
Int J Software Informatics, Vol.4, No.4, December 2010, pp. 437–471 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2010 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

Data Partitioning and Redundancy Management

for Robust Multi-Tenancy SaaS

Wei-Tek Tsai1,2, Yu Huang1, Qihong Shao1, and Xiaoying Bai2

1 (School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA)

2 (Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China)

Abstract Software-as-as-Service (SaaS) is a new approach for developing software, and

it is characterized by its multi-tenancy architecture and its ability to provide flexible cus-

tomization to individual tenant. However, the multi-tenancy architecture and customization

requirements introduce many new issues in software, such as database design, database

partition, scalability, recovery, and continuous testing. This paper proposes a hybrid test

database design to support SaaS customization with two-layer database partitioning. The

database is further extended with a new built-in redundancy with ontology so that the SaaS

can recover from ontology, data or metadata failures. Furthermore, constraints in metadata

can be used either as test cases or policies to support SaaS continuous testing and policy

enforcement.

Key words: SaaS; customization; database partitioning; testing; recovery

Tsai WT, Huang Y, Shao QH, Bai XY. Data partitioning and redundancy manage-

ment for robust multi-tenancy SaaS. Int J Software Informatics, 2010, 4(4): 437–471.

http://www.ijsi.org/1673-7288/4/i70.htm

1 Introduction

Software-as-a-service (SaaS) is software that deployed over the internet and often
run on a cloud platform. With SaaS, a software provider licenses an application to
customer as a service on demand, through a subscription or a “pay-as-you-go” model.
A common SaaS application is CRM (Customer Relationship Management). Notable
SaaS applications include Salesforce.com which provides on-demand CRM; Peoplesoft
from Oracle which provides SaaS infrastructure for enterprise applications; Google
maps and Google apps (such as Google docs, gmail); and Microsoft Office Web Apps.
As a proliferating software model, more application developers will embrace the SaaS
model. However, it also faces new challenges.

(1) Multi-tenancy architecture (MTA) support: Multi-tenancy refers to
a principle where a single instance of the software runs on a server, serving multiple
client organizations (tenants), which is often used in SaaS. With MTA, a software

* This work is sponsored by the U.S. Department of Education FIPSE Project P116B060433, U.S.

National Science Foundation Project DUE 0942453 and Department of Defence, Joint Interoperabil-
ity Test Command.

Corresponding author: Yu Huang, Email: yu.huang.1@asu.edu

Received 2010-09-03; revised 2010-12-20; accepted 2010-12-25.

438 International Journal of Software and Informatics, Vol.4, No.4, December 2010

application is designed to virtually partition its data and configuration, so that each
client works with a customized virtual application instance. Although all tenants
share the same software, they feel like they are the sole user of the software. A
maturity model for SaaS with four levels is proposed in Ref.[9] with, the highest
level of SaaS being configurable, scalable, and having MTA. A configurable SaaS is
often achieved by customization and a scalable SaaS is often achieved by duplicating
software to meet the increased load. The MTA requires SaaS providers to support a
huge number of applications. In 2009, Salesforce.com[55] reported that it is supporting
100,000 distinct applications using 10 databases running on top of 50 servers in two
mirror-sites with just one software base. Due to the unique features of MTA, a realistic
SaaS application needs to address the following issues:

• Scalability: The algorithm should adjust according to the changing load of
system. Specifically, if the workload increases, resources (such as processors,
memory, and disk space) should be allocated to handle the task, and if the
workload decreases, resources should be re-allocated to other tasks. In this way,
resources can be dynamically allocated and re-allocated at runtime. Ideally, the
increase (decrease) in resources should be proportional to the increase (decrease)
in workload, while keeping the performance of each task at an acceptable level;

• Database partitioning and consistency: Tenant data need to be partitioned well
in the back-end database to support real-time high performance computing;

• Fault-tolerant computing: The failures of processors or storage should not affect
the operation or data because they may represent business transactions that will
bring in revenue for the company.

• Security and fairness: Tenant data should be isolated from each other, and ten-
ants of the same priority should receive the same level of services and resources
as multiple tenants will share the same software and possibly also the same
database in MTA;

• Parallel processing: It is highly desirable that the tasks can be processed in
parallel such as done by Map-Reduce to take advantage of the massive number
of processors, memory and storage units available in a cloud environment;

• Isolation: Any changes in a tenant’s data should not affect any other tenants;

• Performance and availability: As one SaaS program potentially needs to serve
hundreds of thousands or even millions of tenants or applications, it is criti-
cal that SaaS software can provide real-time performance and availability with
automated data migration, backup and restoration and isolation.

Note that cloud computing has changed computing significantly due to massive
number of processors will be used to support real-time applications that require high
availability and reliability. Data must be reliably stored and restored in case of data
failure. A cloud need to allocate resources to a computing task in case of raising
workload and re-allocate resources when the workload decreases. In cloud comput-
ing, system availability, performance, reliability and security will be more important

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 439

than minimizing system resources. To appreciate the scale scope of cloud comput-
ing, one can take look of the existing cloud infrastructure. For example, Google data
center[12] reports that it can host 45K servers in 45 containers in one single data center
as reported in 2009. Microsoft[24] also reported their data center version 4.0 recently
where there will be no side walls so that processors can be exposed to air, and con-
tainers of processors can be added to the data center to meet the increased workload.
These massive numbers of servers will be used to provide real-time computing with
automated reconfiguration and recovery mechanisms.

In Ref.[51], we proposed a four-layered architecture for SaaS customization. This
paper further extends the four-layer architecture, with an additional data layer, to
provide a scalable framework for SaaS. This paper discusses the possible database
partitioning choices for SaaS in the data layer. For each choice, this paper discusses
what types of application is suitable for taking advantage and their trade-offs. This
paper also proposes the related load-balancing algorithms to address the scheduling
problem when data are partitioned. More details will be discussed in Section 4.

(2) Fault-tolerant support: SaaS is usually deployed on a cloud infrastructure
to handle large volume of requests. Failures, such as disk failure and power outage, are
common in a cloud. Common cloud platforms often provide fault-tolerance and recov-
ery mechanisms in the PaaS (platform as a service) level. Providing these mechanisms
at the PaaS has the advantage that these mechanisms will be available for all kinds of
applications including SaaS or non-SaaS applications. However, such mechanisms will
not be optimal because SaaS often has its own software architecture that is unique.
For example, a well-know PaaS GAE (Google App Engine) provides fault-tolerance
mechanisms by writing almost every data into at least three chunks with each chunk
64 MB, and the system will recover any failure of a chunk by retrieving data from the
other two chunks. This is a good solution, but this solution is applied to all kinds of
applications running on top of GAE regardless of the application architecture. Fur-
thermore, any recovery will be at the level of chunks rather than at the software level
as the recovery mechanisms at the PaaS level do not have any knowledge of SaaS runs
on top of it. Because the solutions provided by the fault-tolerance and/or recovery
mechanisms are available at the SaaS level, redundant data can be managed to fit the
SaaS components such as data, metadata, indexing, and customization, and recovery
mechanisms understand the relationships among the same SaaS components.

This paper proposes a framework to store redundant information in SaaS com-
ponents, so that a failure of any SaaS component will be stored in ontology, metadata
and data to support SaaS recovery. Specifically, any information in one aspect, such
as ontology, metadata and data, can be used to recover data in other aspects. For
example, ontology information can be used to recover metadata, and metadata in-
formation can be used to recover ontology, and data can be used to recover ontology
and metadata. This ensures that information in SaaS will not be lost easily, and this
also provides support for the storage layer (layer 5) in the framework. Note that this
approach can be used on top of a fault-tolerant PaaS where data are automatically
written into at least three chunks to provide additional assurance that data will be
lost in cloud computing. More details will be discussed in Section 5.

(3)SaaS testing with new challenges: Testing SaaS is different from testing
software services as SaaS involves customization, configuration, and scalability while

440 International Journal of Software and Informatics, Vol.4, No.4, December 2010

services involves only calling and responding with QoS constraints. Currently the
testing of SaaS software often uses the traditional software testing practices. As only
a single copy of the software is maintained for multiple sharing tenants and each
having different requirements. Furthermore, a new tenant may be added into SaaS,
and bring new requirements after SaaS deployment, and thus SaaS testing may need
to continue after deployment. In fact, as the SaaS being deployed, it needs to be
continuously verified to support the SaaS. This feature has been used by Google
Chrome OS where continuous verification is a key feature. As SaaS being developed,
it also needs to be tested and evaluated, and thus SaaS requires a continuous testing
model throughout its entire lifecycle. iTKO[25] is a new SaaS testing enterprise that
uses the continuous testing when building up their DevTest Cloud. iTKO’s continuous
validation service (CVS) feature orchestrates the testing and validation aspects of IT,
Integration workflows and SOA Governance, to ensure reliability and instill trust
throughout the lifecycle of the application.

