
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2021, 11(2): 169–193, doi:10.21655/ijsi.1673-7288.00248
©2021 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

Accelerator Virtualization Framework Based on
Inter-VM Exitless Communication

Dingji Li (李鼎基)1, Zeyu Mi (糜泽羽)1, Baodong Wu (吴保东)2, Xun Chen (陈逊)2,
Yongwang Zhao (赵永望)3, Zuohua Ding (丁佐华)4, Haibo Chen (陈海波)1

1 (School of Software, Shanghai Jiao Tong University, Shanghai 200240, China)
2 (Sensetime, Beijing 100080, China)
3 (School of Cyber Science and Technology, Zhejiang University, Hangzhou 310007, China)
4 (School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
Corresponding author: Haibo Chen, haibochen@sjtu.edu.cn

Abstract The increasing deployment of artificial intelligence has placed unprecedent
requirements on the computing power of cloud computing. Cloud service providers have
integrated accelerators with massive parallel computing units in the data center. These
accelerators need to be combined with existing virtualization platforms to partition the computing
resources. The current mainstream accelerator virtualization solution is through the PCI
passthrough approach, which however does not support fine-grained resource provisioning.
Some manufacturers also start to provide time-sliced multiplexing schemes and use drivers
to cooperate with specific hardware to divide resources and time slices to different virtual
machines, which unfortunately suffer from poor portability and flexibility. One alternative but
promising approach is based on API forwarding, which forwards the virtual machine’s request
to the back-end driver for processing through a separate driver model. Yet, the communication
due to API forwarding can easily become the performance bottleneck. This paper proposes
Wormhole, an accelerator virtualization framework based on the C/S architecture that supports
rapid delegated execution across virtual machines. It aims to provide upper-level users with an
efficient and transparent way to accelerate the virtualization of accelerators with API forwarding
while ensuring strong isolation between multiple users. By leveraging hardware virtualization
features, the framework minimizes performance degradation through exitless inter-VM control
flow switch. Experimental results show that Wormhole’s prototype system can achieve up to 5
times performance improvement over the traditional open-source virtualization solution such as
GVirtuS in the training test of the classic model.

Keywords virtualization; accelerator; artificial intelligence; delegated execution; inter-VM
communication

Citation Li DJ, Mi ZY, Wu BD, Chen X, Zhao YW, Ding ZH, Chen HB. Accelerator virtualization
framework based on inter-VM exitless communication, International Journal of Software and Informatics,
2021, 11(2): 169–193. http://www.ijsi.org/1673-7288/00248.htm

This is the English version of the Chinese article“基于跨虚拟机零下陷通信的加速器虚拟化框架. 软件学报,
2020, 31(10): 3019–3037. doi: 10.13328/j.cnki.jos.006068”.
Funding items: Key-area Research and Development Program of Guangdong Province of China (2020B010164003);
National Science Fund for Distinguished Young Scholars (61925206); HighTech Support Program from Shanghai
Committee of Science and Technology (19511121100)
Received 2020-02-10; Revised 2020-04-04; Accepted 2020-05-09; IJSI published online 2021-06-22

http://www.ijsi.org/1673-7288/00248.htm


170 International Journal of Software and Informatics, 2021, 11(2)

With the emergence of computationally intensive applications such as deep learning[1], the
computing power provided by CPUs alone is no longer sufficient. Developers have used devices
with greater computing power other than CPUs as accelerators. Traditional accelerators are
mainly General-Purpose computing on Graphics Processing Units (GPGPUs), while industry
has developed specialized accelerators represented by Tensor Processing Units (TPUs)[2] for
specific purposes. Data centers are core infrastructure in the era of cloud computing[3], and
the included virtualization platforms are foundation for efficient operation of cloud services. In
recent years, more and more AI service providers have tended to deploy them in cloud systems,
making it necessary for accelerators to be integrated into existing virtualization platforms. Thus,
the need for accelerator virtualization has arisen[4]. Although several solutions for accelerator
virtualization are available, there are still many limitations and challenges for their applications
in practical scenarios.

Currently, the mainstream accelerator virtualization solution is the PCI passthrough
approach. The I/O device virtualization solution represented by Intel VT-d[5] can pass through
accelerators to guest Virtual Machines (VMs). This virtualization approach bypasses the
intervention of Virtual Machine Monitors (VMMs) and enables accelerators to be totally
managed by guest VMs. Although this approach achieves almost the same performance as
that in a bare-metal environment, it cannot realize fine-grained resource provisioning for several
guest VMs. Thus, this virtualization solution makes the virtualization platform lose the ability
to allocate computing resources elastically, and the poor scalability makes it hard for VMMs to
dynamically schedule computing resources among multiple VMs.

Some accelerator manufactures also offer virtualization schemes, represented by Nvidia
Grid[6] and gVirt[7], to achieve division and time-division multiplexing of hardware resources
by integrating device drivers and accelerators. These schemes intervene in specific operations
of accelerators with the help of VMMs, while the other operations are similar to the PCI
passthrough approach, in which the runtime of accelerators can be fairly distributed to each
guest VM. However, the time-division multiplexing schemes do not have a high availability
for current accelerators. On the one hand, existing mature time-multiplexing schemes not only
require specific drivers at the software level, but also have strict limitations on the model of
accelerators at the hardware level[8]. This results in most of common accelerators not being
able to use this virtualization fuction. On the other hand, such virtualization solutions should
be re-developed for each new accelerator due to their poor portability. Moreover, the resource
partitioning strategy cannot be freely adjusted, which also leads to poor scalability.

There are also virtualization schemes based on API forwarding, represented by rCUDA[9]

and GVirtuS[10]. These schemes are based on the separate driver model[11], which abstracts
vGPU at the dynamic link library level. This model divides device drivers into two parts: front-
end and back-end drivers. The back-end drivers play the role of servers and convert the requests
received from front-end drivers into drivers that interact with the underlying hardware devices
for calling. Since this approach requires communication between front-end and back-end drivers
and involves operations such as serialization of data and additional memory copies, there is a
significant performance loss compared with original non-virtualization schemes. The exact loss
depends on the performance of the communication part and the amount of transferred data.

To solve the problems in the current mainstream accelerator virtualization approaches,
this paper proposes an accelerator virtualization framework based on hardware virtualization
technology. This framework aims to:

(1) provide a convenient and available multi-tenant virtualization solution for accelerators
to improve hardware resource utilization;
(2) ensure security and strong isolation among users;



Li DJ, et al. Accelerator virtualization framework based on ... 171

(3) minimize extra performance overhead introduced by virtualization.
To satisfy the first objective, the proposed virtualization framework abandons the PCI

passthrough virtualization approach and chooses the C/S architecture based on the API
forwarding method. The proposed method refers to mature I/O device virtualization schemes and
supports multi-tenancy by separating front-ends and back-ends. To satisfy the second objective,
the paper takes VMs as the basic protection domain to ensure strong isolation in multi-tenant
scenarios[12], instead of using container orchestration systems such as Kubernetes[13] directly
on operating systems of physical hosts[14]. The VMFUNC function of hardware virtualization
technology allows applications to switch extended page tables in the non-root mode. To satisfy
the third objective, this paper implements fast exitless CPU control flow switching among VMs
with the help of this feature and focuses on optimizing the performance of communication
flow among VMs during API forwarding to minimize the performance degradation as much
as possible. It has been proved that the Wormhole prototype system is a good solution to the
problems faced by current accelerator virtualization schemes, and has achieved a 1.4–5 times
performance improvement in model training tests compared to similar open-source solutions.

This paper makes the following contributions:
(1) According to the API forwarding approach, an accelerator virtualization framework
based on inter-VM delegated execution is proposed.
(2) An exitless inter-VM communication acceleration mechanism based on hardware
virtualization technology is proposed.
(3) The virtualization framework is applied to common Nvidia GPUs on KVM to
implement and support the mainstream deep learning training framework Caffe.
(4) This framework extends and optimizes the open-source API forwarding framework
GVirtuS, making it support deep learning frameworks as well. Comparison tests reveal the
performance of the proposed virtualization framework is greatly improved compared with
the optimized GVirtuS.

1 Background
1.1 Introduction to VMs

VM-based virtualization solutions realize virtualization by providing a complete set of
virtual hardware resources for guest operating systems. This type of solutions for virtualizing
physical hardware has many advantages. For example, they are transparent to guest operating
systems and allow running unmodified operating systems with a high degree of compatibility[13].
Since each VM has its own independent operating system, function libraries and storage
resources, it has good isolation from the perspective of security[15].

The current mainstream virtualization solution in the data center is the host operating
system-based virtualization architecture represented by KVM. As shown in Figure 1, for CPU
virtualization, the VMM divides each physical CPU into one or more vCPUs for different guest
VMs. All vCPUs are managed and scheduled by the VMM. For memory virtualization, modern
VM systems allocate an Extended Page Table (EPT) to each VM to ensure that different VMs
are in different address spaces by restricting address translation[16]. The virtualization of I/O
usually reuses the native drivers in the host operating system. When an I/O request is initiated
within a VM, it is forwarded by the VMM to an I/O agent module (e.g., QEMU) in the host
operating system for processing.

