a SSAA. The SSAA verifies whether the service instance performs
according to its description, and the service instance does not transmit users’ specific
confidential data to any unauthorized entity. ii) After the verification procedure, the
software service instance is sent back to the Software Service Broker.
S3) i) The user asks the Infrastructure Service Broker to find an infrastructure service
compatible to the service instance. ii) The Infrastructure Service Broker discovers
an infrastructure service provider, who has the capability to execute the acquired
software service instance.
S4) The user requests the infrastructure service provider to set up a virtual ma-
chine and then deploys the Data Obfuscator on the virtual machine using the Agent
Deployment Plans (ADPs), for automated middleware deployment and migration in
service-based systems according to Ref.[11].
S5) i) The service instance acquired in S1) is sent to the Infrastructure Service Bro-
ker. ii) The service instance is deployed on the workflow of the Data Obfuscator set
up in S4).
S6) i) The user sends his/her data to the workflow to process, including the obfus-
cated data. During the processing of users’ input data, the user’s specific condential
data is obfuscated so that the infrastructure service provider cannot understand the
meaning of user’s data. After completing the processing, a service response of the
workflow is sent to the user indicating that the processing of the user’s input data has
been completed. ii) The service response is de-obfuscated to plain data in the user’s
computer.

5 Data Obfuscation in Infrastructure Clouds

Data obfuscation is the process of transforming the format or structure of data to



358 International Journal of Software and Informatics, Vol.4, No.4, December 2010

hide the meaning of data. The major difference between encryption and obfuscation
is that encrypted data cannot be processed until it is decrypted, but obfuscated data
can be processed without de-obfuscation. In our approach, data obfuscation is used
to process users’ data in an infrastructure cloud without revealing any users’ specific
confidential data to the infrastructure service providers.

An approach to obfuscating data, which is transmitted from a user to software
layer of a cloud computing system for protecting user’s privacy is available[12]. How-
ever, this approach is limited in the use of data obfuscation because the obfuscated
data must fit into the user interfaces provided by service providers. In our approach,
data obfuscation takes place between the software layer and the infrastructure layer
as shown in Fig.2 so that the use of data obfuscation is not constrained by the user
interfaces provided by the service providers.

The general algebraic description of data obfuscation is as follows. Suppose a user
wishes to use an infrastructure cloud service to process a function F on the user’s
input x without revealing the meaning of x to the infrastructure service provider.
Obfuscation function O and de-obfuscation function D have following properties:

• D(F (O(x, k), k) = F (x), where k is an obfuscation key unknown to the infras-
tructure service provider

• The infrastructure service provider cannot understand the meaning of x by
examining O(x, k)

• D or k cannot be derived from O

• O(x, k) and D(F (O(x, k), k) can be calculated in polynomial time

When a data obfuscator is deployed by a user on a virtual machine in the Infras-
tructure Cloud, the data obfuscator obfuscates the user’s input data x using one of
the following three methods:

Method A) Take dummy input data from a user and generate arbitrary
dummy outputs. In our approach, a user’s input data is entered to a software ser-
vice instance through the data obfuscator. Since the infrastructure service provider
does not know the input data format of the service instance, the data obfuscator can
take any number of dummy input data from the users. Only the user’s inputs to be
processed are given to the software service instance, and the data obfuscator generates
arbitrary dummy outputs on the user’s dummy inputs. The outputs generated by the
service instance from the user’s inputs, and the dummy outputs generated from the
user’s dummy inputs by the data obfuscator are mixed and encrypted together, and
sent back to the user. The dummy outputs are marked so that data de-obfuscator in
the user’s computer can recognize the dummy outputs after the all the outputs of the
service instance are decrypted.

