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Abstract In recent years, Convolutional Neural Networks (CNN) have received widespread
attention in the field of machine learning due to their high-accuracy performance in character
recognition and image classification. Nevertheless, the compute-intensive and memory-intensive
characteristics of CNN have posed huge challenges to the general-purpose processor, which needs
to support various workloads. Therefore, a large number of CNN-specific hardware accelerators
have emerged to improve efficiency. Though significantly efficient, previous accelerators are
not flexible enough. In this study, classical CNN models are analyzed, and a domain-specific
instruction set of 10 matrix instructions, called RV-CNN, is designed based on the promising
RISC-V architecture. By abstracting CNN computation into instructions, the proposed design
can provide sufficient flexibility for CNN and possesses a higher code density than the general
ISA. On this basis, a code-to-instruction mapping mechanism is proposed. By using the RV-
CNN to build different CNN models on the Xilinx ZC702, this paper found that compared to
x86 processors, RV-CNN has on average 141 times the energy efficiency and 8.91 times the code
density; compared to GPU, it has on average 1.25 times the energy efficiency and 1.95 times the
code density. In addition, compared to previous CNN accelerators, the design supports typical
CNN models while at high energy efficiency.
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Artificial Neural Network (ANN), as an important branch of modern artificial intelligence,
has been developing rapidly in recent years. As the continuation and evolution of ANN in
the era of big data and deep learning effectively enhances the ability of traditional ANN
algorithm to extract data features by increasing the depth of the network model. Convolutional
Neural Network (CNN), as an algorithm widely used in deep learning, has been implemented
in applications such as facial recognition[1], target detection[2], speech recognition[3], and
natural language understanding[4] and has achieved remarkable results. Thanks to its excellent
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performance in various application scenarios, CNN has become the focus of researchers and has
been widely deployed in data centers and edge embedded devices.

However, the excellent recognition accuracy of CNN derives from the increasingly deeper
and more complex network structure and the huge computation and memory. In recent years,
the number of parameters in CNN models has reached several millions, and the amount of
computation has reached several gigabits[5–7]. The intensive computation and memory of CNN
have posed huge challenges to general-purpose processors. Therefore, many accelerators based
on FPGA[8–10], GPU[5], and ASIC[11, 12] have emerged in recent years, and achieved higher
performance and energy efficiency than CPU. Among the above three types of platforms, FPGA
and ASIC generally have lower power consumption than GPU, which consume tens or even
hundreds of watts. Although GPU has unique advantages in the training stage of CNN model,
the mode of offline training for online prediction makes model-based inferencing more critical,
in which the low power consumption of FPGA and ASIC enables them to be applied in a wider
range of fields, such as an embedded platform with limited power. Therefore, this paper focuses
on the relevant work of CNN accelerators based on these two types of platforms. However, it has
been observed that such types of accelerators in previous work usually only accelerated specific
network structures and layers, with relatively fixed mode and low flexibility.

In order to solve the above problem, the team of Chen Yunji proposed DianNao[11], a high-
throughput ASIC chip for different machine learning applications, and designed the instruction in
Very Long Instruction Word (VLIW) style, which supported CNN and Multi-Layer Perceptrons
(MLPs). DaDianNao[13], proposed successively, was the SIMD implementation based on
DianNao, in which the weight matrix of DaDianNao used for computing was solidified to
the local eDRAM, thus reducing the frequency of reading memory. However, the VLIW-style
instruction in both DianNao and DaDianNao provided a poor abstraction of computing process,
so it was difficult to use them without understanding the underlying hardware. Subsequently,
by abstracting the computation in ANN, the team designed a domain-specific instruction set,
Cambricon[14], which contained instructions such as scalar, vector, and matrix, supporting a
variety of neural networks and possessed higher code density and better performance than
traditional ISA. Nonetheless, this instruction set was not dedicated to CNN, and part of CNN-
specific data reuse and parallel computing in instructions were canceled for generality. For the
application to CNN, Luca et al.[15, 16] proposed an extensible multi-core computing platform,
namely PULP, and added a hardware convolution engine into PULP to accelerate the convolution
operation. The single core of PULP was based on the RISC-V open-source architecture, and
extended instructions such as dot product and pack-SIMD, so that the acceleration unit can be
driven by using instructions directly, which saved operating system overhead. Since the team
did not design instructions for other layers in the network, an efficient, flexible, and easy-to-
implement CNN-specific instruction set is still needed.

