A Framework for Interactive t-SNE Clustering
    Download PDF
Jared Bond,Christan Grant,Josh Imbriani,Erik Holbrook. A Framework for Interactive t-SNE Clustering. International Journal of Software and Informatics, 2016,10(3):0
Hits: 307
Download times: 203
Abstract:In this paper, we describe our progress in creating the framework for an interactive application that allows humans to actively participate in a t-SNE clustering process. t-SNE (t-Distributed Stochastic Neighbor Embedding) is a dimensionality reduction technique that maps high dimensional data sets to lower dimensions that can then be visualized for human interpretation. By prompting users to monitor outlying points during the t-SNE clustering process, we hypothesize that users may be able to make clustering faster and more accurate than purely algorithmic methods. Further research would test these hypotheses directly. We would also attempt to decrease the lag time between the various components of our application and develop an intuitive approach for humans to aid in clustering unlabeled data. Research into human assisted clustering can combine the strengths of both humans and computer programs to improve the results of data analysis.
keywords:t-SNE  clustering  interactive analytics
View Full Text  View/Add Comment  Download reader

 

 

more>>  
Visitor:1580060
Top Paper  |  FAQ  |  Guest Editors  |  Email Alert  |  Links  |  Copyright  |  Contact Us

© Copyright by Institute of Software, the Chinese Academy of Sciences
ICP: Jing ICP Bei No.10016592