For example, given user’s input data x, a software service function F and a secret
integer key k, O(x, k) generates dummy input data a1, a2... an, where n > k. For each
dummy input data generated, the data obfuscator processes dummy functions f1(a1),
f2(a2)... fn(an) while the software service instance processes F (x). Then, an array
of output data (f1(a1), f2(a2)...fk−1(ak−1), F (x), fk(ak)...fn(an)) is sent to the user.
The data-de-obfuscator at the user’s computer de-obfuscates the array of output data



Stephen S. Yau, et al.: Confidentiality protection in cloud computing systems 359

using the secret key k. Hence, D((f1(a1), f2(a2)...fk−1(ak−1), F (x), fk(ak)...fn(an)) =
F (x).

Method B) Use a file system not known to all the infrastructure providers.
A file system is a method of storing and organizing files and data into computer
memories and storage devices, such as hard disks or CD-ROMs. If an infrastructure
service provider can understand the file system structure of a user’s operating system
running on the infrastructure cloud, the service provider may be able to locate and ex-
tract users’ data from memories or storage devices. Data obfuscator uses a file system
which is not known to any of the infrastructure providers so that the infrastructure
service providers cannot extract meaningful data from the memory or storage devices
of the cloud computing system.

For example, data obfuscator can change the number of disk sectors in a cluster
or the format of the file allocation table in the file system so that the infrastructure
service provider cannot understand the file system structure. In order to prevent the
service providers from extracting the users’ specific confidential data from network
traffics, the user’s specific confidentail data should be encrypted in the user’s com-
puter before being sent to service provider’s infrastructure. The encrypted data is
decrypted and processed on the data obfuscator’s file system.

Method C) Transform users’ input data. Data obfuscator transforms the format
or value of users’ input data so that the infrastructure service provider cannot under-
stand the meaning of the data. All the operations associated with the original data
must also be applicable to the transformed data so that the software service instance
is able to process the obfuscated data.

For example, the data obfuscator transforms a regular string encoded with ASCII
code into a different string format using a secret string encoder. Then, the string
encoded with the secret stirng encoder must support all the operations associated with
string data, such as concatenation, split, length calculation, comparison, uppercase,
lowercase or character replacement.

The general algebraic description of data transformation for obfuscation is as
follows. Given input data x, a set of associated operations {P1, ..., Pn}, an obfuscation
function O, a secret key k, and de-obfuscation function D:

Pi(x) = D(Pi(O(x, k)), k), where 1 6 i 6 n

Both numerical data and text data can be obfuscated using the data transformation
method.

For numeric data, an arithmetic operation is performed on user’s input data
with secret integer k to transform the value of the data. For example, suppose a
user wish to process a function F (a, b) = a + b, where a and b are integer values, in
an Infrastructure Cloud without revealing the value of a and b to the infrastructure
service provider. In order to obfuscate a and b, both a and b are multiplied by k.
Then F (ak, bk) = (ak+bk) is processed in the infrastructure cloud. The infrastructure
service provider cannot find the value of a and b without knowing k. The user can
de-obfuscate (ak+bk) by dividing it by k and then get the value of a+b. Table1 shows
obfuscation and de-obfuscation functions for each arithmetic operation for numeric
data.



360 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Table 1 Obfuscation and de-obfuscation functions for each arithmetic operation

Operation User Obfuscation Obfuscated Deobfuscation Deobfuscated

input function data function data

Addition a, b O(x, k) = xk ak, bk D(x, k) = x/k a + b

Subtraction a, b O(x, k) = xk ak, bk D(x, k) = x/k a− b

Multiplication a, b O(x, k) = xk ak, bk D(x, k) = x/k2 a× b

Division a, b O(x, k) = xk ak, bk D(x, k) = k
√

x a/b

For text data, a secret encoder is used to transform the format of the text data.
A secret encoder can be generated by randomly shuffling the order of a standard text
encoding table, such as ASCII code table. Once a secret encoder is generated by
a user, the data obfuscator transforms each character of the user’s text data using
the secret encoder. Since the transformation is done character by character, any
operation associated with original text data can be applied to the transformed data.
After the transformed text data is processed in the infrastructure cloud, the data is
sent to the user and de-obfuscated in the user’s computer. During the de-obfuscation,
each character of the transformed text data is mapped to the original ASCII code.
For example, suppose a user wants to concatenate two strings “ab” and “cd” in an
infrastructure cloud. The user generates a secret encoder by randomly shuffling the
ASCII code table. Table 2 shows the standard ASCII code and a secret code generated
by the user.