This paper proposes a small and easy-to-implement CNN-specific instruction set, RV-
CNN[17], after studying the computational mode of typical CNN models, which contains
10 matrix instructions and can support the reasoning process of multiple CNN structures
flexibly. Then, the mapping process from CNN model description files to specific instructions
is introduced. In terms of implementation, this paper extends the instruction set of a RISC-V
architecture processor and optimizes the implementation of the instructions specifically. Finally,
this paper compares and evaluates the instruction set and its implementation in terms of code
density, performance, and energy efficiency by studying typical cases.

Section 1 of this paper describes design preferences for the domain-specific instruction.
Section 2 describes in detail the format, the function, and the code mapping process of the
domain-specific instructions, and shows some code samples. Section 3 compares the instruction
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set qualitatively with a domain-specific instruction set. Section 4 introduces the hardware
implementation of the instruction set based on RISC-V kernel. Section 5 shows the experimental
procedures and results. Section 6 draws conclusions and introduces the next steps.

1 Design Preferences
This section mainly presents preferences in designing an efficient and easy-to-implement

CNN-specific instruction set to design specific instructions.
RISC-V extension: CNN hardware accelerators usually worked as peripheral devices

in the past. The host side read and wrote the accelerators through the drivers. Since a large
amount of data is copied between user and kernel space, the time and resource overheads of
the operating system are obviously unavoidable. The emergence of RISC-V architecture has
brought more options for the work patterns of accelerators. The instruction set architecture
consists of the basic instruction set and other optional instruction sets and is open-source and
instruction customizable, thus providing users with the possibility of customizing the processor
microarchitecture[18] and space for designing domain-specific instructions. Therefore, it is
simpler and more efficient to control the accelerator module by designing domain-specific
instructions based on RISC-V architecture. According to the above analyses, RISC-V is finally
chosen as the target ISA, which is extended by CNN-specific instructions on the premise of
keeping the basic kernel and each standard extension unchanged. Finally, the domain-specific
instruction can complete the reasoning process of CNN in cooperation with the scalar and logic
control instructions of RV32.

Data-level parallelism: There are many factors involved in designing a CNN-specific
instruction set, among which the performance bottleneck should be paid attention to.
Considering the topological structure of CNN stacked layer by layer and the independence of
weight data in different layers, it is more effective to design matrix instructions to take advantage
of the data-level parallelism rather than instruction-level parallelism in its operation. Studies have
demonstrated that the energy consumption of computing of the Intel Xeon processor core only
accounted for 37% of that of the whole core[19], and the rest of the energy consumption comes
from architecture cost, which is not necessary for computing. In the design of domain-specific
instructions, it is therefore advised to increase the granularity of instructions and amortize the
overheads of instruction fetching, decoding, and control to the computation of multiple elements
to improve operation efficiency effectively. In addition, when solving computations involving
large amounts of data, matrix instructions can explicitly specify the independence between data
blocks compared to traditional scalar instructions, thus reducing the data dependence detection
logic. Moreover, matrix instructions have a high code density, so the data-level parallelism is
the main focus here.

Scratchpadmemory: Vector register groups are commonly found in vector architectures,
where each vector register contains a vector of fixed length and allows the processor to operate
on all elements of the vector at once. Scratchpad memory is a high-speed internal memory
used to store temporary computing data on a chip, with the characteristics of direct addressing,
low cost, and variable-length data access. Due to its low cost, a relatively large scratchpad
memory is deployed and a Direct Memory Access (DMA) controller is integrated for fast data
transmission. Considering that dense, continuous and variable-length data access often exists
in CNN, scratchpad memory instead of the traditional vector register group is used here.

2 Design and Mapping of Domain-Specific Instructions
In this section, the composition of the domain-specific instruction set and the details of the

function and format of the domain-specific instructions, under the design preferences presented
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in Section 1, are illustrated. On this basis, the mapping process from the CNN model description
file based on the deep learning framework to the specific instruction is introduced, and the code
of the convolutional layer and the pooling layer realized by the domain-specific instruction is
enumerated.