1.2 Hardware virtualization technology VMFUNC
To improve the performance of virtualized systems, major CPU manufactures, represented

by Intel, have added hardware virtualization technology to their CPU products[17]. The hardware



172 International Journal of Software and Informatics, 2021, 11(2)

virtualization for memory has largely replaced the original Shadow Page Table (SPT)[18] approach
and became the default memory virtualization method. In modern VM systems, a guest VM
needs to go through two levels of address translation to access physical memory. The first level
translates the Guest Virtual Address (GVA) to the Guest Physical Address (GPA) according to
the Page Table (PT) in VMs. The second level translates the GPA to the Host Physical Address
(HPA) on the basis of extended page tables configured by VMMs.

User APP

Guest OS

Guest
kernel Driver

Host OS

I/O agent
module

Physical
memory

Host kernel

VMM

EPT vCPU vCPU

pCPU I/O
device

Native
driver

Figure 1 Architecture of host-based virtualization

From the Intel’s fourth generation CPUs, the hardware instruction VMFUNC[19] was added
to the CPU instruction set. It allows guest VMs to perform certain VM-related operations in the
non-root mode without exiting into VMMs. Till now, the VMFUNC instruction only supports
EPT Pointer (EPTP) switching, which allows a guest VM to perform the EPTP switching by a
VMFUNC instruction in the non-root mode. For preventing from switching to a wrong memory
area, it is necessary to pre-configure the EPTP list for corresponding guest VMs in the VMM.
Applications can only select legal EPTPs from this list, and an EPTP list can contain up to 512
EPTPs.

The VMFUNC instruction has a significant performance advantage over traditional methods
due to its exitless feature. Before this instruction has been developed, if a guest VM tried to
modify an EPTP, it would switch from the non-root mode to the root mode to modify the value of
the EPTP domain in Virtual Machine Control Structure (VMCS) and then return from the root
mode to the non-root mode. The switch from the non-root mode to the root mode alone takes
no less than 300 cycles. In contrast, a VMFUNC instruction can perform the same function
as the entire process described above, while only taking 134 cycles with the Virtual Processor
IDentifier (VPID) function enabled. VMFUNC has therefore been applied in many existing
studies[20, 21].

2 Analysis of Existing Work
Based on the background described above, this paper selects the API forwarding approach

as the fundamental method for Wormhole to balance performance and availability. To address
the key issues of existing API forwarding-based virtualization solutions in a targeted manner,
this section investigates the current related public studies and conducts in-depth testing and
analysis.



Li DJ, et al. Accelerator virtualization framework based on ... 173

2.1 Interactive mode between clients and servers
In the API forwarding method, there are various options for the interaction mode between

server processes and client processes.
(1) The solution represented by GVirtuS selects the Host-VM model, in which server

processes are placed in host operating systems and client processes are placed in VMs or
containers. In this mode, the management of accelerators is coupled with host operating
systems. The kernel of host operating systems needs to play two roles, not only as the manager
of guest VMs, but also as the body for running drivers of accelerators. This not only breaks the
single responsibility principle but also it only supports one version of acceleration drivers at the
same time, making the operation and maintenance of the whole system difficult. For example,
when operating systems do not support dynamic driver upgrades, it may requires a reboot to
make the new version of drivers effective. However, the running guest VMs are inevitably
influenced, which is unacceptable to cloud service providers.

(2) The approaches represented by vCUDA[22] select the VM-VM mode. The server
processes and client processes are placed in different guest VMs, and many inter-VM
communication methods can be selected for data exchange. The traditional network-based
or sheared memory-based communication methods cause large performance degradation due to
system scheduling and other factors. Some recent studies[21] have proposed fast communication
methods in virtual environments, but they are not suitable for VMs with complex operating
systems (such as the mainstream Linux system). Moreover, such schemes have failed to propose
appropriate supporting evolutionary measures as the types of accelerators and supporting
software are constantly updated.

The main problem of existing API forwarding solutions is reflected in performance, and the
major performance loss comes from communication modules. From the current various API
forwarding-based systems, the communication methods mainly include the following types:

(1) TCP/IP communication[23]: This method requires many times of memory copies,
bringing about massive additional overhead. In the case of unidirectional TCP transmission
using sockets in the mainstream Linux operating system, the user-mode processes send data
by copying the data to be sent into buffer zones in the kernel, and then the TCP stacks in
the kernel send the data to target addresses by local network cards. From the above flow, the
TCP/IP communication method introduces two additional memory copies to copy a piece of data
between two processes. In light of I/O virtualization, the number of additional memory copies
may be doubled. With the common Virtio method[24] as an example, one unidirectional TCP
communication adds two memory copies from VMs to host kernel buffers. Moreover, when a
server process is waiting for guest requests, the CPU will fall into sleep or scheduling. Then
network cards will send interrupts to wake up CPU when they receive data. These asynchronous
operations can also cause significant delay.

(2) Shared memory: This communication method eliminates the extra overhead of copying
memory by creating a shared memory mapping between server processes and client processes.
However, shared memory alone does not provide a notification mechanism when data copies
are complete. The common notification mechanism uses the ability to share a semaphore as an
indicator to indicate whether the shared memory can be modified. Since both parties need to
actively poll the semaphore, CPU spends substantial time on unnecessary polling and scheduling,
resulting in serious delay.

(3) Remote Direct Memory Access (RDMA): The RDMA method allows one server to
directly access memory on another server without the involvement of either operating system[25].
This means that this method can support zero-copy to reduce delay and performance loss of CPU.
The RDMA driver directly multiplexes the memory of user-mode processes for transmission



174 International Journal of Software and Informatics, 2021, 11(2)

without the involvement of CPU. The RDMA-based communication methods have excellent
performance and slight delay. However, this method requires dedicated RDMA network cards
and drivers, which leads to high maintenance costs, compromising its usability.

In this section, we test and analyze the API forwarding virtualization scheme with the
Neuron Layer test in Caffe as an example. This testcase calls 40 different CUDA APIs for more
than 1.1 million times in one running process. The top five most-frequently called APIs are
listed in Table 1. Before testing, we first extend and optimize GVirtuS and deploy it in two VMs
on the same physical server in the VM-VM mode. The communication module takes shared
memory as the carrier for copying parameters and TCP/IP as the notification mechanism for
completing parameter copies.

Table 1 List of APIs frequently called during Neuron Layer testcase
CUDA API name Number of calls
cudaMemcpy 290,122
curandSetPseudoRandomGeneratorSeed 268,537
curandSetGeneratorOffset 268,536
cudaLaunch 142,394
cudaPeekAtLastError 127,246

Subsequently, we analyze the time cost of API forwarding processes for the Neuron Layer
testcase in Caffe. One calling flow of CUDA API during virtualization is divided into the
following three parts: (1) time consumption of additional memory copies, including the time
cost of serialization and deserialization between data and shared memory; (2) time consumption
of the notification mechanism, including the time cost of one VM notifying another VM that
shared memory is available; (3) time consumption for executing native APIs. Among them,
only the time consumption for executing native APIs is unavoidable and effective. The others
belong to the extra performance overhead of communication modules. Through testing, the
average time consumption of each part is shown in Figure 2. The total time for calling
APIs in the test is 283,750,417,817 cycles. It reveals that the extra performance overhead
accounts for more than 88% (250,528,017,067 cycles) of the overall process time. Particularly,
the time consumption of additional memory copies accounts for less than 1% (1,910,231,774
cycles), and the notification mechanism accounts for 87% (248,617,785,293 cycles). It is clear
that the notification mechanism in existing virtualization systems is a real bottleneck causing
performance degradation and thus the focus of targeted optimization in this paper.

Additional memcpy

Additional memcpy
0.67%

Notification
87.62%

Native API
execution
11.71%

Notification Native API execution

Figure 2 Analysis of the average time cost of Neuron Layer in GVirtuS



Li DJ, et al. Accelerator virtualization framework based on ... 175

2.2 CPU utilization
In a native physical server environment, the effective CPU runtime Teff of a process during

calling accelerators can be mainly divided into two parts: (1) the time for running applications
in the user mode; (2) the time for running drivers interacting with accelerators in the kernel
mode. The rest of time can be regarded as ineffective running time Tineff as it produces no
useful results. Thus, in the case of accelerator virtualization, an important index for measuring
the performance and efficiency of a virtualization framework is the ratio of the effective CPU
runtime to the total running time after virtualization, which is denoted by Teff/(Teff + Tineff).

In the ideal case, the ratio after virtualization is the same as that in the native physical
environment, namely that virtualization causes no extra performance overhead. The API
forwarding-based solutions described in this section all use the active interaction. Whether
the communication is realized through networks or shared memory, the server CPU and the
client CPU are both required. The actual effective runtime is only the time for the client CPU
executing applications and the server CPU executing drivers. For slighter delay caused by
scheduling, servers and clients are normally bound to different physical CPUs, as shown in
Figure 3. The CPU resources consumed by one forwarding call during virtualization can be
more than twice the resources consumed in the native physical environment.