Table 2 The standard ASCII code and a secret string encoder

Character Standard ASCII code A secret code generated by a user

a 01100001 01111011

b 01100010 00100111

c 01100011 10110000

d 01100100 01111011

Data obfuscator transforms “ab” and “cd” to “0111101100100111” and “1011000
001111011” respectively using the secret code. The transformed strings are concate-
nated into “01111011001001111011000001111011” in the infrastructure cloud and sent
to the user. Data de-obfuscator in the user’s computer performs the mapping of the
transformed text data to the original ASCII code so that the de-obfuscated data is
mapped to “01100001011000100110001101100100”, which means “abcd” in the orig-
inal ASCII code.

ASCII code has 127 characters in its encoding table, and each character is rep-
resented by an 8-bits binary number. By shuffling the order of the 127 characters in
the table, we can generate the factorial of 127 (≈ 3 × 10213) secret encoding tables.
Thus, it is computationally infeasible for infrastructure service providers to find the
meaning of the transformed text data using brute forcing attack.

It is noted that we discussed three methods for obfuscating and de-obfuscating
data due to the following reasons: Methods A) and C) are used for obfuscating and de-
obfuscating users’ specific confidential data during the data processing time. Method
C) is suitable for processing numerical and text data, and method A) is suitable for
other types of data, such as image and vedio data. Method B) is used for obfuscating
and de-obfuscating any types of data during the storing time.



Stephen S. Yau, et al.: Confidentiality protection in cloud computing systems 361

6 An Illustrative Example

In this section, we present an example to illustrate how our approach can pro-
tect users’ specific confidential data in cloud computing systems. Consider a group
of users in different locations, who would like to have an online conference using
cloud computing shown in Fig.3. They must be able to communicate with each other
through voice, video, and/or instance messaging. They also need to share files with
each other. To achieve this, they need to use the five services: Voice Communica-
tion Service, Video Communication Service, File Sharing Service, Instant Messaging
Service, and Conference Controller. Since the voice data, video data, messages, or
files may contain the specific confidential information which the users do not want the
service providers to know, the users require the protection of such specific confidential
data from the service providers. The virtual machine for online conferencing can be
set up according to our approach as follows:

Figure 3. An example of online video conferencing to illustrate our approach

S1) i) The leader of the group requests a Software Service Broker to find the five
software services: Voice Communication Service, Video Communication Service, File
Sharing Service, Instant Messaging Service and Coference Controller. ii) The Software
Service Broker discovers the services. iii) The Software Service Broker downloads the
service instances of the five software services.
S2) i) The Software Service Broker deploys the service instances to the testing plat-
form of an SSAA. ii) The SSAA verifies the software service instances.
S3) i) The leader of the group requests an Infrastructure Service Broker to find an
infrastructure service compatible to the service instances. ii) The Infrastructure Ser-
vice Broker discovers an infrastructure service.
S4) A virtual machine is set up in the Infrastructure Cloud. The leader of the group
deploys the Data Obfuscator on the virtual machine. Obfuscation keys and encryp-
tion keys unknown to infrastructure service providers are sent to all other users.
S5) i) The service instances are sent to the Infrastructure Service Broker. ii) The
service instances are deployed on the Data Obfuscator. The five service instances
are composed to a workflow. The workflow provides all the functionality for online
conferencing.



362 International Journal of Software and Informatics, Vol.4, No.4, December 2010

S6) i) The users of the group send their input data to the workflow to process. Dur-
ing the processing of the users’ input data, the users’ specific confidential input data
is obfuscated. After completing the processing, a service response of the workflow is
sent to all the users of the group that the processing of their input data has been
completed. ii) The service response of the users’ specific confidential input data is
de-obfuscated.