2.1 Extension of domain-specific instruction
The composition of the RV-CNN instruction set is shown in Table 1, i.e., the

data transmission instructions, the logical instructions, and the computation instructions.
Cooperating with some basic RV-32I instructions (not described repeatedly here), this instruction
set can perform typical CNN class computations. The RV-CNN instruction set architecture is
still consistent with the RISC-V architecture, belonging to the load-store architecture, and data
is transmitted only through domain-specific instructions. Moreover, the instruction set still uses
the 32 32-bit general-purpose registers of RV-32, which are used to store scalar values and
register indirect addressing for scratchpad memory. In addition, we set up a Vector-Length
Register (VLR) to specify the runtime length of the vector. The instructions are described in
detail below.

Table 1 Overview of RV-CNN
Instruction types Samples

Data transmission instructions MLOAD/MSTORE
Computation instructions MMM/MMA/MMS/MMSA

Logical instructions MXPOOL/MNPOOL/APOOL/MACT

2.1.1 Data transmission instructions
In order to support matrix operations flexibly, data transmission instructions can complete

the transmission of variable-size data blocks between the off-chip main memory and the on-chip
scratchpad memory. Figure 1 shows the format of the Matrix LOAD instruction (MLOAD).

Figure 1 Matrix LOAD (MLOAD) instruction format

In Figure 1, Reg0 specifies the on-chip destination address, and Reg1, Reg2, and
Reg3 specify the source address of the matrix, the size of the matrix, and the stride of adjacent
elements, respectively. Specifically, the instruction completes the transfer of data from main
memory to the scratchpad memory, where the stride field of the instruction can specify the span
of adjacent elements, thus avoiding the “expensive” matrix transpose in memory. Accordingly,
the Matrix STORE instruction (MSTORE) completes the data transmission from the scratchpad
memory to the main memory with a format similar to MLOAD, but the stride field is often
ignored to avoid discontinuous off-chip memory.

2.1.2 Matrix computation instructions
A CNN is mainly composed of the convolutional layer, the excitation layer, the pooling layer,

and the full-connection layer. Most computations are operated in the convolutional layer[20]. In
the computation of the convolutional layer, the convolution kernel moves continuously on the
input feature image and performs a dot product in the overlap region to generate the input data
of the next layer. In this process, the computation of one convolution kernel in different regions
of the feature image is independent, so is the computation of different convolution kernels in the
same region of the feature image. The Im2col (image to column) algorithm is used to convert
2-D convolution operation into matrix multiplication operation (the algorithm scheme is shown
in Figure 2) to make full use of the parallelism in convolution computation.
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Figure 2 Matrix multiplication version of convolution

Once the 2-D convolution is mapped to a matrix multiplication operation, it is natural to
use the MMM (Matrix-Multiply-Matrix) instruction to perform this operation. The instruction
format is shown in Figure 3, where Reg0 specifies the destination address of the matrix output
in the scratchpad memory; bits 16–12 are the functional fields of the instruction, indicating the
matrix multiplication operation. Reg1 and Reg2 specify the source addresses of matrix 1 and
matrix 2 in the scratchpad memory, respectively. The four bytes in Reg3 respectively represent
the height (H), width (W ), convolution kernel size (K), and convolution step (S) of the
matrix. Due to the use of tiling techniques in actual operation, a single byte is sufficient here to
store the corresponding information. Therefore, the parameter information during the operation
of the convolution is packaged into 32’ b {H,W,K, S}, and specified by Reg3. In addition,
because the data is loaded in fragments, intermediate results often need to be accumulated.
Instead of setting specific matrix addition instruction, this paper designs MMS instruction.
After completing matrix multiplication, the instruction is added to the original value at the
target address and then stored when part of the results is written into the target address, thus
reducing data reloading. The format and meaning of each field of the instruction are consistent
with MMM instruction which is specified by the function field, so it will not be illustrated
repeatedly here. Moreover, in order to take greater advantage of data locality and reduce
concurrent requests for reading or writing to the same address, specifically MMM is chosen for
matrix multiplication instead of being decomposed into more fine-grained instructions (such as
matrix-vector multiplication and vector dot product).