Send requests

Client CPU

Logic function

Server CPU
Process requests

Return results

Logic function
Time flow

Teff Tineff

Figure 3 CPU effective time in a virtualized environment

With the testcase in the above section as an example, we measure the CPU utilization in
the native physical environment and the GVirtuS virtualized environment using the built-in
time command of the Linux operating system. As Table 2, the process in the native physical
environment occupies only one CPU with a utilization ratio of 97.28%, while the process in
the GVirtuS environment occupies two CPUs with utilization ratios only 46.61% and 38.52%
respectively.

Table 2 CPU utilization during Neuron Layer testcase

Case Total time (s) User-mode
execution time (s)

Kernel-mode
execution time (s)

CPU
utilization (%)

Native physical environment 6.947 4.494 2.264 97.28
GvirtuS back-end 94.705 11.833 32.306 46.61
GvirtuS front-end 93.990 6.498 29.706 38.52

3 Design of Wormhole
The accelerator virtualization framework, Wormhole, aims to provide an efficient

virtualization solution with high availability, good performance, supporting multiple tenants
for accelerators while ensuring strong isolation and security among users in practical scenarios
of data centers. With VMs as the protection domain of front-end and back-end drivers, we
improve existing virtualization solutions by combining the widely used hardware virtualization



176 International Journal of Software and Informatics, 2021, 11(2)

technology and develop a flexible and versatile accelerator virtualization framework with high
performance, which is also easy to be maintained. Figure 4 illustrates the architecture of
Wormhole and the flow of one API forwarding call, which will be elaborated on in this section.

VMM

Root mode Client
EPT

Client
VMCS

Server
EPT

Server
VMCS

CPU 0 CPU 1 Accel

Passive
server

Non-root 
mode

Client VM

Client PT

Root mode

Server VM

Server PT

Client
EPT

Client
VMCS

VMM

Server
EPT

Server
VMCS

Hardware CPU 0 Accel

Preparation before
control flow switching

Non-root 
mode

Client VM

Trampoline

Client PT

Server VM

Trampline

Server PT

VMM

Root mode Client
EPT

Client
VMCS

Server
EPT

Server
VMCS

Hardware CPU 0 Accel

Control flow
switching

Non-root 
mode

Client VM

Trampoline

Client PT

Server VM

Trampoline

Server PT

Root mode

VMM

Client
EPT

Client
VMCS

Server
EPT

Server
VMCS

Hardware CPU 0 Accel

(d)

(b)

Client PT

Client VM Server VM

Server PT

Client resources Server resources Shared resources Resources used by current execution flow

Non-root 
mode

(a)

(c)

Figure 4 Architecture and invocation example of Wormhole

3.1 Passive server VM
The design of Wormhole adopts a passive server VM mode, which performs better and

more flexibly compared with the existing interactive mode. The passive server VM mode means
that server VMs do not actively consume any CPU resources when there are no user requests
waiting to be processed.

In the design, all accelerators are passed to the server VM dedicated to management by
the PCI passthrough method, thus decoupling accelerator management from the host operating
system. The server VM is the same as a normal guest VM in the initialization stage, which can
also have its own CPU, as shown in Figure 4(a). At this point, the server VM has exclusive
access to CPU 1, which is preparing the required communication receiver module and other
operating environments. After all the pre-configuration tasks are completed, the server VM will
actively fall into a snapshot-like freezing state, as shown in Figure 4(b). At this moment, the
server VM no longer has CPU resources, and its original CPU1 resources can be released for
other guest VMs, eliminating the waste of server CPU resources caused by constantly waiting
for requests from guest VMs.

According to the test data, the communication modules of existing accelerator virtualization
solutions spend massive time waiting for each other. For example, while the server CPU is
running back-end drivers and other logics, the client CPU remains idle until the results are
returned. Therefore, Wormhole can eliminate the waste of CPU resources using the client CPU
that has sent requests for delegated execution in the server VM, making a passive server VM
feasible. This design improves the utilization of CPU after virtualization, and the saved CPU



Li DJ, et al. Accelerator virtualization framework based on ... 177

resources can be allocated to more guest VMs, solving the problem mentioned in Section 2.2.
One physical server can include multiple passive server VMs at the same time, and each

server VM can be assigned to a different number of accelerators. Meanwhile, due to the isolation
of VMs, different server VMs can be installed with different versions of accelerator drivers and
supporting computing libraries to fulfil needs of different users. It also means that if multiple
heterogeneous accelerators are connected to a physical server, different accelerators can be
isolated by different server VMs without interfering with each other. This design makes it very
easy for the virtualization framework to accommodate different accelerators that are rapidly
updating, addressing the problem mentioned in Section 2.1.

3.2 Active inter-VM communication based on control flow switching
As Wormhole’s passive serve VM releases its CPU resources, communication between

VMs must be initiated by the client to cooperate with the server through active communication.
As such, this paper proposes a delegated execution method that allows the client execution flow
to actively enter the server VM for continuous execution. In light of the correctness of delegated
execution, it is required that the CPU is in the correct address space and has access to correct
instructions and data when running in different VMs. On this basis, the performance problem
mentioned in Section 2.2 must be addressed, so that the high-performance objective of Wormhole
can be achieved. Since the extra virtualization overhead is closely related to exiting times[26],
this paper realizes zero VM exit during control flow switching through pre-configuration to
obtain excellent inter-VM communication performance.

This section will introduce the core idea of this design, by using the flow of one delegated
execution shown in Figure 4 as an example. In Figure 4(b), the server VM registers its server
information with the VMM after initialization. Then the guest VM is allowed to do delegated
execution in the server VM. In Figure 4(c), the guest VM first performs a series of preparations
for control flow switching. After the preparation work, the execution flow is switched to the
server VM, enabling the delegated execution as shown in Figure 4(d). Thanks to the proposed
design, the operations related to control flow switching in Figure 4(c) and Figure 4(d) are
conducted in the non-root mode, without triggering VM exiting. The invocation of a complete
delegated execution flow can be divided into six steps.

First, the guest VM sends a request of matching with the server VM, and this causes the
guest VM to exit to the VMM to add some memory mapping. The following Steps 1–3 are
one-off pre-configuration. Although this stage actively triggers the VM exiting, it is not on the
critical path of the inter-VM communication. Therefore, subsequent delegated executions do
not need to repeat these operations, and the control flow switching after the configuration will
remain exitless.

Step 1. The VMM maps the value of the CR3 register associated with the client process
to the HPA of the page table of the server process in the extended page table of the server VM.
It aims to make preparations for the subsequent VMFUNC instruction to implement the correct
switching of the VM address space. For the two-level address translation mechanism of VMs,
the existing function of the VMFUNC instruction is only to switch the extended page table that
controls the second level address translation. The first level address translation relies on the
page table CR3 points to. Then the correct page tables should be matched before and after the
VMFUNC instruction to change the address space. After mapping is added in this step, the
value of the client process CR3 can be translated to the page table of the client process in the
extended page table of the guest VM. The same value can be translated to the page table of the
server process in the extended page table of the server VM, ensuring the correct translation of
the address space before and after the VMFUNC instruction. Meanwhile, this step makes it



178 International Journal of Software and Informatics, 2021, 11(2)

possible to achieve the equivalent effect of CR3 by executing only one VMFUNC instruction in
the VM user mode when the address space is switched between VMs in Step 5.

Step 2. The VMM maps the GVA value of the LSTAR Model Specific Register (MSR)
of the guest VM to the GPA of the code page at the system call entry of the server VM in the
page table of the server VM. It aims to correctly execute system invocations after user-mode
applications initiate them when the execution flow is in the address space of the server VM.
Most modern operating systems use the SYSCALL instruction to invoke the system calls. When
the system executes the SYSCALL instruction, the CPU jumps to the entry of system invocation
according to the value of LSTAR MSR. By default, modifying the LSTAR MSR in VMs causes
VMs to exit and VMMs complete the operation. Therefore, this step adds the mapping to avoid
VMs to exit in the subsequent control flow switching process. After the above mapping is
added, the entry of the server system invocation can be accessed with the value of the client
LSTAR MSR when the system invocation is initiated during the delegated execution, so that it
can interact with the kernel normally.

Step 3. A copy of a trampoline is pre-stored in the VMM, and the pairing operation will
map an identical GVA in the high address space of two VMs to this trampoline page. The
purpose of this step is to ensure that the CPU instruction flow can be correctly transitioned
before and after the address space switching. The CPU program counter points to the current
instruction based on the virtual address. When the VMFUNC instruction is executed, the value
of the program counter will increase by the corresponding length and the next instruction is
already in the address space of the server VM. This step provides the same instruction at the
same location in both virtual address spaces, so the CPU still executes the continuous correct
instruction before and after the address space switching.

Then the guest VM returns to the user mode and calls the interface provided by the
trampoline page to start to execute the code related to the control flow switching. The following
Steps 4–6 need to be repeated during each delegated execution, so each step is required to be
exitless to improve the performance of inter-VM communications.