This paper proposes a built-in continuously testing SaaS testing framework from
ontology and metadata to support QoS (Quality of Services) and SLA (Service Level
Agreement). Besides continuous testing, testing SaaS software can also be collabora-
tive by nature since it is usually developed with a service oriented architecture. In
this paper, a collaborative testing environment by generating test scripts in a collab-
orative manner. The schema integrates continuous testing with the storage layer, by
leveraging database triggering rules. Integrating testing and intelligent testing can
also be conducted within the framework. More details will be discussed in Section 6.

(4) Ontology-based analysis and development: Ontology can have a sig-
nificant role in service applications and SaaS development, and it can be used for
specification, references, reasoning, and even customization[51]. In the customiza-
tion framework, each layer is supported with its own ontology for discovering similar
templates and conducting intelligent mining. This paper further leverages ontology
to provide a quadpartite recovery scheme to make the framework self-recoverable as
current SaaS design just uses metadata and data for assurance and recoverability.
The proposed scheme adds ontology to support recovery, and also update data and
metadata so that they can be reconstructed in case of failures from ontology. In other
words, the system has a built-in redundancy so that each part can be recovered.

As a summary, cloud computing and SaaS provide new requirments for scala-
bility, and robustness. Knowing the key differences between cloud computing and
traditional computing can help to better understand the issues in SaaS. Comparing
with traditional computing, cloud computing has several major differences, as shown
in Table 1: In terms of scalability, cloud computing provides on-demand resource
scaling, which allows the cloud users to scale their applications dynamically accord-
ing to application workloads. It is the most cost-effective way for users to scale since
they do not need to worry about the management of resources and hardware costs.
While in traditional computing, users need to support scalability either by scaling up
(upgrading the configuration of the hardware) or scaling out (buying and adding more
compute nodes into the system). This is not cost-effective when what the users want
to deal with is only temporary workload changes. In traditional computing, usually
one issue is considered when conducting the computing. For example, fault-tolerant
computing concerns more about availability, while real-time computing concerns more

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 441

about application performance. However in cloud computing, all the issues, such as
fault-tolerance, reliability, application performance, resource management, need to be
taken into consideration at the same time. This is a new type of software engineering.
In traditional computing, people concerns more about efficient resource utilization and
management, while in cloud computing, the reliability of the cloud system becomes a
serious concern. The importance of the read/write operations is also changed. Write
operations are considered to be more important in cloud computing because a write
update may represent a customer order[18], while it is the opposite case in traditional
computing where efficient execution is the primary concern.

Figure 1. Major differences of cloud computing and traditional computing

The contribution of this paper is five-fold:

• This paper tackles the scalability problem in SaaS framework by extending the
previous four-layer SaaS customization framework with additional data layer.

• This paper investigates a two-layer partitioning schema with effective index to
support scalability in SaaS applications.

• This paper proposes a scheme to embed the recoverability inside the proposed
SaaS framework.

• This paper incorporates the feature of continuous testing in the proposed SaaS
framework, which provides embed testing support.

• This paper exploits the usage of ontology in providing support for customization,
recovery and continuous testing in SaaS.

This rest of the paper is structured as follows: Section 2 discusses the related
works. Section 3 presents the SaaS framework with data layer to support scalable

442 International Journal of Software and Informatics, Vol.4, No.4, December 2010

SaaS. Specific database partitioning schemes and related issues are discussed in Sec-
tion 4. Section 5 discusses the quadpartite recovery scheme with ontology. Section 6
presented how to embedded the support of continuous testing. Section 7 concludes
this paper.

2 Related Work

This paper is related to several perspectives, including SaaS customization, datab-
ase partitioning and SaaS recovery and testing. The following sections will discuss
these topics in turn.

2.1 SaaS customization

Existing SaaS customization has mainly addressed data-level customization, specif-
ically data schema design. Specifically, the data architecture of multi-tenant[9] is
identified as three distinct approaches (Separate Databases, Shared Database Sepa-
rate Schemas and Shared Databases Shared Schema). Reference [53] proposed a new
schema-mapping technique for multi-tenant data named Chunk Folding. But they
have not touched other layers in customization. Another group of researches touched
service level, for example, Zhang[3] proposed a novel SaaS customization framework
using policy through design-time tooling and a runtime environment. Mietzner[32]

described the notion of a variability descriptor which defines variability points for the
process layer and related artifacts in a service-oriented manner. Li[30] considered the
multi-layer and cross layer relationship, and used multi-granularity models to com-
pose customization tasks. Essaidi[20] presented an open source infrastructure to build
and deliver on-demand customized business intelligence services.

These existing projects either discussed solutions in certain layer of customization
or did not investigate the relationship cross layers based on ontology information. In
our previous work[51], we addressed the problem of customizable SaaS with MTA
by providing a four-layer architecture. This paper further extends the four-layer
architecture, with an additional data layer, to provide a scalable framework for SaaS.

Existing industry partners support SaaS customization in their own ways. For
instance, Google App Engine (GAE)[22] offered the customization at the program
layer using a deployment description file in which users can change the parameters
such as servlet, URL paths, jsps, and security methods. GAE also supports service
layer customization in which users can set up service names and domains, control the
billing budgets. However, workflows and date are not customizable at GAE. Amazon
EC2[2] offers similar customization capabilities as GAE, but it does not offer the
workflow layer. Salesforce.com[39] offers a flexible customization framework, in which
users can customize the UI, workflow and data inside their framework, but semantic
information, e.g., ontology is not integrated into customization.

2.2 Scalability and database partitioning

Data partitioning is a well-studied problem in database systems (e.g., Refs.[31,
48, 14, 29, 19]). In the literature, many partitioning schemes have been studied; e.g.,
vertical partitioning vs. horizontal partitioning, round-robin vs. hashing vs. range
partitioning[15]. Past work has noted that partitioning can effectively increase the
scalability of database systems, by parallelizing I/O[29] or by assigning each partition

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 443

to separate workers in a cluster[31]. H-Store[44] presents a framework for a system
that uses data partitioning and single-threaded execution to simplify concurrency
control. G-Store[17] extend this work by proposing several schemes for concurrency
control in partitioned, main memory databases, concluding that the combination
of blocking. The discussion of vertical partitioning, e.g. column based database
has been introduced recently, including MonetDB[8], C-Store[38], which can provide
performance improvement on read-intensive analytical processing workload, such as
in data warehouse.

To support scalability of cloud, data partitioning becomes a widely accepted solu-
tion. Parallel DBMSs with emerging cloud data management platforms is provided by
industry partners, such as Refs.[4, 16, 18, 34] (such as efficient data partitioning, au-
tomatic fail over and partial re-computation, and guarantees of complete answers). In
the database community recent work compared the performance of Hadoop versus the
more traditional (SQL-based) database systems[35] which focuses on read-only, large
scale OLAP workloads, and Refs.[27, 28] focused on OLTP workloads. Berkeley’s
Cloudstone[47] specifies a database and workload for studying cloud infrastructures
and defines performance and cost metrics to compare alternative systems.

In this paper, a novel two-layer model for partitioning is provided, which first par-
titions horizontally by tenants, and then vertically partitions by columns. The model
can benefit both read and update operations comparing with horizontal-partitioning
only or vertical-partitioning only methods. Effective indexes, DHT and B-tree are
used at each layer respectively to help with the load balancing and scheduling.

2.3 Multi-tenancy support

In the new SaaS applications, multitenancy architecture (MTA) is highly valued
and heavily employed in build these applications. There are several benefits brought
by using MTA. First, by employing MTA, only single copy of the code based is
maintained to support tenants from different domain. SaaS application developers do
not need to develop different copies of customized application and maintain all of them
separately. Second, each tenant can customize their own GUI, workflow, service and
data schema according to their unique application needs and the application appears
to them as if they are the sole tenant.

However, this comes with a price. The complexity of building a SaaS applica-
tion using MTA is high. And to scale the SaaS application to support thousands
of users is very challenging. Force.com has successfully provides a on-demand Cus-
tomer Relationship Management (CRM) SaaS application using MTA. The several
key architectural principles used in their system are stateless AppServers, highly cus-
tomized and optimized Database system, tenant based table partitioning, creative
denormalization and indexing. In their design, they have three types of tables, which
is responsible for storing metadata, data and the index respectively. The index table
is called pivot table, which stores specialized indices for unique fields, relationships,
most-recently-used objects and so on. These pivot tables effectively accelerated the
access to the metadata and data tables design specifically to support MTA. All data
and metadata structures are partitioned to improve performance and manageability.
The tables are hash partitioned by tenant / organization. The application tier is also
dynamically partitioned by tenant / organization.