H|W|K|S
Figure 3 Matrix multiply matrix (MMM) instruction format

The full-connection layer is usually located at the end of the entire convolutional neural
network to map the features learned from the previous layers to classify those features. The
computation of the full-connection layer can be represented by matrix-vector multiplication,
while the MMM instruction with different parameters can also represent the computation of the
full-connection layer, so the same computation unit can be multiplexed by the convolutional
layer and the full-connection layer.
2.1.3 Matrix logic instructions

Fusion[21], as a standard technology in DNN accelerator design at present, minimizes
bandwidth limit by fusing partial layers to replace data input and output for a single layer
with data transfer once for multiple layers. The advantages of fusion and the feature that
the activation layer in CNN is usually immediately after the convolutional layer or the full-
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connection layer make it very suitable to design corresponding coarse-granularity instructions
to fuse the two layers. Moreover, the activation layer does not change the size of the input
tensor, and each element is activated by the function one by one, which requires relatively few
parameters. Therefore, the MMMA instruction is designed, so that the partial result of the
convolutional layer or full-connection layer obtained by matrix multiplication can be output
after activation. The format of MMMA instruction and meaning of each field are consistent
with the MMM instruction, which is to specify the instruction by function field. However, the
activation instruction is reserved to complete the activation of input data. The format of the
activation instruction is shown in Fig. 4, and bits 31–27 of the instruction are used to determine
the selection of the activation function, such as ReLU()/sigmoid()/Tanh().

Figure 4 Matrix ACTivation (MACT) instruction format

The pooling layer subsamples each window of the input data into a single pool output by
downsampling to reduce the size of the input image. In fact, compared to the convolutional layer
and the fully-connected layer, the other layers in the CNN contain little computation and are
limited by the time of data access. In some CNN models, it is effective to use fusion technology
for the pooling layer and adjacent layers. However, unlike the activation layer, which has a
relatively fixed position in CNN and is operated according to elements, the pooling layer is
rather flexible. For example, when three convolutional layers are pooled after being stacked, so,
here the pooling layer is treated as a separate layer. The instruction format of the MXPOOL for
maximum pooling is shown in Figure 5, where Reg0, Reg1, and Reg2, respectively, represent
the target address of output data, the source address of input data, and the length of input data.
By referring to the idea of designing the MMM instruction, it is observed that the size of the
pooling window is usually small, such as 2 × 2, 3 × 3, and 5 × 5, and the input data is usually
processed by tiling technology, and thus it is sufficient to use a single byte to represent the height
(H), width (W ), size of the pool window (K), and stride size (S) of one tile of the input
matrix that is processed. Such necessary information is packaged into one 32-bit value, which
is specified by Reg3.

H|W|K|S
Figure 5 Matrix maximum (MXPOOL) instruction format

2.2 Code mapping mechanism
The RV-CNN instruction generation process is shown in Figure 6. The CNN model

description files can be those in popular frameworks that deep learning engineers are familiar
with such as Caffe, TensorFlow, or PyTorch. These description files are parsed by the model
analyzer to generate parameter information for model building and weight information after
rearrangement. On this basis, the data flow diagram should be built and operators are extracted
according to the network parameter information, and then the extracted operators are mapped
to different instructions in the instruction pool (RV-CNN instruction set) with different fusion
strategies. Since the instructions designed here are all coarse-granularity instructions, operators
with appropriate granularity should be extracted to be mapped to the target instruction set.
After the domain-specific instruction is extracted, the fragmentation size should be determined
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according to the parameter values of the hardware, such as the size of the on-chip scratchpad
memory and the scale of the hardware computing resources. According to the reuse strategy,
such as input reuse or weight reuse, instructions are arranged to generate the final code, and the
RV32 basic instruction set should be used to load the parameter information into the register
and complete the cycle control.

ISA

CNN model
description

Hardware
configuration

Model parser
and analyzer

Network
parameters

Re-ordered
weights

OP extractor
and instruction
mapper

Fusion
strategy

Reuse
strategy

Instruction
scheduler
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Figure 6 Generation process of RV-CNN instructions

2.3 Code examples
In order to illustrate the usage of the proposed domain-specific instruction set, two

representative parts of CNN built by RV-CNN are enumerated, namely the convolutional layer
and the pooling layer. The implementation of the convolutional layer includes the operation of
the activation layer through fusion instructions. The code implementation of the full-connection
layer is similar to that of the convolutional layer, with only slight differences in configuration
parameters, so it will not be repeated here.