The data obfuscation during the online conferencing is done as follows:

• All users’ names are transformed to pseudonyms in the Infrastructure Cloud.
The pseudonyms are de- obfuscated to the plain names in users’ personal com-
puters.

• All users’ voice data is transformed using a secret audio encoder.

• All users’ video data is transformed using a secret video encoder.

• All users’ text messages are transformed using a secret string encoder.

• Dummy input data is generated frequently and sent to all the users.

In this example, at least one of the three conditions in Section 2 is not satisfied
in each entity in the cloud computing system due to the following reasons:

• Software service providers do not know where users’ data is located, and do not
have the privilege to access the data. Hence, Conditions 1) and 2) cannot be
satisfied by the software service providers

• The infrastructure service provider cannot understand the meaning of users’
specific confidential input data because i) the infrastructure service provider
does not know the functionality of the deployed software instances and the data
formats of the users’ specific confidential input data, ii) the deployed software
instance cannot be reverse-engineered, iii) the infrastructure service provider
does not know the identities of the data owners, and iv) users’ specific confiden-
tial input data is obfuscated. Hence, Condition 3) cannot be satisfied by the
infrastructure service provider.

• The Software Service Broker does not know where users’ data is located, and
does not have the privilege to access the data. Hence, Conditions 1) and 2)
cannot be satisfied by the Software Service Broker.

• The Infrastructure Service Broker does not know the functionality of the de-
ployed software instances, the format of users’ specific confidential input data,
and does not have the privilege to access such data. Hence, Conditions 2) and
3) cannot be satisfied by the Infrastructure Service Broker.

Hence, the confidentiality of users’ specific confidential data is protected in this ex-
ample.

7 An Experiment on Performance of Data Obfuscator and Data De-
obfuscator

We implemented a cloud service using C# Microsoft .NET framework for col-
laborative online documentation. Using this cloud service, multiple users can collab-
oratively create and edit a document within a cloud computing system. Since the



Stephen S. Yau, et al.: Confidentiality protection in cloud computing systems 363

document may contain confidential information, the cloud service provider must not
be able to understand the meaning of the document while the document is processed
in the cloud computing system.

We also implemented Method C) of Data Obfuscator and De-obfuscator discussed
in Section 5. A virtual machine was set up using Microsoft Hyper-V Manager 6.0,
which had 0.7 GHZ CPU, 256 MB memory and Windows Server 2003 OS. The col-
laborative online documentation cloud service and data obfuscator are deployed on
the virtual machine, and the data De-obfuscator is deployed on the user’s computer
as shown in Fig.4.

Figure 4. An example of collaborative online documentation service with Data Obfuscator and

Data De-obfuscator

In order to measure the performance of Method C) of our data obfuscator and
de-obfuscator, we ran two sets of experiments. In both sets of experiments, a set
of input texts with various sizes are sent to the cloud service for processing and the
service response time for each input was measured. In the first set of experiments,
we used the cloud service without using the Data Obfuscator and De-obfuscator. In
the second set of experiments, we used the cloud service along with Method C) of
Data Obfuscator and De-obfuscator. 100% of the users’ input text was specified as
confidential data so that all of the input data is obfuscated and de-obfuscated during
the service processing. The measured service response time for each set of experiment
is shown in Fig.5.

Our experimental result shows that the service response time always increases
linearly as the size of the input text increases in both sets of experiments. This means
that the additional overhead for data obfuscation and de-obfuscation appears to be
propotional to the size of the input text specified as confidential. Hence, our data
obfuscation and de-obfuscation methods can perform in polynomial time and scalable.

In our approach, performing data obfuscation and de-obfuscation is the steps
producing most overhead. Since the experimental results show that the data obfus-
cation and de-obfuscation do not cause much overhead, and hence our approach has
reasonable performance.