Step 4. Before the address space switching, the client process needs to temporarily modify
the values of the two MSRs, FS.base and GS.base, to the values of the corresponding MSRs
in the server VM. The purpose of this step is to ensure that the address mechanism based on
segment registers works normally in the server VM during delegated execution. In modern
operating systems, a large amount of data needs to be accessed through segment registers. Their
base addresses are stored in some domains in the VMCS of the corresponding VM and do not
change with the address space. Without the correct adjustment, wrong data will be accessed
during the delegated execution due to the wrong address. This step replaces it with the correct
MSR value in advance, so that the addresses obtained by means of segment registers before and
after address space switching are legal. Although this step replaces the MSR values instead of
adding a mapping, the VMM does not intercept the reading and writing of MSRs, FS.base and
GS.base, in the VM by default, which still does not cause any VM to exit.

Then, the execution flow of the guest VM actually switches to the VM address space.
Step 5. From the next instruction, the VMCS of the guest VM is still on the CPU, but the

extended page table pointer in it has already pointed to the extended page table of the server
VM. This step actually enters the address space of the server VM, and the data and resources
currently in effect are shown in the area with red border in Figure 4. At this point, the CPU
program counter points to the next instruction in the shared trampoline page and can continue
to correctly execute the remaining code. Thanks to the mapping added in Step (1), there is no
need to explicitly modify the value of the register CR3 as in the conventional solution during
the switching to the target address space. Thus, the VM can avoid the exiting overhead caused



Li DJ, et al. Accelerator virtualization framework based on ... 179

by the invocation of privileged instructions.
At last, the guest VM enters the server application and starts the delegated execution.
Step 6. The guest VM obtains the entry address of the trampoline page of the trampoline

page and jumps to the back-end processing program in the server VM. Then it interacts with
accelerators through native drivers. This step finally switches the control flow that originally
runs in the guest VM to the server VM to start the delegated execution. Through the above five
steps, the subsequent system invocations, interrupts, and other complex operations, which are
necessary to interact with accelerators, can be performed normally.

After the delegated execution, the execution flow should return from the server VM to
the guest VM. At this point, the reverse operations of Steps 4–6 are executed in the reverse
order, which we omit here. According to the design of this section, through the one-off pre-
configuration in the initialization stage, the subsequent frequent inter-VM control flow switching
operations will not cause any VM to exit, guaranteeing fast and efficient delegated execution.

3.3 Technical points of the design
By summarizing the six steps in the previous section, we propose the following technical

points.
(1) Fast execution flow switching across VM address space.
Active inter-VM communication should satisfy two requirements before and after execution

flow switching: the correct address translation mechanism and the transition of CPU instruction
flow before and after switching. Originally, one VMFUNC instruction is only responsible for
switching mapping from GPA to HPA, so an additional measure is required to switch to the
corresponding page table. With the switching from the guest address space to the server address
space as an example, an intuitive idea is to modify the value of the register CR3 before or after
the VMFUNC instruction to switch the page table. However, this operation will not work. The
program counter obtains the current instruction based on the virtual address. If the previous
instruction of VMFUNC changes the page table, the CPU will actually face an invalid page
table when it executes the next instruction due to the change in the mapping from GVA to GPA,
resulting in runtime errors. Conversely, if we try to replace the page table after the VMFUNC
instruction, the next instruction that is actually accessed is not related to the modification of CR3
as the mapping from GPA to HPA changes after the VMFUNC instruction. It will also cause
exceptions.

Combining the mapping addition of CR3 in Step 1 with the hardware virtualization
technique in Step 5, Wormhole realizes that a single VMFUNC instruction can simultaneously
switch page tables and extended page tables without exiting to VMMs, as shown in Figure 5.
This ensures the correct address translation mechanism before and after switching. In addition,
Wormhole also significantly reduces the inter-VM communication overhead by using one
instruction to complete multiple operations. Meanwhile, delegated execution enables the guest
VM and the server VM to operate on the same physical CPU, avoiding the high overhead caused
by Inter Processor Interrupt (IPI).

With regard to the transition of the CPU instruction flow before and after switching,
Wormhole provides a shared trampoline page and a stack dedicated to delegated execution in
Step 3. The code page contains the VMFUNC instruction and some contextual saving logics.
They are mapped to the same GVA in the page tables of the guest VM and the server VM. In
this way, the client process can jump to this code page when it needs delegated execution. After
the address space is successfully switched, as the client process and the server process share
this code page at the same address, the program counter can switch to the next instruction of
VMFUNC without affecting the original stacks of both processes. In addition, it is necessary



180 International Journal of Software and Informatics, 2021, 11(2)

for the server process to register the entry of the delegated execution function with the VMM in
advance. The trampoline will jump to the entry of the registered function after the control flow
is switched and officially start to access accelerators on the server.

Root mode

Non-root mode Trampoline
Client
process

Client VM

EPTP
Client
VMCS

Client EPT
Server EPT

Server
process

Server VM

Client CR3 Client PT

Client VM EPT

Client CR3 Server PT

Server VM EPT

EPTP list

0
0
…
0

Figure 5 Switch VM address space through VMFUNC

(2) Correctly perform complex operations such as system invocations and interrupts after
control flow switching.

Some preprocessing works, represented by SkyBridge[21], also follow similar ideas of
delegated execution. However, these works are only for simple microkernel-based operating
systems, and their working scenarios consider only delegated execution between processes in
an operating system. In the design principle of microkernel, the kernel part only includes a
small amount of code and usually keeps a few basic management functions. A large number
of functions in traditional macro kernel (such as device drivers) are removed from the kernel
mode, which are used as a specialized user-mode process. Accordingly, most functions are not
performed in the kernel in a microkernel scenario. For example, functions related to I/O are
handled by user-mode drivers, and interrupts are transferred to specific user-mode processes for
handling after they occur.

However, the macro kernel-based Linux operating system is still the mainstream in data
centers. For performance reasons, macro kernels integrate a variety of complex functions,
including device drivers, interrupt handling and resource management. As a result, user-
mode applications frequently interact with the kernels during their execution. Massive tightly
coupled complex functions cause some inconvenience in error isolation. As there are many
unconventional memory access mechanisms involving segment registers in macro kernels, data
accessing errors can often lead to system crashes and other irreversible consequences. Therefore,
it is extremely important to ensure correct interaction with the kernels during delegated execution.

Most modern operating systems depend on the SYSCALL instruction to make system calls.
The CPU will jump to the entry of the system call processing functions based on the value of
LSTAR MSR, so Wormhole creates a mapping from the client VM LSTAR MSR to code page
of the system call entry of the server VM in the address space of the server VM in Step 2. This
ensures correct system call based on the value of the guest LSTAR MSR.

For separation of privileges and security reasons, the stack structures and other memory
structures used by the user mode and the kernel mode are different in macro kernels. Therefore,



Li DJ, et al. Accelerator virtualization framework based on ... 181

when a user-mode process traps into kernels, we should save the user-mode context and switch
to a kernel-specific stack or an interrupt-specific stack. For example, the addresses of these stack
tops are stored in some per-CPU variables in the Linux kernel. In the Linux kernel on AMD64,
these per-CPU variables are accessed by GS segment registers. Their base addresses are stored in
dedicated MSRs and do not vary as the address space changes. Wormhole ensures the correctness
of the GS-segment memory access mechanism before and after control flow switching by Step 4.
Meanwhile, Step 4 also ensures the correctness of the FS-segment memory access mechanism.
For example, the Linux operating system on AMD64 uses the segment register mechanism to
access a special “sentinel” value by FS:0x28 to check stack buffer overflow.

(3) Exitless VM during control flow switching.
Control flow switching is on the critical path of the whole communication process, and each

API forwarding call involves two control flow switches between VMs. Then, it is necessary to
minimize the time cost of virtualization to minimize the additional overhead. The additional
virtualization overhead is closely related to the exiting times of VMs. To minimize the time
consumption of switching between the root mode and the non-root mode, Wormhole ensures that
the control flow switching will not actively trigger any VM exit, and all configuration operations
are performed in the non-root mode.

On the virtualization platform represented by KVM, the modification of CR3 and LSTAR
MSR in the non-root mode will exit to the root mode by default. Therefore, Wormhole adds
mapping in Steps 1 and 2. Although the value of the register seen by the VM remains the same
before and after address space switching, the correct physical memory area is actually accessed
by the address translation mechanism, enabling the exitless characteristic and the same effect
as performing the privileged operations. The MSR modifications of FS.base and GS.base in
the non-root mode will not cause any exiting by default. Moreover, the access mechanism of
segment registers involves a large number of memory pages, and the mapping addition to the
server address space is not suitable. Thus, the VM call is initiated in Step 4 to temporarily
replace the values of two MSRs.

(4) Properly handle the page fault of extended page tables after control flow switching.
With the support of extended page tables, modern virtualization systems follow a lazy

memory allocation policy with regard to the memory allocation requests from VMs. Specifically,
when a guest VM initially requests a block of memory, only the GVA-to-GPA mapping is added
to the page table. The GPA-to-HPA mapping is not added by the VMM to the extended page
table until the page fault of the extended page table is triggered for the first time when this
memory area is accessed. If a VM exit occurs during delegated execution in the server VM, the
VMM still assumes this VM exit comes from the client VM. By default, the exiting processing
function is executed for the guest VM according to relevant information in VMCS. In fact, the
reason of causing this exiting comes from the server VM, so the processing object must be
changed from the guest VM to the server VM.