2.3.1 Example of convolutional layer code

The convolutional layer code realized by RV-CNN is shown in Figure 7. The left side is the
convolutional layer code written in the Caffe framework (for schematic), which completed the
feature extraction process of input feature image (14 × 14 × 512) by 512 groups of convolution
kernel with size of 3 × 3 and stride of 1. The right side of the figure is the schematic code that
performs the same function by specific instructions, assuming that there are sufficient resources
on the hardware chip and that the data is arranged in the right order.

Since the instruction obtains the parameter information from the register, the first thing to do
is to load the necessary information into the register. Here, the immediate 0x0E0E0301 is firstly
loaded to the $5 register. According to the description of instruction format in Section 2, the four
bytes from high to low in the 32-bit data represent the height (14), width (14), convolution kernel
size (3), and stride (1) of the input data, respectively, and then the vector register, VLR, is set
to 16, which means that the length of the vector processed once is 16. Cycle counters, $11 and
$12, are set here to complete the traversal of depth direction and different convolution kernels
because of the tiling technique. Then the data transmission is completed via MLOAD/MSTORE
by loading the physical address of the data in the off-chip DDR in registers, $6, $8, and $10.
The information in the above registers should be generated by the instruction generator or user
according to the network model and hardware parameter information. On this basis, the actual
computation process begins. The data is first loaded from the off-chip 0x30 000 and 0x50 000 to
the on-chip destination address specified by $1 and $2, respectively. After the data is loaded,
the computation is completed by the MMM instruction. During the computation process, the
intermediate results are stored in the on-chip scratchpad memory. The following computation is
completed by the MMMS instruction and accumulated with the on-chip intermediate results to
reduce the unnecessary off-chip memory access. Finally, part of the final result is activated by
operating the MMMSA instruction and is transmitted to the off-chip by the MSTORE instruction.
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//$1: input mat1 address, $2: input mat2 address
//$3: temp variable address, $4: output size
//$6: mat1 address, $7: mat1 size, $8: mat2 address,
//$9: mat2 size, $10: output matrix address
//$11, $12: loop counter

      LI               $5,   0x0E0E_0301  // H=14, W=14, k=3, s=1
      LI               $VLR, 0x10                // set vector length (16)
      LI               $6,     0x30000
      LI               $8,     0x50000
      LI               $10,   0x70000
      LI               $11,   0x1E                // set loop counter (30)
      LI               $12,   0x20                
L0: MLOAD    $1,  $6,  $7               // load tiled weights
      MLOAD    $2,  $8,  $9               // load tiled activations
      MMM      $3,   $2,  $1, $5        // mat1 x mat2

      ADD         $8,   $8,  $9               // update mat2 address
L1: MLOAD   $2,   $8,  $9               
      MMMS    $3,   $2,  $1,  $5       // mat2 x mat2 & accumulate

      ADD         $8,   $8,  $9               
      SUB          $11, $11, #1             
      BGE          $11, #0,  L1               // if(loop counter>0) goto L1

      MLOAD    $2,   $8,  $9              
      MMSA     $3,   $2,  $1,  $5       // mat2 x mat2 & accumu. & relu
      MSTORE  $3,   $10,  $4            // store  results to address ($10)
      SUB          $12, $12,  #1             
      ADD         $6,    $6,   $7             // update mat1 address 
      ADD         $10,  $10, $4            // update output address
      BGE          $12,  #0,   L0            // if (loop counter>0) goto L0
      

layer {
    type: "data"
    name: "data"
    top: "data"
    input_param: {
        shape: {
            dim: 512
            dim: 14
            dim: 14}
    }
}

layers {
  bottom: "data"
  top: "conv1"
  name: "conv1"
  type: CONVOLUTION
  convolution_param {
      num_output: 512
      pad: 1
       kernel_size: 3}
}

layers {
  bottom: "conv1"
  top: "conv2"
  name: "relu1"
  type: RELU
}

Figure 7 Example of convolutional layer code implemented by RV-CNN

2.3.2 Example of pooling layer code

The pooling layer code implemented by RV-CNN is demonstrated in Figure 8. On the left
side, the Caffe framework is used to write the pooling layer code as a function example, which
means to sample the maximum value of the input feature image (14 × 14 × 512) by the pooling
window with a size of 2 × 2 and a stride of 2. The right side of the figure is schematic code that
performs the same function using domain-specific instructions, assuming that there are sufficient
resources on the hardware chip and that the data is arranged in the right order.