444 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Among the key design principles they employ in their system, the database par-
titioning scheme and indexing scheme are related to the techniques developed in this
paper. As will be discussed in this paper, besides the horizontal tenant based table
partitioning, this paper also proposes vertical partitioning of the relation for read-
intensive applications. By combining the two-level partitioning scheme and the dupli-
cation of the relational tables, the application will be able to achieve high performance
whether it is read-intensive or write-intensive.

2.4 Recovery mechanism

Traditionally, data recovery is achieved by adding / storing some redundant in-
formation so that whenever the data is corrupted / lost, it can be reconstructed using
the redundant information. For example, in different file systems, checksum is usually
computed for each data block to verify that the operation is performed correctly. In
RAID 1, it simply uses mirroring to store additional copy of the data. In RAID 2,
3, 4, 5 and 6, they use different kinds of parity as redundant information so that
the failure of one disk can be recovered. However, there are disadvantages in these
approaches. First, the file system approach cannot tolerate the failure of the entire
disk. Second, the hardware is expensive. Most of the cloud computing platform use
cheap commodity machines as nodes for computation, and thus RAID is usually not
available on these commodity machines. Third, the redundant information is central-
ized. If power outage happens to the node having the RAID array, all the data will
be unavailable.

To provide better availability, replication is a frequently adopted technology in
the cloud. However, such recoverability is provided outside of the SaaS framework.
In some cases it might be desirable that recoverability can be embedded in the SaaS
framework. This paper proposes a solution which can recover different data type with
the assist of ontology information.

2.5 Continuous testing

Continuous testing is a natural fit for the cloud, which is a feature introduced
by Google Chrome OS, a new operating system. iTKO also uses the continuous
testing when building up their DevTest Cloud. Distributed enterprise applications
are naturally evolving over time, as they leverage highly interdependent and changing
services and technologies, which are assembled to build the finished application at
runtime. Continuous integration is moving from a best practice to a do-or-die IT
tactic.

iTKO[25]’s continuous validation service (CVS) feature orchestrates the testing
and validation aspects of IT, Integration workflows and SOA Governance, to ensure
reliability and instill trust throughout the lifecycle of the application. It conducts
live regression, functional and performance monitoring of critical business workflows
on a continuous basis, providing an actionable way to enforce that expected business
policies are being met. The CVS functionality can be used as a shared provider of
both scheduled and even-based regression and performance test suites. When a change
to an underlying application is made, when a new service is promoted for use, or if
an unexpected error or performance expectation is not met, it will communication
with the enterprise’s stakeholders, or report this activity to an SOA governance, ALM

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 445

collaboration tool or IT monitoring platform.
However, it is not discussed that how the continuous testing / integration feature

can be embedded into an existing software. It is not hard to imagine that this process
can be extremely complex and the cost-effectiveness is a question having no answers.
In this paper, we proposed to embed the continuous testing feature within the SaaS
framework rather than posting it from outside. More details will be discussed in
Section 6.

3 SaaS Customization Framework

A multi-layer customization framework OIC is proposed in Ref.[51]. In the paper,
all the aspects for an application can be configured through a platform, and tenant
specific customization of a SaaS application affects all layers, from functional require-
ments in Graphic User Interface (GUI), customized business processes to database
schemas design. The customization process is assisted by domain ontology[56], that
specifies domain vocabulary and their relationships. All layers have their own on-
tology information, thus data ontology, service ontology, business process (workflow)
ontology, and GUI ontology, that describes concepts and relations in that layer. OIC

allows users to search for objects (data, service, workflows) in a repository, and then
reuse, include or modify them as needed when designing new ones, so that the de-
sign phase will be easier and be shortened comparing with designing new ones from
scratch. To deal with the commonality of tenants, a set of templates (standard) ob-
jects is provided for designers to assist SaaS customization. The template objects are
stored at different repositories at all layers (including data repository, service repos-
itory, workflow repository and GUI repository). Given ontology information for a
particular application domain, OIC uses template objects as an initial starting point,
and support customization in a cost effective way. Also the recommendation engine
can provide a list of candidates according to tenant’s profiling.

Figure 2. 5-layered architecture for SaaS customization

This paper further extends OIC with an additional storage management layer, as
shown in Fig.2, responsible for database partitioning, load balancing, and scheduling.

446 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Based on the five-layer model, this paper proposes a new solution for recovery in
Section 5.

3.1 Ontology driven meta-data customization

In traditional database design, objects and fields are defined to provide abstrac-
tions of the real-world entities that they represent. Separate database tables are
created for each type of object represented. Specific attributes are represented by
fields within the tables. Object instances are represented by rows within the tables.
Actual data is placed into a database by inserting rows into the database tables. Re-
lationships are represented by fields in one table referring to a key field in another
table.

To support MTA, a metadata-driven database operates somewhat differently.
Objects and their fields are mapped to metadata tables. Actual data is stored in
either in a single data table, or, for large text objects such as documents, in a separate
character large object storage (Clobs) area. A series of index tables is created to make
accessing the data within the single data table more efficient. To support multiple
tenants, the object and field metadata contains information about the fields, and also
about the tenants. The comparison of metadata driven databases and traditional
database designs are shown in Fig.3.

Figure 3. Metadata driven database design

In details, three types of data in MTA with diverse features[54]:

• Metadata: Objects and their fields are mapped to metadata tables.

• Data: Actual data is stored in either in a single data table, or, for large text
objects such as documents, in a separate character large object storage (Clobs)
area.

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 447

• Pivot index: make accessing the data within the single data table more efficient.
To support multiple tenants, the object and field metadata contains information
about the fields, and also about the tenants.

Ontology semantic information can be matched to database logic designs and
help metadata generation. The domain objects can represent a large proportion of
meta-data that are serialized into the data repository. Multiple database schemas
can be used in MTA[1], such as XML, sparse table, views. Tenants can choose any
database schemas as needed.

Figure 4. Tow layer partitioning model

Figure 5. Example for two layer partitioning model for Fig.4

448 International Journal of Software and Informatics, Vol.4, No.4, December 2010

4 Scalable SaaS with Database Partitioning

In MTA, the shared database architecture design[9] calls for effective scalability
support. In the ideal case, the maximum number of tenants should be proportional to
the increase of resources, while keeping the performance metrics of each tenant at an
acceptable level. There are two types of scaling: scale-up and scale-out. The scale-up
or vertical scaling is done by adding additional resources, such as CPUs, memory,
and disks into a single node in a clustered system. In this way, a node becomes more
powerful by having more resources. The scale-out or horizontal scaling is done by
adding additional nodes to an existing clustered system. For example, instead of a
cluster of thirty nodes, the system may have fifty nodes instead. The scale-up is
easy to use but may not provide linear scalability increase due to the overhead in
resource management. The scale-out provides a more cost-effective way, where it can
incrementally extend the system by adding more resources to a low-cost hardware
set. Furthermore, it can improve the reliability and availability of the system due
to the redundancy. In the scale-up scenario, one can create more than one database
partition on the same physical machine, while in the scale-out scenario, partitions
can be created in multiple physical machines, and each partition has its own common
memory, CPUs, and disks.

With the increase of tenant’s traffic, SaaS application can be easily scaled out
by adding new instances, but database server becomes the bottleneck of the system
scalability[17]. While most traditional database systems (e.g., DB2, Oracle 11, SQL
Server, MySQL, Postgres) uses traditional data structures (e.g., dynamic program-
ming, B-tree indexes, write-ahead logging), the differences in the implementation of
SaaS are immense.

Database Partitioning[54] can improve the system performance, scalability and
availability of a large database system in a multi-tenant way. For example, given a
tenant’s information, the query optimizer only has to access the partitions containing
the tenant’s data rather than the entire table or index, using “partition pruning”.
Data partitioning is a proved technique that database systems provide to physically
divide large logical data structures into smaller and easy manageable pieces (chunks).
The data inside a database can be distributed across one or more partitions. A
distribution key is the column used to determine the partition in which a particular
row is stored. Instead of having one database server controlling the whole system,
the database is logically partitioned and each of them can be controlled by a separate
server. Indexes play an important role in improving overall performance together with
partitioning. Different types of indexes are built to provide efficient query processing
for different applications.

4.1 Database partitioning choices

Many partitioning schemes have been studied; e.g., vertical partitioning vs. hor-
izontal partitioning, round-robin vs. hashing vs. range partitioning[15]. Two most
widely used methods are horizontal partitioning and vertical partitioning.

Row stores and horizontal partitioning Key-value stores (row stores) is in-
herent to be the preferred data management solutions in cloud, such as Bigtable[11],
PNUTS[16], Dynamo[18], and their open-source HBase[23]. These systems provide
various key-value stores and are different in terms of data model, availability, and

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 449

consistency guarantees. The common property of these systems is the key-value ab-
straction where data is viewed as key-value pairs and atomic access is supported only
at the granularity of single keys. This single key atomic access semantics naturally
allows efficient horizontal data partitioning, and provides the basis for scalability and
availability in these systems.