When the page fault of extended page tables causes exiting, Wormhole asks the VMM to
determine whether this fault occurs during the delegated execution. If it occurs, the parameters
related to the page fault from the VMCS of the guest VM are extracted, and the page processing
function is executed for the server VM. Then the GPA-to-HPA mapping is added to the extended
page table of the server VM.

4 Prototype of Wormhole
To verify the design of the proposed accelerator virtualization framework, this paper

implements a prototype system of accelerator virtualization for common NVIDIA GPU
according to the above design, which supports CUDA 9.0. Based on the mainstream Linux



182 International Journal of Software and Informatics, 2021, 11(2)

operating system with the QEMU-KVM as the virtualization platform, this prototype is
implemented on the Intel x86-64 platform. The system architecture is illustrated in Figure 6,
and the details of implementation are as follows.

Non-root mode

Root mode

Hardware

Client VM ̀1 Server VM Client VM 2

vGPU Server
process

User requests pGPU-0 pGPU-7

pGPU-0 pGPU-7

vGPU

Delegated
execution

Delegated
execution

Client
process

Client
process

EPT 1 EPT 0 EPT 2

VMM

Passthrough Passthrough

Figure 6 Architecture of prototype system

4.1 Basic API forwarding framework supporting CUDA calls
Currently, the mainstream deep learning frameworks interact with CPU accelerators mainly

by calling CUDA[27] APIs developed by NVIDIA to calculate APIs. After collecting the used
CUDA APIs, we find that the main scientific computing libraries used by the mainstream deep
learning frameworks include cudart, cuBLAS, cuDNN and cuRAND. Applications call CUDA
APIs in these libraries through dynamic links.

During implementation, the basic framework of the whole virtualization system is divided
into front-end modules, communication modules and back-end modules. The front-end
modules are placed in guest VMs; the back-end modules are arranged in the server VM; the
communication modules are employed for delegated execution between two VMs.

(1) In the front-end module, the system implements stub functions with the same function
prototypes for all collected CUDA APIs according to the official documentation, which are
encapsulated in the stub function libraries (such as libcudart.so, libcudnn.so) with the same
name as the corresponding computing libraries. These stub function libraries replace the native
libraries in the guest VM by modifying the environment variable LD_LIBRARY_PATH to
intercept CUDA calls of applications.

(2) In the back-end module, the system first uses dlopen to preload the used CUDA
computing libraries and then registers the delegated execution entry of the back-end processing
function with the VMM. Then the system forks subprocesses with the equal number of CPU
kernels to support as many concurrent front-end requests as possible, and each subprocess
corresponds to a front-end module. At last, the back-end module enters a frozen state and waits
for delegated execution from the front-end.

(3) The implementation of the communication module will be elaborated on in the rest of
this section.

To reduce the number of front-end and back-end communications, our system conducts
batching optimization for the forwarding method of the common CUDA kernel, which is similar
to the optimization for pre-processing work such as GVirtuS and vCUDA. One invocation of a
CUDA kernel function actually calls three CUDA APIs in turn (one call of cudaConfigureCall
→ one or multiple calls of cudaSetupArgument → one call of cudaLaunch). Only the last
cudaLaunch is the explicit synchronization point for actually interacting with the device. As



Li DJ, et al. Accelerator virtualization framework based on ... 183

such, each time the first two CUDA APIs are intercepted, they do not have to be forwarded to
the back-end immediately and can be processed in bulk with the last cudaLaunch.

The latest versions of CUDA support the Unified Virtual Addressing (UVA). For example,
the pointer parameter of cublasSdot can point to both the host memory and the device memory.
In the native environment, the GPU driver should determine the direction of the memory copy
(e.g., from device to host memory), which must be confirmed according to the memory type
(the host memory address or the device memory address) of source and destination segments.
In this virtualization system, since the GPU driver and the application are in different address
spaces, the address forwarded by the application of the guest VM cannot be properly checked and
judged by the driver of the server VM. Therefore, this system implements an efficient tracking
module for GPU device addresses based on the interval tree. This module records the device
memory interval returned by the APIs that allocate device memory, such as cudaMalloc. After
the CUDA APIs with the UVA feature are intercepted, the tracking module queries the memory
type that the received memory address parameters belong to and then processes them according
to specific cases.

According to the design of Wormhole, before the server VM starts, the host operating system
enables passthrough of the GPU device by the PCI passthrough approach. After the server VM
starts, the host operating system should configure drivers and scientific computing libraries. The
two VMs both need to exit to register their related information. This system modifies the exiting
processing function of CPUID in KVM and conducts corresponding operations according to the
types of VMs and requests after receiving registration requests.

4.2 Memory mapping and user-mode interface for control flow switching
The shared memory mapping, including trampoline pages, is the key to active inter-VM

communication. Based on the exiting instruction of VMs at initialization in the CPUID
processing function of KVM, this system pre-configures the following mappings for server
and guest VMs in order:

(1) The mapping of client CR3 and LSTAR in the server VM: The addition of these two
mappings is the exitless basis during the execution of subsequent trampoline pages. This system
first reads the value of the server CR3 in the VMCS when the server VM exits. Then it uses
software simulation to traverse extended page tables of the server VM and translates them to get
the HPA of the server process page table in the host physical memory. Next, the system reads
the value of the client CR3 in the VMCS when the guest VM exits and traverses the extended
page tables of the server VM again to add the mapping from the client CR3 to the HPA of
the server page table. Similarly, the system first reads the value of LSTAR MSR at the server
when the server VM exits and uses the server page table for address translation to obtain the
corresponding GPA. Then it acquires the value of the LSTAR MSR at the client side as the new
GVA when the guest VM exits and then creates a mapping from this GVA to the GPA of the
server-system call page table in the server page table.

(2) Shared memory: The CUDA API parameters intercepted by the front-end module in the
guest VM should be forwarded to the back-end module in the server VM, and a large number of
APIs need to conduct the memory copy between the host and the device. To achieve inter-VM
parameter transferring, this paper asks KVM to allocate a large enough memory as the shared
memory for transferring parameters and reserves a section of the starting GVA in the high
address space of the server process and the client process. Then the system adds mappings of
application page tables and extended page tables of both server and client processes in KVM, so
that the CPU can access the same physical memory through the reserved GVA before and after
the address space switching.



184 International Journal of Software and Informatics, 2021, 11(2)

(3) Shared stack for transition: There is a transition period when the control flow is switched
from client processes to server processes. To avoid tainting the original stack structures of server
processes and client processes, this system allocates 16 memory pages with a size of 4 KB in
the KVM. They are mapped to the same GVA in the high address space of both processes to
ensure the availability of stack structures before and after the control flow switching.

(4) Mapping of pointer arrays of processing functions in the guest VM: The system should
specify the location of the objective function when the control flow jumps from the trampoline
page to the address space of the server process. This system maintains a function array pointer
for each server VM in the KVM, and the server VM exits to KVM during the initialization
of the server process to store the virtual addresses of all available processing functions in the
array. Similarly, to access the pointer array of processing functions in the user mode during the
transition, this system maps it to the high address space of the client process.

(5) Trampoline page: When the above preparations are completed, the system stores a
trampoline page in the KVM. It exposes the interface of the delegate_to_server function to
the user mode, and the parameters include the offset of the server VM and the offset of
the back-end processing function. This allows the communication module in the guest VM
to switch to the corresponding back-end processing function in the server VM by calling
delegate_to_server. The trampoline page is mapped to the same GVA in the high address
space of both applications. The client process converts this address to a function pointer and
then it can call the delegate_to_server interface in the same way as the function call. The logic
of the trampoline is as follows:

(a) When the trampoline is called by the client application, the system first stacks all the
current registers to save the context. Then the system saves the current stack pointer and
replaces it with a temporary stack for transition, and finally launches the arch_prctl system
call to replace the two MSRs, FS.base and GS.base.
(b) The system calls the VMFUNC instruction to switch to the address space of the server
process, and an inter-VM communication is completed.
(c) After checking the validity of parameters, the system reads the address of the back-end
processing function from the function pointer array and takes the address as the function
pointer to jump indirectly to the back-end processing function for execution.
(d) After the back-end processing function returns, the system calls the VMFUNC
instruction to switch back to the address space of the client process.
(e) The system initiates the arch_prctl system call to set the FS.base and GS.base of the
client process and restores them to the native stack structure of the client process. Then it
restores the context before the delegated execution from the stack.

4.3 Freezing of server VM
After the initialization, the back-end module of the server VM will enter the frozen mode

from the user mode. After that, the CPU resources of the server VM can be released to other
guest VMs, but the memory and I/O resources are still reserved for delegated execution. The
reason for changing from the user mode to the frozen mode is as follows. During delegated
execution, the control flow of the guest VM is also switched from the user mode. If the control
flow of the guest VM is frozen in the kernel mode, the kernel’s dedicated stack and other data
structures will be tained and serious errors such as kernel crashes will be caused during delegated
execution. Fortunately, the CPUID instruction unconditionally triggers VMs to exit in both the
user mode and the kernel mode, so the back-end module will call CPUID in the user mode to
transfer freezing indicator parameters to exit into KVM. KVM sets the frozen flag for the VM in
the CPUID processing function after receiving the freezing request. Before each VM’s vCPU
tries to execute VMRESUME to resume operation, KVM will check the frozen flag of the VM.