Since the pooling layer does not contain weight data and does not accumulate in the depth
direction, the code implemented by the RV-CNN is simpler than the convolutional layer code if
the input image size is appropriate. After loading the parameters into the corresponding register,
the MLOAD instruction is used to load the data to be processed from the off-chip 0x10 000 ($6)
to the on-chip destination address $1. After the input data is loaded, the MXPOOL instruction
is used to down sample the data and the results are stored at the temporary address $5 on the
chip. After sampling, the results are transmitted by MSTORE to the off-chip address 0x40 000
($7). During the process, the output does not accumulate on the chip. The loop counter in the
code is intended to control the traverse along the depth direction of the input data. A single
load, pooling, and loadout complete the sampling of a tile of the input data, and then the load
and load out addresses and counter values are updated.

3 Comparison Between RV-CNN and Domain-Specific Instruction
Set
At present, the Cambricon instruction set is considered to be one of the most representative

instruction sets in the field of neural networks, and the vector instruction set extension (RV-V)
based on the RISC-V architecture is also considered as an instruction set to accelerate neural
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network computing. Therefore, this section will carry out qualitative analysis and comparison
between RV-CNN and the above two typical instruction sets in terms of application scope,
granularity, and mapping mechanism of instruction sets.

//$1: input mat address, $2: feature map size
//$3: loop counter, $5: temp variable address 
//$6: mat address, $7: output mat address, $8: output size

       LI             $4,     0x0E0E_0202   // H=14,W=14,k=2,s=2

       LI             $VLR, 0x10                   // set vector length (16)

       LI             $3,      0x20                  // set loop counter (32)

       LI             $6,      0x10000
       LI             $7,      0x40000
L0: MLOAD   $1,      $6,   $2              // load partial activations

      MXPOOL $5,      $1,   $2, $4       // subsample

      MSTORE  $5,      $7,   $8             // store mat to address ($7)

      ADD         $7,      $7,   $8            
      ADD         $6,      $6,   $2             // update output address

      SUB          $3,      $3,   #1            
      BGE          $3,      #0,   L0             // if (loop counter>0) goto L0

layers {
  name: "pool"
  type: POOLING
  bottom: "data"
  top: "pool"
  pooling_param {
      pool: MAX
      kernel_size: 2
      stride: 2
  }
}

Figure 8 Example of pooling layer code implemented by RV-CNN

Scope of application: The RV-V instruction set is designed to take advantage of data-
level parallelism in applications, which can be widely used in scientific computing, data signal
processing, machine learning, and other fields. The Cambricon instruction set is designed for
more than ten kinds of network models in the field of neural networks, such as CNN, Recurrent
Neural Network (RNN) and Long Short-Term Memory (LSTM) network. In contrast, the RV-
CNN instruction set is mainly designed for CNN in the field of neural network, which involves
few types of operations. As a result, the first two instruction sets target a wider range of domains
and are more difficult to design, which is also reflected in the type and number of instructions
contained in the instruction set. The RV-V instruction set already contains over 60 instructions
(draft version 0.8), the Cambricon instruction set contains 47 instructions, while the RV-CNN
instruction set contains only 10 instructions.

Coarse or fine granularity: RV-V and RV-CNN instruction sets contain vector and
matrix instructions, respectively, while the Cambricon instruction set contains scalar, vector,
and matrix instructions. It is because Cambricon is conceptually a complete neural network
instruction set that it includes scalar instructions, but vector and matrix instructions are used to
speed up the computation. Therefore, the RV-CNN instruction set has the largest instruction
granularity among the three instruction sets, followed by the Cambricon instruction set, and
the granularity of RV-V is the smallest since all its instructions are vector instructions. This is
also related to the application scope of the instruction set. As the application field used for the
design of the RV-V instruction set is most extensive, the set needs to extract the common parts
from various computing operations. In view of the limitations of hardware scale and power
consumption, this process often requires continuously dividing different computing processes
to seek computing commonality considering the algorithm characteristics, thus improving the
expressivity of the instruction set. Compared with the previous two sets, the RV-V instruction
set possesses the smallest granularity, therefore.