Figure 6. Scheduling system architecture

Horizontal partitioning is widely used in existing cloud computing products, such
as IBM DB2 V9[50], Force.com[21] and etc. Two horizontal database partitioning
approaches are available: application-based distribution keys (choosing one or more
attributes as a distribution key according to domain knowledge) and tenant-used
distribution keys(stores each tenant’s data in a single partition).

450 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Update in row partition is simple and supported as follows: the storage key (SK),
for each record is explicitly stored in each partition. A unique SK is given to each
“insert” of a tuple in a Table.

Figure 7. Sample of DHT (distributed hash tables)

Column store and vertical partitioning Column store is a read-optimized
solution, any fragment of projections can be broken into its constituent columns, and
each column is stored in order of the sorted key for the projection. There are several
possible encoding schemas considering the ordering and proportion of distinct values
it contains, including:

1. Self-order, few distinct values: represented using triple (val, 1st, occur) such that
val is the value stored in the column, 1st is the position where val first appears,
occur is the number of occurrence of val in the column.

Clustered B-tree indexes can be used over this type of columns. With large disk
blocks (e.g. 128k), the height of this index can be small.

2. Foreign-order, few distinct values, represents as (val, bmp) such that val is the
value stored in the column, bmp is a bitmap index, which can indicate the
positions the value is stored. Each bitmap is sparse, one can run length encode
to save space. To find the ith value, “offset indexes” B-tree can be used to map
values contained in the column.

3. Self-order, many distinct values: represent delta value of the previous value in
the column. The first entry of every block is a value in the column and its
associated storage key.

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 451

4. Foreign-order, many distinct values: not necessary to encode.

Update in column store is more complicated, one has to join values cross columns,
in which join indexes are used to connect various projection in the same table.

As a summary, row store and horizontal partitioning is writeable operation prefer-
able, while column store and vertical partitioning is optimal for read operations. This
paper proposes a hybrid approach as SaaS involves both read and write operations.

4.2 P 2: Two-Layer partitioning model

The hybrid two-level scheme combines both read-optimized column store and
an update oriented writeable store as shown in Fig.4. At the top level, there is a
partition for each tenant, which can support high performance inserts and updates.
At the lower level, a larger component for column partitions are supported, which can
optimize for reading and batching with the tenant’s attribute level. As one can see,
tenant A,B, C share same physical databases, and each of them has its own physical
chunks associate with it respectively.

A sample mortgage data of the three tenants with P 2 are shown in Fig.5. Two
tenants are represented with ID 1 and 2 respectively, and each of them has two
customers. Using P 2 model, the horizontal partition splits the data into two at tenant
level according to the tenant ID; then at the vertical partitioning, similar attribute
for different tenants are clustered together into different chunks, for example, credit
score of tenant 1 and 2 are clustered into chunk 1 while income of tenant 1 and 2 are
clustered into chunk 2 accordingly. Specially, tenant 1 has its own unique attribute
asset, which is clustered into chunk 3.

Originally, a master server is used to maintain the global index. All queries are
sent to the master server to search the global index and then forwarded to correspond-
ing servers. The size of the global index is proportional to the size of the data and
concurrent requests, the master server risks being a bottleneck, hence one can further
distributes the global index across servers. Each server only maintains a portion of
the global index. The distributed approach improves scalability and fault tolerance.
The global index is build on top of the local indexes. To search local data efficiently
and make the local balancing, B-tree is used for local chunks. In the global index, a
DHT index is used to make the uniform distribution among servers.

Figure 8. Balanced range allocation

452 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Figure 9. The metadata table

4.3 Scheduling and load balance

To do better load balancing among partitions to optimize the overall database
performance, an effective algorithm is highly desirable, that can migrate, distribute
and duplicate tenants among partitions through monitoring the load. Most cloud
scheduling algorithms and database solutions address their problems independently.
However, most of cloud components and functionalities are interconnected. Specifi-
cally, a task scheduling algorithm needs to consider database partitioning to provide
an efficient solution for performance and scalability. More specific, a task assigned to
a processor should host the appropriate data partitions otherwise data updates and
migration among caches and processors can be expensive.

The most scalable MTA requires an SaaS scheduler that can dispatch tasks to
multiple copies of the same software in a data center[10]. As the same version of
the software is used, user customization must be stored in databases, and thus an
integrated solution must address both scheduling and database partitioning together
as shown in Fig.6.

Different strategies have been adopted to allocate data partitions in the cloud.
One allocation strategy permits a single copy of the database to be stored in the
network, non duplication. The partitions are allocated to the nodes to minimize the
overall system communication cost, query response time, and other criteria depending
upon the objective of the designer[14,48]. Another strategy is to store multiple copies
of all or a part of duplications. Although this reduces transmission cost and improves
response time, it increases data redundancy, storage costs, and update costs to keep
data consistency. To solve this problem, sharing everything among tenants provides
a solution. This paper adapts a sharing everything framework to support scheduling
and load balancing in a cost effective way.

4.4 Two-Layer index for P 2

To scheduling requests and balance loads using our P 2 model in Section 4.2, a
correspondingly two-layer index mechanism is proposed as follows:

DHT at tenant partitioning level: DHT(Distributed Hash Tables) can be
adopted in the upper layer of partitioning for nodes among tenants.

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 453

Given a key, DHT can map the key onto a tenant’s data block as shown in
Fig.7. Inherent from consistent hashing[28,46] to assign keys to blocks, the consistent
hashing supports balance load, since each node received roughly the same number
of keys, and involves relatively little movement of keys when add or delete chunks
from the system. Several good features are maintained in DHT, e.g. balances load
with high probability (all nodes receive roughly the same number of keys), minimize
maintain cost (when an N th node added/deleted, only O(1/N) faction of the keys are
moved to a different node). Each node maintains information only about O(logN)
other nodes, and a lookup takes O(logN) time.

Figure 10. The data table

One can use unsigned integers to match to the output of cryptographic hash
function. It is convenient to visualize the key space as a ring of values, support b bit
in the ring, starting at 0 and increase clockwise until they get to (2b − 1) and then
overflow back to 0. Figure 8 shows a ring representation of Pastry-style routing[36],
in which key space is divided into evenly sized sequential ranges, each node has one
range, and ranges are assigned in the order of nodes, sorted by hash ID. Hence data
are uniformly distributed among the nodes.

B-tree index at chunk partitioning level To allocate and schedule chucks at
the second level at least the following approaches can be applied:

(a) Allocate tenant’s data with fixed partitions periodically or asynchronously:
given the number of tenants k in a cloud, and the number of partitioning blocks at each
tenant, it can partition the available database chunks into groups based on resource
constraints and user requests. This method will decrease the contention, and each
partition will be allocated to a certain copy of the software. As the workload changes,
a re-allocation needs to be done. One way is to perform the update periodically,
whenever the changes or the rates of changes exceed certain thresholds, or when the
system slows down significantly due to unbalanced workload among different tenants.

(b) Flexible partitioning and re-partitioning. Unlike the previous approach, the
partitions will be dynamically maintained as the workload changes. For example, one
may use a scheme similar to B-tree to organize data partition accordingly. A B-tree
allows a congested partition to double the resource, and a lightly loaded partition to
reduce its resources by half, and it may be served together with another light partition

454 International Journal of Software and Informatics, Vol.4, No.4, December 2010

in the same processor. In this way, a busy tenant can have its needs met, and a light
tenant will not occupy idle resources by sharing with fellow light tenants. By using
this approach, the resource can be automatically maintained and balanced.

Figure 11. Sample B-tree for chunks

Example: A sample B-tree for chunk partitioning is shown in Fig.11. The
B-tree is used to maintain all chunks. At the beginning, each tenant can be allocated
20 chunks, and more chucks can be allocated to them when necessary. To add a chuck,
either simple add operations (in Fig.11(B)) or split operations on the index page in
B-tree (in Fig.11(C)) are needed.

4.5 Performance analysis for P 2

To analyze the performance of P 2, this paper first analyzes the performance of
row-store and column-store. Then it further compares the performance of P 2 with
these two schemes.

Operations composition based analysis: The performance of a storage
mechanism can be evaluated using the access patterns. There are three types of
access pattern: read mostly, write (update) mostly, and a hybrid of read and write
operations.

To have a better understanding of P 2, one can start from the simple cases, and
analyze the performance of row-store and column-store. The comparison of row-store
and column-store is easier. At the beginning, all are update operations with no read
operations (read = 0%, update = 100%), row-store has a shorter average response
time than column-store, since update operations are only influence certain tuples in
row-store, while column-store needs to update multiple columns in different chunks
with join operations. As the read operation percentage increases to an extreme degree,
all read operation and no update (read = 100%, update = 0%), column store beats
row store due to its easy access to certain columns, especially when queries are focus
on some specific attributes, e.g. credit score. When the distributions of read and
update operations are close to each other, there would be some points, row-store and
column-store have similar performances.