Li DJ, et al. Accelerator virtualization framework based on ... 185

If it is true, its vCPU will be intercepted and scheduling is actively initiated to release CPU
resources.

4.4 Handling of page fault of extended page table during delegated execu-
tion

On the virtualization platform QEMU-KVM, each guest VM is essentially a user-mode
QEMU process that can be accelerated by the KVM kernel module from the perspective of the
host operating system[28]. Therefore, the address space in each VM is essentially that of the
corresponding QEMU process. If a normally running VM triggers a page fault in the extended
page table, the CPU will experience a VM exit due to an EPT violation, and the KVM will
process it in the address space of the current QEMU process according to the GPA of the page
fault. During the processing, the Linux kernel first obtains the process descriptor (the task_struct
structure) running on the current CPU based on the per-CPU variable named current, which
saves the memory descriptor (the mm_struct structure) bound to the current QEMU process. The
actual physical memory is then allocated for this memory descriptor by the memory management
related functions of the Linux kernel. Then the GPA-to-HPA mapping is added to the extended
page table.

If a page fault of the EPT is triggered during delegated execution, the current process
identity recognized by KVM after exiting is still the QEMU process of the guest VM. Therefore,
KVM will allocate new memory in the address space of the client QEMU process and add the
mapping to the extended page table of the guest VM. Actually, the page fault occurs in the
address space of the server VM. The correct action is to allocate new memory to the server
QEMU process and add the mapping of the extended page table. Thus, this system modifies the
EPT violation processing function of KVM to determine if the delegated execution is performed
currently when the exiting occurs due to the page fault. If delegated execution is performed,
the current variable is temporarily stored and replaced with the process descriptor of the server
QEMU process which is recorded during initialization. In this way, the object of KVM is the
server VM during memory allocation and mapping of the extended page table. After that, the
current variable is restored. As the server VM is in the frozen state, there is no risk of data race
in the above operations.

4.5 Some CUDA characteristics urgently requiring improvement
The pinned memory characteristic of CUDA is not supported due to the closed source nature

of drivers. Thus, asynchronous APIs such as CUDA multi-stream operations are temporarily
converted to synchronous APIs for calling. This has some impact on the memory copy
performance between the host and the device. However, the part that is not fully implemented
is orthogonal to the proposed design, without impact on the verification of the performance
improvement of the proposed accelerator virtualization framework.

5 System Evaluation
To test the performance of the prototype system, an Intel Haswell-E consumer server

supporting VMFUNC hardware virtualization is adopted as the testbed. The software/hardware
configuration of the testbed is shown in Table 3. This section is divided into three parts according
to the test granularity, and the PCI passthrough virtualization solution is taken as the baseline
of the highest performance.

For comparison with the available GPU virtualization solutions, this paper selects a
representative open-source solution, GVirtuS, as the contrast. As the latest GVirtuS still supports
a limited number of CUDA APIs, this paper supplements the source code of GVirtuS to make
it support as many CUDA APIs as this prototype system. In addition, as the communication



186 International Journal of Software and Informatics, 2021, 11(2)

module of GVirtuS only supports TCP/IP for virtualization in the VM-VM mode, it has large
extra memory copy overhead during API forwarding. This paper adds the same shared memory
approach to the communication module of GVirtuS as the prototype system, eliminating the
difference in memory copy overhead between the two systems. This improves the performance
of the GVirtuS system and ensures the fairness of the performance test.

Table 3 Testbed configuration
Item Model/Version
CPU Intel i7-5930K@3.5 GHz (6-core 12-thread)

Memory 40 GB DDR4 2133 MHz
GPU NVIDIA Quadro GV100 (32 GB HBM2)

Operating system Ubuntu 19.10 (Eoan Ermine)
Kernel version Linux Kernel 4.19.56

Most of the previous prototype systems only support a small part of CUDA APIs, and the
selected testcases are distinct from practical applications in real scenarios, so they cannot fully
reflect the real performance of systems. This paper selects the popular Caffe[29] as the benchmark
test program. Caffe is a deep learning framework written in C++, which has been widely used
in deep learning since it is clear and efficient[30].

5.1 Microbenchmark test
To verify that Wormhole can improve the communication performance stated in Section 2.1,

this section analyzes the time breakdown for the forwarding processes of all CUDA APIs in
the Neuron Layer unit test of the prototype system. During invocation, the time overhead of
each part and the percentage of the total time are shown in Figure 7. In the test, all the API
calls consume 23 778 309 322 cycles. The percentage of the extra performance overhead in
the whole time of process is reduced from 88% in GVirtuS to 20% (4 660 728 884 cycles). To
be specific, the time consumption by additional memory copies occupies 3.65% (866 946 457
cycles); that by system calling and modifying the MSRs, FS.base and GS.base, occupies 10.64%
(2 530 932 006 cycles); that by control flow switching, including VMFUNC, occupies 5.31%
(1 262 850 421 cycles).

Additional memcpy

VMFUNC, etc.

Modifying MSRs

Native API execution

VMFUNC, 
etc.
5.31% Native API

execution
80.40%

Modifying
MSRs
10.64%

Additional mamcpy
3.65%

Figure 7 Analysis of the average time cost of Neuron testcase in the prototype system

In terms of absolute time overhead, the TCP/IP-based notification mechanism of GVirtuS
consumes 248,617,785,293 cycles, while the control flow switching mechanism of the Wormhole
prototype consumes only 4,660,728,884 cycles. This section adds a test to verify the effects of
“execution flow switching across VM address space” (hereinafter referred to as fast switching)



Li DJ, et al. Accelerator virtualization framework based on ... 187

and “no VM exit during execution flow switching” (hereinafter referred to as exitless) proposed
in Section 3.3 at a finer granularity. In this test, the exitless function is turned off, namely that
the execution flow actively exits to the VMM to replace MSRs before and after each execution
flow switching. The results show that the total time consumed by calling APIs is 29,638,851,151
cycles, and the communication module takes up 9,432,980,220 cycles. This means that the fast
switching technique reduces the TCP/IP communication overhead by two orders of magnitude,
while the exitless technique further reduces the overhead of execution flow switching by 50%.
Based on above, this design significantly reduces the additional time overhead consumed by
virtualization. From a microscopic perspective, it has been proved that the Wormhole design
significantly reduces the additional overhead of virtualization compared with existing designs
implemented in GVirtuS.

As summarized in Table 4, with regard to CPU utilization, Wormhole occupies only one
CPU for a total time of 12.145 s. The effective time of the user mode is 9.474 s, and the effective
time of the kernel mode is 2.661 s. The utilization of CPU reaches 99.92%, much higher than
the 46.61% and 38.52% of two CPUs in GVirtuS and even better than the 97.28% of the PCI
passthrough solution. This proves that the Wormhole’s design significantly enhances the CPU
utilization compared with existing solutions.

Table 4 Improvement of CPU utilization during Neuron Layer testcase

Testcase Total time (s) User-mode
execution time (s)

Kernel-mode
execution time (s)

CPU
utilization (%)

Native physical environment 6.947 4.494 2.264 97.28
GvirtuS back-end 94.705 11.833 32.306 46.61
GVirtuS front-end 93.990 6.498 29.706 38.52

Wormhole 12.145 9.474 2.661 99.92

5.2 Unit test of neural network layers
In this section, we use the unit testcases of various neural network layers provided by Caffe

to show the performance improvement of Wormhole in different neural network layers from a
macro perspective. The time statistics tool that comes with the testcases is used to measure the
time (ms) consumed by each test. The performance is evaluated according to the criterion that
the shorter time consumption indicates a better performance.

In this section, some neural network layers that are important in practical scenarios are
selected as unit testcases, mainly including the following types:

(1) the common image processing network layers in the field of computer vision[31], such
as the convolutional layer (hereinafter referred to as CONV) and the deconvolutional layer
(hereinafter referred to as DECONV);
(2) the common recurrent network layers in the field of natural language processing[32],
such as the recurrent neural network layer (hereinafter referred to as RNN) and the long
short-term memory network layer (hereinafter referred to as LSTM);
(3) the common normalization network layers in deep neural networks, such as the batch
normalization network layer (hereinafter referred to as BN);
(4) the common activation network layers in deep neural networks, such as activation
function network layers, including ReLU, Sigmoid, and TanH, which are collectively called
as neuronal network layers (hereinafter referred to as Neuron).
The test results and comparison results are shown in Figure 8–Figure 10. In the figures,

Baseline represents the ideal performance of the PCI passthrough solution; Wormhole indicates
the performance of this prototype system while GVS denotes the performance of the optimized
GVirtuS system.