Code mapping mechanism: The code mapping of the Cambricon instruction set is
based on the framework, providing the popular programming framework with adaptive machine
learning high-performance library and software runtime support. It not only provides the
framework with rich operators and computational flow diagram methods to construct the entire
network, but also controls the hardware by calling the built-in driver to generate instructions.
The RV-CNN instruction set’s data mapping process begins with the model’s description file
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based on the framework. Different from Cambricon that modifies the framework, RV-CNN
only analyzes the description file of the model in the framework to extract the model structure
and weight information, further establishing a mapping between operators and instructions in
the model with the fusion strategy, then carries on the instruction arrangement with the reuse
strategy, finally forms the executable file by assembling. As the RV-V instruction set is currently
ongoing, there is no available compiler to complete the automatic vectorization of the code,
and the assembly instructions still need to be written by the users. However, a large number of
fine-granularity vector instructions makes register allocation and instruction arrangement more
difficult in the programming process.

4 Hardware Implementation of RV-CNN
This section first introduces the overall structure of the open-source processor core

containing the RV-CNN instruction extension and details the execution flow of the instructions.
Then, the composition of the matrix unit corresponding to the RV-CNN instruction and the
functions of its subunits are described, in which the structure of the matrix multiplication unit
is shown in detail. Finally, the optimization details of the matrix unit are introduced.

4.1 Overall architecture
The main features of the RISC-V processor core with the RV-CNN extension and a simplified

pipelined architecture are shown in Figure 9. It can be seen that it contains five basic pipeline
stages: fetching, decoding, execution, access, and writing back. The matrix computing unit is in
the execution stage of the pipeline and is used to complete the execution of matrix instructions.
After the fetching and decoding, the instructions in the basic instruction set will enter the ALU
and then the next phase. When the current instruction is identified as a matrix instruction at the
decoding stage, the decoder will obtain the corresponding information from the register and save
it, which will be sent into the matrix unit in the next cycle. The matrix unit detects the state of the
corresponding functional components according to instruction information received to determine
whether to execute. As the address space of the scratchpad register on the chip is visible to users,
the matrix unit can interact with the memory through the matrix data transmission instruction.
Therefore, matrix instruction will not be accessed or written back after the matrix instruction
enters the matrix unit, while the access of the rest instructions goes through the cache without
going through the matrix unit. It avoids unnecessary data-dependent detection and automatic
data exchange of the hardware. In addition, since the matrix unit contains a large number of
computing units, it has its own pipeline structure inside. The decoder decides whether to stop the
pipeline according to whether the matrix unit can accept matrix instruction information. Given
the continuing and intensive data access matrix instructions, a DMA controller is integrated
outside the scratchpad memory to meet the data access requirements of the matrix unit. It should
be noted that the data involved in the execution of the computational and logical instructions in
the matrix unit need to already exist on the chip, which requires strict control of the program.

4.2 Matrix unit
The overall structure of the matrix unit is shown in Figure 10, which consists of the

input and output units, the matrix multiplication unit, the activation unit, the pooling unit,
and the internal controller, and the orange and gray arrows represent control flow and data
flow, respectively. The matrix unit stores the instruction information and register information
received. The internal controller (as a finite state machine) is the control center of the matrix
unit, which will wake up the sub-components (if available) to complete the corresponding task
based on the control information. Otherwise, it generates a feedback signal indicating that the
corresponding functional unit is busy. The buffer module is essentially an on-chip memory from
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which the computing core in the matrix unit fetches data and writes the results. Computing units
correspond roughly one-to-one with coarse-granularity instructions, except fusion instructions
that can start multiple computing cores simultaneously. Finally, the input-output module is
responsible for data transmission between the matrix unit and the on-chip scratchpad memory
based on the valid address.
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Figure 9 Simplified block diagram of processor core with RV-CNN extension