The case for two-layer is more complicated:

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 455

1. Mostly write-only operations: When update operations dominated the whole set
of operations, the first layer of row-partitioning data will be used to store update
changes. To ensure data consistency at the chunk level, similar as Dynamo’s
“always writeable” strategy, one can be maintained and postponed the chunk
level update to back-end. At the meanwhile, the query operations are supported
by two-level indexes, which can easily find out matching data, hence the average
response time for the whole operation sets(both read and update operations)
are shorter than row-store only, even much better than column-store.

2. Mostly read-only queries: When read operations dominate the whole operation
sets, two-level indexes can support better query response time than others, and
considering the mix of column store’s high update costs, the average of two-layer
model is better than column-store, even much better than row-store.

3. Mix of read and write operations: write operations are few but important,
while read operations are frequent but less important. To satisfy the priority
requirements of write operations, one can optimize write operations by adapting
to some database transaction isolation models, to change the execution order of
read/write operations without violating the consistency constraints.

Hence, using the proposed two-layer partition model with two-level indexes, one
can improve the overall system performance.

Specially, some interesting observations here: suppose the total number of write
operations is |w| and the total number of reading operations is |r|, it is easy to see
that |w| 6 |r|, since most of operations for tenants are getting data and few update to
save their utility costs. After commit the initial data, the tenant may seldom update
the data when necessary. On the other hand, the priority of write operations can be
represented as p(w), and the priority of read operations is p(r), as we discussed in
Section 1, since write operations have a high priority than read operations, one can
get p(w) > p(r). There is a conflict between the two arguments, as shown in Eq.(1),
in another words, write operations are few but important, while read operations are
frequent but less important. Balancing the frequency and importance of these two
types of operations is an interesting problem. Readers may notice that P 2 is a natural
solution for this conflict: the first level horizontal partitioning can fit for the priority
requirement of p(w) > p(r), since update operations are favored at this level, hence
one can write easily. While the second level of vertical partitioning works for |w| 6 |r|,
in which read operations dominate the system in most of the time.

Conflict(occur, p) =

{
|w| 6 |r|
p(w) > p(r).

(1)

To satisfy the priority requirements of write operations, one can optimize write
operations by adopting to some database transaction isolation models, to change the
execution order of read/write operations without violating the consistency constraints.
New business requirements in cloud applications force service providers to loosen the
rigid constraints and adopt a more relaxable approach in transaction isolation. It is
important to ensure that the relaxation of isolation does not cause difficult-to-find
problems.

456 International Journal of Software and Informatics, Vol.4, No.4, December 2010

The write priority optimization algorithm is suitable for cloud applications for
the following reasons: In some circumstances, read operations are not necessary to
get the most recent updates or it can even read data which are entered later. For
example, in an online shopping application, reading customer’s product list will not
affect the shopping cart data. Hence one can move write operations forwards, in
another words, change the order of read/write operations to adapt to high priority
write operations.

On the other hand, there are specific read operations could not be postponed,
due to the isolation affect. For example, a customer may want to know many books
have been ordered in the shopping cart, and he/she can use “read” before issuing
another write, but the write can move forward, and the read will read the most
recently updated data. Another example, if a customer found that an order has been
placed (for a read operation issued before the write) or an order has been removed,
the customer can re-issue the read for double confirmation. This type of read as
“double-confirmation-read” instead of read. Hence, three kinds of operations existing
in cloud applications, including read, double-confirmation-read, and write. It is easy
to see that write operations can move forward before any read operation, but not
before double-confirmation-read. As we do not have too many double-confirmation-
read, the optimization algorithm can be easily developed. Double-confirmation-read
can be easily identified by checking whether a read operation is issued after the write
operation from the same user on the same data.

When adjust the execution order of read/write operations, one can explore the
traditional database concurrency issues[37] and design an optimization algorithm for
write-priority operations without violating certain constraints accordingly. The three
concurrency issues includes: Dirty Reads (one transaction reads data written by an-
other uncommitted transaction), Non-repeatable Reads (one transaction read the
same data twice and one write operation modify the data in between the two reads,
which cause the 1st read operation got the non-repeatable value) and Phantom Reads
(when one read operation gets a range of data more than once and a write operation
inserts/deletes rows that fall within that range between the first transaction’s read
attempts, hence “phantom” rows appear/disappear).

Usage view analysis: There are two types of usage views for P 2, one is
tenant-specific view for each customers, the other is cross-tenant view by cloud service
providers, such as system monitoring, auditing, and performance control.

For the cross-tenant system level view, the three types of operations co-exist
as well, and read operations dominate the system in most of the time. Most of
operations for service providers are monitoring, and auditing, hence the system can
get the statistic information of any chunks easily using P 2’s partitioning model.

For the tenant-specific operations, as we discussed earlier, there are three types
of operations including read/write/mix operations, and one can find out the benefit
of using P 2 easily.

5 Quadpartite Recovery Model

The quadpartite recovery model (QRM) uses four major components: OC (on-
tology component), MC (metadata component), DC (data component) and IC (index
component). In a traditional cloud environment, data and metadata are at least

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 457

triplicated into different chunks to ensure reliability and availability. This is good as
long as at least one chunk is available in case of failures, while data lost can be trou-
blesome, metadata lost can cause significant issues for a cloud. This paper extends
the traditional approach by having redundant metadata information among the four
components so that metadata can be recovered in case all the metadata chunks are
lost.

Figure 12. The mortgage ontology

Definition 1. OC contains information such as entity, attributes, relations,
classicalists and constraints which include those information(e.g. entity, attribute,
relational and classification constraints). Note that constraints can be mapped into
metadata in MC.

Definition 2. MC contains the schema description, the data dictionary that
stores the constraints, triggering rules, and other relational constraints.

Definition 3. DC contains the actual data, but also metadata in the MC.
Definition 4. IC contains the indices generated for the actual data. Indices

are generated only for the data stored in the local node so that the overhead of the
distribution of redundant data can be minimized.

The indices of the data, which can be considered as a summary of the existing
data, can be used to guide the recovery of the data. Besides, the indices are also
used to continuously validate the recovered data to ensure the correctness of data
recovery. Also, the indices can be effectively used to detect the inconsistency of data
stored in different nodes in the cloud. Any information stored in each component will
have redundancy. Note that currently, a cloud environment does not have an OC,
but it can be added for customization, service specification, classification, and now
metadata and data recovery.

Note that in most current SaaS design, the DC will contain just data, but QRM
adds metadata into the DC. This increases the redundancy of metadata as a failure in
metadata may cause significant troubles and thus extra redundancy for metadata. In
addition, IC is used to help to accelerate the recovering process as well as validating
the recovered components.

458 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Algorithm 1 Recover metadata table from ontology
RecoveryMetadata(OC oc)
INPUT: Ontology Trees T1, T2, · · · , Ti, describing E

OUTPUT: The metadata table

1: Tc = T0

2: for j = 1 to i do
3: Compare tree Tc with Tj

4: Extract the common tree Tcj

5: Tc = Tcj

6: end for
7: Convert tree Tcj to E’s metadata table
8: for j = 0 to i do
9: Compare tree Tj with Tcj

10: Extract the difference between Tj and Tcj as Tk

11: Convert tree Tk to E’s metadata table
12: for all constraint in tree Tk do
13: Store constraint into constraint table
14: end for
15: end for

Figure 13. The distributed data table

Figure 14. Some indices of the tenant data tables

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 459

Information stored in an OC will be at least triplicated into different nodes or
chunks like GFS. Furthermore, each entry in the OC will be mapped to the corre-
sponding entries in the MC and DC to ensure completeness. In other words, whenever
an entry is added or changed in the OC, the corresponding entries in the MC and DC
need to be updated. In this way, in case that when parts of or the entire OC failed,
the OC can be reconstructed using information in MC and DC. Note that entities,
attributes, and relations can be easily mapped into data tables, and classification and
constraints such as entity, attribute, relational, and classification constraints can be
mapped into metadata. Furthermore, some constraints can be additionally mapped
into triggering rules associated with data. Thus, the entire OC information may be
reconstructed using information in DC and MC.

To avoid the transmission of IC when DC are duplicated, the IC is only generated
from DC locally. Whenever the DC is updated, IC will continuously be updated to
reflect the change in DC. In this way, the traffic between nodes are minimized, and the
consistency of DC can be quickly checked by using IC. IC also provides the ability of
cross- checking in different granularity. To provide a lightweight cross checking, only
the IC needs to be examined. And a heavyweight cross checking will be to conduct a
comparison between the DC.