364 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Figure 5. Service response time of our collaborative online documentation service with various

sizes of input texts

8 Conclusion and Future Research

In this paper, we have presented an approach to protecting users’ confidential
data in cloud computing from cloud service providers. Our approach is based on
new cloud system architecture, which has three features: 1) separation of software
service providers and infrastructure service providers, 2) hiding information about
the owner of data and 3) data obfuscation. Our cloud system architecture ensures
that cloud service providers cannot know location of the users’ data, access the user’s
data, or understand the meaning of the user’s data simultaneously. Our experimental
results on the performance of our data obfuscation and de-obfuscation show that the
overhead for data obfuscation and de-obfuscation aapears to increase linear with the
size of input data. Hence, our approach is scalable with size of input data.

Our future research includes incorporation of the dynamic resource allocation[17]

in our cloud computing architecture to support multiple QoS, including security as-
pects.

References

[1] Horrigan J. Use of cloud computing applications and services. Pew Internet and American Life

Project Memo. 2008.

[2] Heiser J, Nicolett M. Assessing the security risks of cloud computing. Gartner Report, 2009,

http://www.gartner.com/DisplayDocument?id=685308.

[3] DoD Trusted Computer System Evaluation Criteria, http://csrc.nist.gov/publications/history/

dod85.pdf

[4] Iwaihara M, Murakami K, Ahn GJ, et al. Risk evaluation for personal identity management

based on privacy attribute ontology. Proc. 27th Int’l Conf. on Conceptual Modeling (ER 2008).

2008. 183–198.

[5] Mateas M, Michael N. A Box, Darkly: Obfuscation, Weird Languages, and Code Aesthetics.

Proc. 6th Digital Arts and Culture Conference. 2005. 144–153.

[6] Ertaul L, Venkatesh S. Novel obfuscation algorithms for software security. Proc. Int’l Conf. on

Software Engineering Research and Practice. 2005. 209–215.

[7] Dong W, Yu H. Web service testing method based on fault-coverage. Proc. 10th IEEE Int’l

Enterprise Distributed Object Computing Conference Workshops. 2006. 43–49.

[8] Gibson J. Developing A requirements specification for a web service application. Proc. 12th

IEEE Int’l Conf. Requirements Engineering. 2004. 340–344.

[9] Kona S, Bansal A, Gupta G, et al. Web service discovery and composition using USDL. Proc.



Stephen S. Yau, et al.: Confidentiality protection in cloud computing systems 365

3rd IEEE Int’l Conf. E-Commerce Technology. 2006. 65–67.

[10] Damodaram A, Jayasri H. Authenticatio without identification using anonymous credential

system. Int’l Jour. Computer Science and Information Security (IJCSIS), 2009, 3(1): 34–37.

[11] Yau SS, Zhu L, Huang D, Gong H. An approach to automated agent deployment in service-based

systems. Proc. 10th IEEE Int’l Symposium on Object and Component-Oriented Real-Time

Distributed Computing (ISORC). 2007. 257–264.

[12] Mowbray M, Pearson S, A client-based privacy manager for cloud computing. Proc. Conf.

Communication System Software and Middleware. 2009. 138–145.

[13] Iwaihara M, Murakami K, Ahn GJ, et al. Risk evaluation for personal identity management

based on privacy attribute ontology. Proc. 27th Int’l Conf. Conceptual Modeling (ER 2008).

2008. 183–198.

[14] Yau SS, Yin Y. A privacy preserving repository for data integration across data sharing services.

IEEE Trans. Services Computing, 2008, 1(3): 130–140.

[15] Yau SS and Huang J. A user-centric approach to assessing confidentiality and integrity of service-

based workflows. Proc. 3rd Int’l Conf. Human-centric Computing (HumanCom). 2010. 89–94.

[16] Yau SS, An HG. Protection of users’ data confidentiality in cloud computing. Proc. 2nd Asia-

Pacific Symposium on Internetware. 2010. 32–37.

[17] Yau SS, An HG. Adaptive resource allocation for service-based systems. International Journal

of Software and Informatics, 2009, 3(4): 483–499.