188 International Journal of Software and Informatics, 2021, 11(2)

In terms of the image processing network layer, the performance of this prototype system
is increased by 88.31% in the CONV test and by 88.67% in the DECONV test compared with
the optimized GVirtuS system.

In regard to the recurrent network layer, the performance of this prototype system is
increased by 89.62% in the RNN test and by 88.97% in the LSTM test compared to the
optimized GVirtuS system.

In terms of the normalization and activation layers, the performance of this prototype system
is increased by 89.45% in the BN test and by 87.89% in the Neuron test compared with the
optimized GVirtuS system.

Ti
m
e 
(m
s)

600,000

500,000

400,000

300,000

200,000

100,000

00
CONV DECONV

Testcase

23,745
56,963

487,202

359,188

40,695
18,865

GVS

Wormhole

Baseline

Figure 8 Performance comparison for the image processing layer

Ti
m
e 
(m
s)

1,200,000

1,000,000

800,000

600,000

400,000

200,000

00
RNN LSTM

Testcase

19,044
67,251

647,638

1,018,859

112,364
43,938

GVS

Wormhole

Baseline

Figure 9 Performance comparison for the recurrent network layer

Ti
m
e 
(m
s)

140,000

120,000

100,000

80,000

60,000

40,000

20,00020,000

0
RNN LSTM

Testcase

4,244
12,572

119,134

86,273

10,445
5,915

GVS

Wormhole

Baseline

Figure 10 Performance comparison for the normalization and activation layers

5.3 Training test in classical models
In this section, we use AlexNet[33] and LeNet[34] for a complete training test of deep learning

models to evaluate the performance of the prototype system of Wormhole under a complete real
workload. The throughput statistics tool built in the deep learning framework is used to measure
the throughput of the training process expressed in iterations per second (iter/s). A larger



Li DJ, et al. Accelerator virtualization framework based on ... 189

throughput indicates a better performance. The meaning of Baseline, Wormhole and GVS is the
same as in the previous section. Wormhole indicates the performance of the prototype system.
GVS denotes the performance of the optimized GVirtuS.

Developed in 1994, LeNet is one of the first convolutional neural networks (CNNs) and has
driven the progress in deep learning. This section uses MNIST[35] as the dataset with a batch
size of 100 to conduct 10 000 iterations based on Caffe. As shown in Figure 11, the throughput
of this prototype system is improved by five times compared with the optimized GVirtuS.

GVS

527.36

87.82

768.54 Baseline

Wormhole

GVS
System

Baseline Wormhole

Th
ro
ug
hp
ut
 (i
te
r/s
)

1,000

800

600

400

200

0

Figure 11 Performance comparison for the LeNet training

AlexNet was proposed in 2012 and successfully applied to ReLU, Dropout and LRN in
CNNs for the first time. It can be considered as a deeper and wider version of LeNet, which is the
foundation of modern deep CNNs. To eliminate the influence of large-scale storage device I/O to
facilitate testing, we use the dummy data as the dataset with a batch size of 64 to conduct 1 800
iterations based on Caffe. As Figure 12, the throughput of the prototype system is improved by
1.4 times.

10.66

30.67
Baseline

Wormhole

GVS

Baseline
System

25.83

Th
ro
ug
hp
ut
 (i
te
r/s
)

40

30

20

10

0
Wormhole GVS

Figure 12 Performance comparison of AlexNet training

6 Discussion and Prospect

6.1 Additional overhead of virtualization
According to the system evaluation, although the performance of the proposed accelerator

virtualization framework has been improved significantly compared with the existing solutions,
it still falls short of the ideal performance of the PCI passthrough solution. The time breakdown
analysis reveals the communication module in the prototype system consumes too many cycles.
The modification of two MSRs, FS.base and GS.base, is the most expensive operation, which can
be optimized. In theory, we can avoid the MSR writing operation by adding a memory mapping
to the address space of the server VM. As a large number of memory pages are involved, the
mapping must collect all the memory areas that may be accessed through segment registers.
Hence, we will investigate this optimization in the future work.



190 International Journal of Software and Informatics, 2021, 11(2)

6.2 Safety analysis
Although there is a strong isolation among VMs, the delegated execution stated in this

paper allows applications to switch between VM address spaces in the user mode, so it may
pose a potential security risk. This section analyzes the security of the proposed accelerator
virtualization framework. In this paper, the VMM and the server VM are considered as reliable
parts, and it is assumed that a malicious user can only initiate an attack through guest VMs. The
attack target can be the server VM or other guest VMs on the same physical server. We analyze
the following attack modes:

(1) Attack by illegally switching VMFUNC: A malicious user can customize an application
that contains the VMFUNC instruction in a guest VM under their control. The application can
determine parameters without using the trampoline mechanism provided by Wormhole. This
application attempts to switch the control flow to other non-server guest VMs, causing leakage
of sensitive data. Wormhole handles such attack by limiting the EPTP list of each guest VM,
with Item 0 as the current extended page table and Item 1 as the extended page table of the
target server VM, and the remaining 510 items are forced to be filled with the invalid address
0. This leaves the guest VM with only two options when performing address space switching:
switching to itself or to the bound server VM. If the parameter that the malicious application
passes to the VMFUNC instruction is bigger than 1, this application will exit and be intercepted
by the VMM, without affecting other VMs.

(2) Attack by illegal back-end function jumping: A malicious user may try to tamper with
the addresses in pointer arrays of back-end processing functions, which are mapped to the guest
VM address space. For example, the user seizes the control flow by pointing function pointers
to some functions that may leak sensitive data. When mapping the pointer arrays of back-end
processing functions, Wormhole sets the read/write permissions of the memory page where the
array is located to read-only in the extended page table. If there is an attempt to modify the
pointer array of back-end processing functions, VMs are triggered to exit, and the VMM will
capture and prevent subsequent operations.

7 Conclusion
Due to lack of usable, convenient, efficient and maintainable accelerator virtualization

solutions, this paper proposed an accelerator virtualization framework Wormhole based on the
hardware virtualization technology for popular cloud deep learning scenarios. It can support
cloud service providers to develop customized accelerator virtualization systems that are easy
to update. Based on API forwarding, the accelerator virtualization framework, Wormhole,
innovatively introduced the abstraction of passive server VMs and fast inter-VM delegated
execution with VMs as the isolation protection domain. It realized accelerator virtualization
with high hardware resource utilization and low virtualization overhead while ensuring strong
isolation among users. In addition, a prototype system for NVIDIA GPUs has been implemented
on the mainstream QEMU/KVM platform. Test results demonstrate that Wormhole can be
deployed on consumer servers conveniently. Compared with GVirtuS, a representative GPU
virtualization solution expanded and optimized in this paper, Wormhole shows remarkable
improvements in performance, verifying the effectiveness of this accelerator virtualization
framework.

References
[1] Zhang ZK, Pang WG, Xie WJ, Lü MS, Wang Y. A survey of deep learning research for real-time

applications. Ruan Jian Xue Bao/Journal of Software, 2020, 31(9): 2654–2677. http://www.jos.org.
cn/1000-9825/5946.htm [doi: 10.13328/j.cnki.jos.005946]

http://www.jos.org.cn/1000-9825/5946.htm
http://www.jos.org.cn/1000-9825/5946.htm


Li DJ, et al. Accelerator virtualization framework based on ... 191

[2] Jouppi NP, Young C, Patil N, et al. In-datacenter performance analysis of a tensor processing unit.
Proc. of the 44th Annual Int’l Symp. on Computer Architecture (ISCA 2017). New York: Association
for Computing Machinery, 2017. 1–12. [doi: 10.1145/3079856.3080246]

[3] Zhang XL, Yang JH, Sun XQ, Wu JP. Survey of geo-distributed cloud research progress. Ruan Jian
Xue Bao/Journal of Software, 2018, 29(7): 2116–2132. http://www.jos.org.cn/1000-9825/5555.htm
[doi: 10.13328/j.cnki.jos.005555]

[4] Gao Q, Zhang FL, Wang RJ, Zhou F. Trajectory big data: A review of key technologies in data
processing. Ruan Jian Xue Bao/Journal of Software, 2017, 28(4): 959–992. http://www.jos.org.cn/
1000-9825/5143.htm [doi: 10.13328/j.cnki.jos.005143]

[5] Intel platform hardware support for I/O virtualization. 2006. http://www.intel.com.

[6] Herrera A. NVIDIA GRID: Graphics accelerated VDI with the visual performance of a workstation.
White Paper, NVIDIA Corp., 2014. 1–18.

[7] Tian K, Dong YZ, Cowperthwaite D. A full GPU virtualization solution with mediated pass-through.
In: Proc. of the 2014 USENIX Conf. on USENIX Annual Technical Conf. (USENIX ATC 2014).
USENIX Association, 2014. 121–132.

[8] GRID Virtual GPU User Guide. 2020. https://docs.nvidia.com/grid/4.3/grid-vgpu-user-guide/index.
html.