Due to the distributed nature of cloud computing, an OC may be stored in
different chunks for reliability. Thus, if there is any cross reference, the 2-way relation
will be stored in two places in the OC. For example, if a customer is related to a
product, the relationship will be stored in both customer node and product node.
The name of the relationships, attributes of the relationships, and the names of the
parties will all be stored in both parties. In this case, whenever one of them fails, it
can be recovered from the other.

For each chunk of data, mechanisms such as parity and checksum can be used
to indicate its integrity, as are done in RAID. Additional benefits of this approach
are the acceleration of the lookup operations because the relationship information is
stored locally. Figure 15 shows the OC, MC, DC and IC in QRM. Whenever, one of
the component fails, it can be recovered from the other two components.

The QRM recovery mechanisms can be illustrated through a mortgage example
below. Figure 12 represents the OC in the mortgage example. The corresponding
MC and DC are shown in Fig.9 and Fig.10. Figure 13 shows the mortgage data
partitioned according to the hybrid partitioning proposed. Figure 14 shows the index
of the mortgage data.

Figure 15. Quadpartite

460 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Figure 16. Summary of the OC, MC, DC, and IC

Figure 17. Sample recovery

In case of an MC failure, one can recover the MC by using the information in the
OC. As can be seen in Fig.12 and Fig.10, the OC used in the mortgage domain stores
the relationship between the entities. If the customer table is lost, one can recover it
from the OC. From the OC, one can know that the credit score and the income are

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 461

Algorithm 2 Recover ontology from data and metadata
RecoverOntology(Node n)
INPUT: Data tables describing entities E1, E2, · · · , Ei

INPUT: Data tables describing entities R1, R2, · · · , Ri

INPUT: Metadata tables containing constraints M1, M2, · · · , Mi

OUTPUT: The ontology tree
1: T = n

2: for all Ei related to n do
3: Append child node m to n

4: for all Ri related to m do
5: Append child nodes from Ri to m

6: if m represent a column then
7: Lookup the constraints in M1, M2, · · · , Mi

8: Append the constraint to m

9: end if
10: end for
11: end for
12: for all child nodes m of n do
13: RecoverOntology(m)
14: end for
common for the tenants by comparing the two customized ontology trees in Fig.12.
Then one can restore the shared column “Customer”, “Credit Score” and “Income”
in the MC. For the rest of the columns, one knows that it belongs to the sparse part
in the MC. Ontology tree merge / comparison operation need to be conducted to
accomplish the reconstruction. Algorithm 1 describes the process of recovering the
MC and OC. Using the mortgage example as shown in Fig.10, one can retrieve tree
T1 and T2 customized by the tenants. For the common part of the two trees (the
customer, credit score and income columns), one can fill the metadata table with the
corresponding information available in the OC. After that, one can fill the description
for the sparse columns according to the difference between T1 and T2.

The MC failure can also be recovered by using the information in the DC. As
the DC contains the same metadata information, except the metadata will be stored
together with the data, and some metadata may be mapped to enforcement rules to
be triggered when the corresponding data are changed.

In the cases of an OC failure, the OC can be reconstructed using the MC, in a
reverse manner as the process of recovering the MC. In this process, one can also use
the DC. For each node in the ontology tree, all data table describing the node will
be collected. Then starting from the root of the tree, one can append the nodes to
the ontology tree using the data table describing the relationships between entities.
After that, the data tables are used to append the child leaves to the ontology tree.
Algorithm 2 describes this process.

In case of a DC failure, one can resort to the duplicates of the DC for data
recovery. The metadata in the DC can be recovered from the MC and OC. The
recovery process will be different because now metadata are stored together with data,
and some meta information such as constraints need to be mapped into enforcement
rules to be triggered when the data are changed. Besides resorting to duplicates

462 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Algorithm 3 Recover DC with IC
RecoverData(IC ic)
INPUT: Index tables related to data table T

OUTPUT: Data table T to be recovered
1: canRecover = true

2: for all column c in table T do
3: if c is not covered in ic then
4: canRecover = false

5: break
6: end if
7: end for
8: if canRecover == true then
9: RecoverDataByIC(ic)

10: else
11: data = RecoverDataByDuplicates()
12: CrossCheckingWithIC(data, ic)
13: end if
Algorithm 4 Recover DC using IC
RecoverDataByIC(IC ic)
INPUT: Index tables related to data table T

OUTPUT: Data table T to be recovered
1: Sort all columns in ic by tenant ID
2: for all column c in ic do
3: Construct record r with c

4: Insert r into table T

5: end for
of DC, one can also leverage the IC to accelerate the DC recovery process. As a
summary of the DC, the IC can be used to re-construct the DC. Different ICs for
the different part of the DC can re-construct the DC “collaboratively” because they
contains different information from the DC. Note that after a data table recovery, the
recovered data might not be consistent with the existing constraints (metadata). In
this case, recovering the constraints using OC and/or MC may be necessary. And the
IC can be also be used for cross checking.

Example 5.1. To recover the DC from the IC, consider the same mortgage
data in Fig.13 and the indices in Fig.14. Suppose one tries to recovery data of tenant
1, the algorithm first retrieves the Bitmap indices of tenant 1. Then using the bitmap
for column income, one can identify the row of the data. Then the system can write
the value retrieved from the bitmap continuously to the DC.

Example 5.2. To recover the OC and MC, consider the same mortgage data
in Fig.14. Suppose in the ontology, the attribute “DebtToIncome” of is missing due to
node failure. By looking at the metadata table in Fig.13, the algorithm can discover
that a branch “DebtToIncome” is missing. Thus the branch is added according to
the information retrieved. If any other attribute is missing in the ontology, they can
be recovered in the same way. The MC can be recovered in a similar manner if they
are lost due to node failure.

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 463

Algorithm 5 Cross checking DC by IC
RecoverDataByDuplicates(Duplicates d, IC ic)
INPUT: Index tables related to data table T

INPUT: Duplicates d of table T

OUTPUT: Data table T to be recovered
1: T = d

2: for all column c in table T do
3: if c is covered in ic then
4: Checking the validity of c with ic

5: if Recovered c is not valid then
6: Cross checking c with other duplicates
7: end if
8: end if
9: end for

Example 5.3. Recovering the IC is relatively easy because the index is pro-
duced by accessing the data, as this is the way index constructed. To recovery the
index as shown in Fig.14, one can just scan through the data table in Fig.13 and
generate the indices.

Figure 18. Recovering OC

Figure 17 summaries the process and the required components in the proposed
recovery mechanism. Note that one significant advantage of the QRM is that even if
the replication are lost, one can still recover metadata by re-construction from other
components. Algorithm 1 and Algorithm 2 demonstrated how the sample examples
can be resolved as listed in Fig.17. More discussion about the mapping between
metadata and ontology can be found in Refs.[42, 58, 13].

464 International Journal of Software and Informatics, Vol.4, No.4, December 2010

Figure 19. Continuous testing model in SaaS

6 Built-In Continuous Testing for SaaS

A challenging problem faced by software developed in the SaaS model is the
testing of SaaS software. Since SaaS software have to adopt MTA requirement, the
number of users is increasing dramatically. Requirements for Diverse features of SaaS
software is fast evolving as new users are entering the system, as well as old users are
requiring new functionalities. Thus the evolvement of the SaaS software need to be
fast, while the quality of software needs to be ensured in an evolvement way.

Traditional testing practices need to conduct testing activities after all devel-
opment activities are completed. To test the modified part of a software can cost
longer time, as well as costs more labors. Such a sequential develop-test process is
insufficient to satisfy the requirement fast involvement posted by the MTA and SaaS
model. Therefore, this paper proposes an embedded capability of continuous testing
in the SaaS framework, to address the testing challenges introduced by SaaS model.

6.1 Continuous testing

An effective model of automated testing is continuous testing. It can also be part
of the TDD (Test-Driven Development) process. Continuous testing implements con-
tinuous processes of applying quality control - small pieces of effort applied frequently,
in the process of software development. Continuous testing has been proposed and
can be applied in various aspects in software development. For example, as proposed
in Ref.[45], tests run 24 hours a day, 8 days a week and the results of these testings are
efficiently processed. While in Ref.[41], continuous testing is integrated into eclipse
as a tool for continuous code verification when source code changes. It uses excess

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 465

cycles on a developer’s workstation to continuously run tests in the background, pro-
viding rapid feedback about test failures as source code is edited. A radical design
choice in the Google Chrome OS is its incorporation of continuous verification. Given
the extensive usage of continuous testing, its desirable that the SaaS framework also
provides built-in continuous testing capability.

Besides continuous testing, testing SaaS software can also be collaborative by
nature since it is usually developed with a service oriented architecture. In the frame-
work proposed in this paper, we proposed to embed built-in testing capability in the
SaaS framework. We provide a collaborative testing environment by generating test
scripts in a collaborative manner. We integrate continuous testing with the storage
layer, by leveraging database triggering rules. We also propose algorithms so that
integrating testing and intelligent testing can be conducted within our framework.
Figure 19 show the evolution of different models, from SOA, SaaS to continuous
testing model.

6.2 Test cases generation from metadata

Test cases can be generated by examining metadata, e.g. Income length of cus-
tomer must be 64 bits or so, hence some simple test cases will be randomized with 64
bits. One can generate a collection of customers of 64 bits, another collection with
128 bits or any other bits.

Random number from 0 264−1, e.g. another set is negative numbers, and greater
than 264 − 1, so we have three set of values, one valid and other two are invalid. The
boundary value test cases can be generated from {-2, -1, 0, +1, +2} around boundary
of the constraints, specifies by the metadata. For example, according Fig.9, credit
score > 0 is an invalid testing put, credit score = 0, 1 are boundary test values. Several
test case generations from ontology including constraints have been proposed[6,5] and
can be used in our framework.

Based on the WebStra’s framework, test cases can be ranked[52], and based on the
importance, and history, test result oracle can be established by voting[7], test case
dependency can be automatically analyzed using the test results based on statistic
techniques. without canalizing software structures, a large collection of test cases can
be constructed, ranked and evaluated on a continuous bases.

6.3 Collaborative testing

Testing SaaS software can be collaborative by nature since it is usually devel-
oped with a service oriented architecture. A collaborative testing environment can
generate test scripts in a collaborative manner as shown in Fig.20. Test scripts can
be contributed by different parties or automated generated in a multi-tenancy way.

6.4 Intelligent testing

SaaS data (such as code bases, execution logs, mailing lists, and bug databases)
is a good wealth of information about an application’s lifecycle. Using data mining
techniques, one can fully explore the potential of this valuable data, and manage
their projects in a cost effective way, produce higher-quality software systems with
less bugs. Two types of information are available as data resources as shown in Fig.21:
(1) Historical repositories: including source control repositories, bug repositories, and

466 International Journal of Software and Informatics, Vol.4, No.4, December 2010

communications records of project evolution and etc. It captures dependencies be-
tween project artifacts (e.g. functions, documentation files, and configuration files).
Not only handling static or dynamic code dependencies, one has to consider implic-
itly dependency, e.g. change of writing data may require reading data code change
implicitly. Also it can be used to track the history of a bug or a feature, determine
the expected resolution time according to previously closed bug resolution history.
(2) Real-time repositories: including deployment logs with execution information and
system usage logs from multi-tenancy. By monitoring the execution, one can find out
the dominant execution or usage from logs, and tune the system performance accord-
ingly. Similarly, one can mine the dominant APIs usage patterns by monitoring code
repositories.

Figure 20. Collaborative testing

6.5 Policy enforcement

Policies represents the expected software behavior, which are enforced at run-
time to ensure that the software execution conforms to the requirements. They are
derived from business goals and service level agreements(SLA) in enterprises, which
are “rules governing the choices in behavior of a system”[42]. Policies includes obli-
gation policies(event triggered condition-action rules), authorization policies(define
what services or resources a subject can access) and etc. This paper is focus on obli-
gation policy to manage SaaS testing process. The Obligation Policy (OP) defines
a tenant’s responsibilities, what activities a subject he must (or must not) do. In
general, obligation policies are event-condition-action rules (ECA) as trigger rules, in
the format of

On Event If Condition Do Action
The event part specifies when the rule is triggered; the condition part deter-

mines if the data are in a particular state, in which case the rule fires; the action
part describes the actions to be performed if the rule fires. ECA systems receive
inputs (mainly in the form of events) from the external environment and react by
performing actions that change the stored information (internal actions) or influence
the environment itself (external actions).

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 467

Figure 21. Tool box of data mining algorithms and data repositories

Figure 22. Sample policy specifications

Two general ways to address the faults using trigger rules, one emphasized pre-
vention, e.g. developing a formal trigger rule to ensure the decidability and complete-

468 International Journal of Software and Informatics, Vol.4, No.4, December 2010

ness of a trigger rule system, which prevents anomalies. The second is to design a
mechanism for handling various faults or failures during the execution of trigger rules,
e.g. develop sophisticated plans for any possible results, which either eliminate the
adverse effects or minimize the bad effects. This paper uses the second method, and
proposes policy enforcement framework, which not only uses trigger rules, but also
contingency plans.

SaaS are applied to increasing complicated, non-conventional application areas
with real-time constraints, the probability of faults during the execution of trigger
rules increase greatly. A trigger service in SaaS become increasingly complicated in
handling the faults, such as failures and aborts, which may occur during the execution
of SaaS customization. This paper models failures, aborts and other fault situations
as events in the ECA paradigm, hence the contingency plans for handling fault events
can be modeled as trigger rules.

6.6 Policy enforcement triggering rules

Policies are often enforced in service application when a service is been involved,
for example, WS policy, XACML[33] and other policy standards, however, the policy
used in the paper are derived from constraints, in the metadata and they may need to
be enforced whenever data are changed, other than a service is involved[49], and also
in the SaaS environment, multiple threads and services may be active at a given time,
and may cause multiple data to be access or updated concurrently, and thus one needs
different policy triggering rules, other than the traditional service invocation events.
The following events are selected sample of policy enforcement triggering events.

1. There is a failure in the system somewhere, this is for sanity check; (Fig.20(a))

2. Before a service will be used (to ensure that the service is in a good shape, this
is similar to acceptance testing); (Fig.20(b))

3. After a service has been just used (to ensure that the running does not affect the
software), and store the input/output pair, to update the profile; (Fig.20(c))

4. Whenever a new service with the same service specification arrives;

5. Whenever a new application is created to specify that it intends to use the
service (this is equivalent to testing during development)

6. If the service is replaced by another one as the previous one has some bugs or
performance issues;

7. Certain time period has passed. For example, one week has passed, and the
system is not sure that something is wrong, this is more like a sanity checking;

8. Whenever the new resources are added into SaaS during execution; new re-
sources may cause issues, and need to work on scalability issues (scale out);

9. Whenever an existing resources is removed from the SaaS during execution, a
reduce resource may cause issues, and need to work on scalability issues (scale
in);

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 469

10. Whenever the cloud platform has a change in configuration: to ensure scalability
issues (scale up and down), to maintain performance and so on

11. Whenever the output produced does not match with the predicted output;

12. Whenever a new input that has not occurred before arrive, and the new input
may reveal new bugs not known;

Some sample rules can be specified as shown in Fig.20.

6.7 Other SaaS testing techniques

Many other possible testing techniques can be applied to SaaS, for example col-
laborative testing scripts generation, in which test scripts can be contributed by dif-
ferent parties or automated generated in a multi-tenancy way.

Integration testing, in which an integration testing script can be considered as
a service testing by fixed the other services, and uses a series of test cases, and just
test the specific service for regression testing. Once one collects enough information,
he can have a good set of regression test scripts for the service.

According to previous test results, if one saves all the history information, more
interesting mainlining algorithm, e.g. Markov model[52], similarity based prediction,
collaborating profiling and etc can be applied to further improve the testing per-
formance. Also Test scripts and test cases can be ranked based on test run, and
dependency of test cases can be analyzed.

7 Conclusion

SaaS is characterized by its multi-tenancy architecture and its ability to provide
flexible customization to individual tenant, which brought up various challenging
problems, such as the testing of software developed with the SaaS model and built-in
recoverability. This paper presents a unified and innovative multi-layered customiza-
tion framework supporting continuous testing and recoverability. Different database
partitioning strategies are offered for customization. Ontology is used to derive cus-
tomization and deployment information to tenants and to support continues testing
and recoverability. In the future, more testing techniques will be investigated to fur-
ther improve the robustness of SaaS framework. A simulation of two-layer partitioning
model will be investigated to further evaluate the proposed model performance.

References

[1] Aulbach S, Grust T, Jacobs D, Kemper A, Rittinger J. Multi-tenant Databases for Software as

a Service: Schema-mapping Techniques. SIGMOD’08. ACM. New York, 2008. 1195–1206.

[2] Amazon. Amazon elastic compute cloud (amazon ec2). 2010. http://aws.amazon.com/ec2/.

[3] Zhang K, Zhang X, Sun W, Liang HQ, Huang Y, Zhen LZ , Liu X Z . A Policy-Driven Approach

for Software-as-Services Customization. ICEBE. 2007. 123–130.

[4] Brantner M, Florescu D, Graf D, Kossmann D, Kraska T. Building a Database on S3. SIGMOD

’08. ACM. New York, NY, USA. 2008. 251–264.

[5] Bai XY, Lee SF, Tsai WT, Chen YN. Ontology-Based Test Modeling and Partition Testing of

Web Services. ICWS’08. IEEE Computer Society. Washington, DC, 2008. 465–472.