[9] Duato J, Peña AJ, Silla F, Mayo R, Quintana-Ortí ES. rCUDA: Reducing the number of GPU-based
accelerators in high performance clusters. Proc. of the Int’l Conf. on High Performance Computing &
Simulation. Caen, 2010. 224–231. [doi: 10. 1109/HPCS.2010.5547126]

[10] Montella R, Giunta G, Laccetti G, Lapegna M, Palmieri C, Ferraro C, Pelliccia V, Hong C-H, Spence
I, Nikolopoulos DS. On the virtualization of CUDA based GPU remoting on ARM and X86 machines
in the GVirtuS framework. Int’l Journal of Parallel Programming, 2017, 45(5): 1142–1163. [doi:
10.1007/s10766-016-0462-1]

[11] Armand F, Gien M, Maigné G, Mardinian G. Shared device driver model for virtualized mobile
handsets. Proc. of the 1st Workshop on Virtualization in Mobile Computing (MobiVirt 2008). New
York: Association for Computing Machinery, 2008. 12–16. [doi: 10.1145/1622103.1622104]

[12] Zhang YQ, Wang XF, Liu XF, Liu L. Survey on cloud computing security. Ruan Jian Xue
Bao/Journal of Software, 2016, 27(6): 1328–1348. http://www.jos.org.cn/1000-9825/5004.htm [doi:
10.13328/j.cnki.jos.005004]

[13] Yu QQ, Dong MK, Chen HB. Memory-assisted synchronization mechanism for hardware transactions
in a virtual environment. Ji Suan Ji Ke Xue Yu Tan Suo/Journal of Frontiers of Computer Science and
Technology, 2017, 11(9): 1429–1438.

[14] Wu S, Wang K, Jin H. Research status and prospect of operating system virtualization. Ji Suan Ji Yan
Jiu Yu Fa Zhan/Computer Technology and Development, 2019, 56(1): 58–68.

[15] Liu YT, Chen HB. Virtualization security: Opportunities, challenges and future. Wang Luo Yu Xin
Xi An Quan Xue Bao/Chinese Journal of Network and Information Security, 2016, 2(10): 17–28.

[16] Huang X, Deng L, Sun H, Zeng QK. Hardware virtualization-based secure and efficient kernel
monitoring model. Ruan Jian Xue Bao/Journal of Software, 2016, 27(2): 481–494. http://www.jos.
org.cn/1000-9825/4866.htm [doi: 10.13328/j.cnki.jos.004866]

[17] Intel 64 and ia-32 architectures software developer’s manual volume 3c. https://software.intel.com/
en-us/articles/intel-sdm

[18] Adams K, Agesen O. A comparison of software and hardware techniques for x86 virtualization.
Proc. of the 12th Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XII). New York: Association for Computing Machinery, 2006. 2–13. [doi:
10.1145/1168857.1168860]

[19] Liu WJ, Wang LN, Tan C, Xu L. VMFUNC-based virtual machine introspection trigger mechanism.
Ji Suan Ji Yan Jiu Yu Fa Zhan/Computer Technology and Development, 2017, 54(10): 2310–2320.

[20] Liu YT, Zhou TY, Chen KX, Chen HB, Xia YB. Thwarting memory disclosure with efficient
hypervisor-enforced intra-domain isolation. Proc. of the 22nd ACM SIGSAC Conf. on Computer
and Communications Security (CCS 2015). New York: Association for Computing Machinery, 2015.
1607–1619. [doi: 10.1145/2810103.2813690]

[21] Mi ZY, Li DJ, Yang ZH, Wang XR, Chen HB. SkyBridge: Fast and secure inter-process communication

http://www.jos.org.cn/1000-9825/5555.htm
http://www.jos.org.cn/1000-9825/5143.htm
http://www.jos.org.cn/1000-9825/5143.htm
http://www.intel.com
https://docs.nvidia.com/grid/4.3/grid-vgpu-user-guide/index.html
https://docs.nvidia.com/grid/4.3/grid-vgpu-user-guide/index.html
http://www.jos.org.cn/1000-9825/5004.htm
http://www.jos.org.cn/1000-9825/4866.htm
http://www.jos.org.cn/1000-9825/4866.htm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm


192 International Journal of Software and Informatics, 2021, 11(2)

for microkernels. Proc. of the 14th EuroSys Conf. 2019 (EuroSys 2019). New York: Association for
Computing Machinery, 2019. 1–15. [doi: 10.1145/3302424.3303946]

[22] Shi L, Chen H, Sun J, et al. vCUDA: GPU-accelerated high-performance computing in virtual
machines. IEEE Trans. on Computers, 2012, 61(6): 804–816. [doi: 10.1109/TC.2011.112]

[23] Zhang HL, Fang BX, Hu MZ, Jiang Y, Zhan CY, Zhang SF. Survey of Internet measurement and
analysis. Ruan Jian Xue Bao/Journal of Software, 2003, 14(1): 110–116. http://www.jos.org.cn/
1000-9825/20030117.htm

[24] Russell R. Virtio: Towards a de-facto standard for virtual I/O devices. SIGOPS Operating Systems
Review, 2008, 42(5): 95–103. [doi: 10.1145/1400097.1400108]

[25] Kalia A, Kaminsky M, Andersen DG. Using RDMA efficiently for key-value services. Proc. of the 2014
ACM Conf. on SIGCOMM (SIGCOMM 2014). New York: Association for Computing Machinery,
2014. 295–306. [doi: 10.1145/2619239.2626299]

[26] Zhang XT, Zheng X, Wang Z, Yang H, Shen YB, Long X. High-density multi-tenant bare-metal cloud.
Proc. of the 25th Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2020). New York: Association for Computing Machinery, 2020. 483–495. [doi:
10.1145/3373376.3378507]

[27] Nickolls J, Buck I, Garland M, Skadron K. Scalable parallel programming with CUDA. Proc. of
the ACM SIGGRAPH 2008 Classes (SIGGRAPH 2008). New York: Association for Computing
Machinery, 2008. 1–14. [doi: 10.1145/1401132.1401152]

[28] Bellard F. QEMU, a fast and portable dynamic translator. Proc. of the Annual Conf. on USENIX
Annual Technical Conf. (ATEC 2005). USENIX Association, 2005. 41.

[29] Jia YQ, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding.
Proc. of the 22nd ACM Int’l Conf. on Multimedia (MM 2014). New York: Association for Computing
Machinery, 2014. 675–678. [doi: 10.1145/2647868.2654889]

[30] Le Cun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436–444. https://doi.org/10.1038/
nature14539

[31] Forsyth DA, Ponce J. Computer Vision: A Modern Approach. Prentice Hall Professional Technical
Reference, 2012.

[32] Weikum G. Foundations of statistical natural language processing. SIGMOD Record, 2002, 31(3):
37–38. [doi: 10.1145/601858.601867]

[33] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural
networks. Communications of the ACM, 2017, 60(6): 84–90. [doi: 10.1145/3065386]

[34] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition.
Proc. of the IEEE, 1998, 86(11): 2278–2324. [doi: 10.1109/5.726791]

[35] Deng L. The MNIST database of handwritten digit images for machine learning research [Best of the
Web]. IEEE Signal Processing Magazine, 2012, 29(6): 141–142. [doi: 10.1109/MSP.2012.2211477]

Dingji Li, bachelor. His
research interests include the
operating systems and virtual-
ization systems.

Baodong Wu, Ph.D., engi-
neer. His research interests
include the high-performance
computing, virtualization and
container scheduling.

Zeyu Mi, Ph.D., assistant
researcher, CCF student mem-
ber. His research interests
include the operating systems
and system virtualization and
safety.

Xun Chen, engineer. His
research interests include the
GPU virtualization and AI
cloud scheduling systems.

http://www.jos.org.cn/1000-9825/20030117.htm
http://www.jos.org.cn/1000-9825/20030117.htm
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539


Li DJ, et al. Accelerator virtualization framework based on ... 193

Yongwang Zhao, Ph.D.,
associate professor, doctoral su-
pervisor. His research interests
include the formalization meth-
ods and operating systems.

Haibo Chen, Ph.D.,
professor, doctoral supervisor,
CCF professional member. His
research interests include the
operating systems, concurrent
and distributed systems.

Zuohua Ding, Ph.D.,
professor, doctoral supervisor,
CCF senior member. His
research interests include
the requirement engineering,
adaptive software systems and
formalization methods.


	1 Background
	1.1 Introduction to VMs
	1.2 Hardware virtualization technology VMFUNC

	2 Analysis of Existing Work
	2.1 Interactive mode between clients and servers
	2.2 CPU utilization

	3 Design of Wormhole
	3.1 Passive server VM
	3.2 Active inter-VM communication based on control flow switching
	3.3 Technical points of the design

	4 Prototype of Wormhole
	4.1 Basic API forwarding framework supporting CUDA calls
	4.2 Memory mapping and user-mode interface for control flow switching
	4.3 Freezing of server VM
	4.4 Handling of page fault of extended page table during delegated execution
	4.5 Some CUDA characteristics urgently requiring improvement

	5 System Evaluation
	5.1 Microbenchmark test
	5.2 Unit test of neural network layers
	5.3 Training test in classical models

	6 Discussion and Prospect
	6.1 Additional overhead of virtualization
	6.2 Safety analysis

	7 Conclusion