[6] Bai XY, Liu YL, Wang LJ, Tsai WT, Zhong P D. Model-Based Monitoring and Policy Enforce-

ment of Services. SERVICES I. 2009. 789–796.

470 International Journal of Software and Informatics, Vol.4, No.4, December 2010

[7] Bai XY, Wang YB, Dai GL, Tsai WT, Chen YN. A Framework for Contract-based Collaborative

Verification and Validation of Web Services. CBSE’07. Springer-Verlag. Berlin, Heidelberg.

2007. 258–273.

[8] Boncz PA, Zukowski M, Nes N. MonetDB/X100: Hyper-Pipelining Query Execution. CIDR.

2005. 225–237.

[9] Chong F, Carraro G. Architecture Strategies for Catching the Long Tail. 2006.

[10] Chong F, Carraro G, Wolter R. Multi-Tenant Data Architecture. June 2006.

[11] Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A,

Gruber RE. Bigtable: a Distributed Storage System for Structured Data. OSDI’06, USENIX.

Association. Berkeley, CA, 2006. 15–15.

[12] Google Data Center. http://www.youtube.com/watch?v=zRwPSFpLX8I.

[13] Cullot N, Ghawi R, Ytongnon K. DB2OWL: A Tool for Automatic Database-to-Ontology Map-

ping. SEBD 2007. Citeseer. 2007. 491–494.

[14] Ceri S, Navathe S, Wiederhold G. Distribution Design of Logical Database Schemas. IEEE

Trans. Softw. Eng., 1983, 9(4): 487–504.

[15] Ceri S, Pelagatti G. Distributed Databases Principles and Systems. McGraw-Hill. Inc., New

York, NY, USA. 1984.

[16] Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen H, Puz N,

Weaver D, Yerneni R. PNUTS: Yahoo!’s Hosted Data Serving Platform. Proc. VLDB Endow.

2008, 1(2): 1277–1288.

[17] Das S, Agrawal D, El Abbadi A. G-Store: a Scalable Data Store for Transactional Multi Key

Access in the Cloud. SoCC ’10. ACM. New York, NY, 2010. 163–174.

[18] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian

S, Vosshall P, Vogels W. Dynamo: Amazon’s Highly Available Key-value Store. SOSP’07. ACM.

New York, NY, 2007. 205–220.

[19] Eadon G, Chong EI, Shankar S, Raghavan A, Srinivasan J, Das S. Supporting Table Partitioning

by Reference in Oracle. SIGMOD ’08: Proc.of the 2008 ACM SIGMOD International Conference

on Management of Data. ACM. New York, NY, 2008. 1111–1122.

[20] Essaidi M. ODBIS: Towards a Platform for On-demand Business Intelligence Services. EDBT’10:

ICDT Workshops. ACM. New York, NY, 2010. 1–6.

[21] Force.com. http://force.com/.

[22] Google. Google app engine. 2010. http://code.google.com/appengine/.

[23] Apache Software Foundation. Hbase: Bigtable-like structured storage for hadoop hdfs. 2009.

http://hadoop.apache.org/hbase/.

[24] Microsoft Building New Data Center in Quincy. http://www.datacenterknowledge.com/archives/

2010/05/19/microsoft-building-new-data-center-in-quincy/.

[25] iTKO. itko lisa. http://www.itko.com/default.jsp.

[26] Kraska Tim, Hentschel M, Alonso G, Kossmann D. Consistency Rationing in the Cloud: Pay

Only When it Matters. Proc. VLDB Endow. 2009, 2(1): 253–264.

[27] Kossmann D, Kraska T, Loesing S. An Evaluation of Alternative Architectures for Transaction

Processing in the Cloud. SIGMOD’10. ACM. New York, NY, 2010. 579–590.

[28] Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D. Consistent Hashing and

Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web.

STOC’97. ACM. New York, NY, 1997. 654–663.

[29] Livny M, Khoshafian S, Boral H. Multi-disk Management Algorithms. SIGMETRICS Perform.

Eval. Rev. 1987, 15(1): 69–77.

[30] Li HB, Shi YL, Li QZ. A multi-granularity customization relationship model for SaaS. WISM’09.

IEEE Computer Society. Washington, DC, USA. 611–615.

[31] Mehta M, DeWitt DJ. Data Placement in Shared-nothing Parallel Database Systems. The

VLDB Journal, 1997, 6(1): 53–72.

[32] Mietzner R, Leymann F. Generation of BPEL Customization Processes for SaaS Applications

from Variability Descriptors. SCC ’08. IEEE Computer Society. Washington, DC, USA. 2008.

359–366.

[33] Moses T. eXtensible Access Control Markup Language TC v2.0 (XACML), February 2005.

Wei-Tek Tsai, et al.: Data partitioning and redundancy management for robust ... 471

[34] Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig latin: a Not-so-foreign Language

for Data Processing. SIGMOD ’08. ACM. New York, NY, USA. 2008. 1099–1110.

[35] Pavlo A, Paulson E, Rasin A, Abadi DJ, DeWitt DJ, Madden S, Stonebraker M. A Comparison

of Approaches to Large-scale Data Analysis. SIGMOD’09. ACM. New York, NY, USA. 2009.

165–178.

[36] Rowstron A, Druschel P. Pastry: Scalable, Decentralized Object Location, and Routing for

Large-scale Peer-to-peer Systems. MIDDLEWARE. 2001. 329–350.

[37] Ramakrishnan R, Gehrke J. Database Management Systems. 2007.

[38] Stonebraker M, Abadi DJ, Batkin A, Chen XD, Cherniack M, Ferreira M, Lau E, Lin A, Madden

SR, O’Neil EJ, O’Neil PE, Rasin A, Tran N, Zdonik SB. C-Store: A Column-Oriented DBMS.

VLDB. Trondheim, Norway. 2005. 553–564.

[39] Salesforce.com. Salesforce. 2010. http://www.salesforce.com/.

[40] Saff D, Emst MD. Continuous Testing in Eclipse. 2nd Eclipse Technology Exchange Workshop

(eTX). Barcelona, Spain. March 2004.

[41] Sloman M. Policy Driven Management For Distributed Systems. Journal of Network and Sys-

tems Management, 1994, 2: 333–360.

[42] Sung S, McLeod D. Ontology-Driven Semantic Matches between Database Schemas. 2006. 6–6.

[43] Stonebraker M, Madden S, Abadi DJ, Harizopoulos S, Hachem N, Helland P. The End of an

Architectural Era: (It’s Time for a Complete Rewrite). VLDB’07. VLDB Endowment. 2007.

1150–1160.

[44] Smith E. Continuous Testing. Proc. of the 17th International Conference on Testing Computer

Software. 2000.

[45] Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek MF, Dabek F, Balakrishnan H.

Chord: a Scalable Peer-to-peer Lookup Protocol for Internet Applications. IEEE/ACM Trans.

Netw., 2003, 11(1): 17–32.

[46] Sobel W, Subramanyam S, Sucharitakul A, Nguyen J, Wong H, Klepchukov A, Patil S, Fox O,

Patterson D. Cloudstone: Multi-platform, Multi-language Benchmark and Measurement Tools

for Web 2.0, 2008.

[47] Sacca D, Wiederhold G. Database Partitioning in a Cluster of Processors. ACM Trans. Database

Syst., 1985, 10(1): 29–56.

[48] Tsai, WT, Chen YN, Paul R, Zhou XY, Fan C. Simulation Verification and Validation by

Dynamic Policy Specification and Enforcement. Simulation, 2006, 82(5): 295–310.

[49] Mary Taylor and Chang Jie Guo.Data Integration and Composite Busi- ness Services, Part 3:

Build a Multi-tenant Data Tier with Access Control and Security. http://www.ibm.com/develop-

erworks/data/library/techarticle/dm- 0712taylor/index.html.

[50] Tsai WT, Shao Q H, Li W. OIC: Ontology-based Intelligent Customization Framework for SaaS,

2010.

[51] Tsai WT, Zhou XY, Paul RA, Chen YN, Bai XY. A Coverage Relationship Model for Test Case

Selection and Ranking for Multi-version Software. HASE. 2007. 115–112.

[52] Weissman CD, Bobrowski S. The Design of the Force.com Multitenant Internet Application

Development Platform. SIGMOD’09. New York, NY, USA. ACM. 2009. 889–896.

[53] Weissman C. Behind the Scenes: Salesforce.com Chief Technology Officer on Cloud Architecture,

2009.

[54] Wikipedia. Ontology in computer science and information science. 2010. http://en.wikipedia.org/

wiki/Ontology (information science).

[55] Xu ZM, Zhang SC, Dong YS. Mapping between Relational Database Schema and OWL Ontology

for Deep Annotation. WI’06. 2006. 548–552.