Since the matrix multiplication unit is shared by both the convolution layer and the fully-
connected layer and it performs most of the computation, the implementation of this unit is
critical to performance. Here, the matrix multiplication realized by a systolic array structure is
adopted, and its structure is shown in the right part of Figure 10. Systolic arrays are an efficient
and simple implementation of matrix multiplication by binding MAC (multiply-accumulate)
units together in a two-dimensional grid. Except for the computing units in the outermost layer
of the array (in this case, the leftmost and uppermost), which are directly connected to the
on-chip buffer to obtain data, the rest of the units get input from their neighbors. This approach
will significantly reduce the fan-in and fan-out of on-chip buffering when the MAC array has
larger size. In addition, the flow of data among MAC units also promotes data reuse. For
example, when the MAC array is 12 × 16, the elements in matrix B are transferred from left to
right in the array at different times in rows, and the output data is reused 16 times. Similarly,
the elements in matrix A are transmitted from top to bottom in the array at different times, and
the output data is reused 12 times. In this process, with pipelining optimization, 192 MAC
operations can be performed with only 28 inputs per cycle into the array. In addition, the short
local interconnection reduces the difficulty of layout and wiring, so the systolic array is chosen
as the implementation of matrix multiplication.

Figure 10 Block diagram of the matrix unit
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4.3 Detail optimization
Data reuse: Im2col operations on the input data when the convolutional layer is processed

can be costly in terms of memory footprint and bandwidth. For example, when the convolution
kernel stride is 1, compared with the original input data, the converted input matrix consumes
about K ×K times the original memory. To maintain the benefits of Im2col operations while
reducing the additional overhead, this paper implements an on-chip Im2col buffer, and the tiling
data is rearranged and expanded on the chip based on the address. The Im2col buffer can
effectively increase data reuse. Although it does not reduce the number of accesses to input
data, it can replace the expensive off-chip access with the cheap on-chip access, thus greatly
reducing the overhead of the additional data access and external bandwidth pressure caused by
this operation.

Data quantization: Traditionally, whether CNN is in the training stage or the prediction
stage, its data type is the 32-bit single-precision floating-point number, mainly because it is
the standard data format of modern GPU. However, it is found that CNN is inherently robust
to finite numerical precision, and it is not necessary to use floating-point computation in the
prediction stage. Through retraining and specific fine-tuning, the accuracy loss caused by fixed-
point numbers for the prediction can be negligible (less than 1%)[22]. For many CNNs, even
8-bit width can provide enough precision. The quantization was taken because the low width
representation of weights and activation helps to avoid expensive floating-point computations
while significantly reducing bandwidth requirements and memory footprint. DianNao[11] shows
that the area and power consumption of the 32-bit multiplier are one order of magnitude
higher than that of the 16-bit multiplier through the 65 nm process of Taiwan Semiconductor
Manufacturing Company (TSMC). On this basis, 16-bit fixed-point numbers are used for all
computation cores of matrix units in this paper.

5 Experiments and Results
A processor core based on the RISC-V architecture containing the instruction set extension

is built on the FPGA platform to verify the validity of the proposed domain-specific instruction.
On this basis, AlexNet and VGG16, two convolutional neural networks of different scales, are
used for evaluation, and the prototype system is compared with Cambricon, CPU, GPU, and
other FPGA accelerators for analysis.

5.1 Experimental methods
(1) FPGA implementation of the prototype system
A ZC702 development board is used as the experimental platform, which is an embedded

FPGA platform, including an XC7Z020 FPGA chip and 1 GB DDR3 onboard memory, which
can provide 4.2 GB/s off-chip data access bandwidth. The basic RISC-V core and matrix
unit are controlled by Verilog, the hardware description language, while the subunits of the
matrix unit are designed by the Xilinx Vivado HLS 2017.4 high-level synthesis tool, and the
complete hardware engineering is implemented by Xilinx Vivado, the integrated development
environment.

(2) CPU test baseline
Two target network models are deployed on the CPU platform using the Caffe deep learning

framework (CPU-only). The CPU configuration is an Intel i7-4790 K with four physical cores,
a maximum thread count of eight, a frequency of 4 GHz, and a DDR3 memory of 16 GB.

(3) GPU test baseline
The GPU version was tested using the Caffe deep learning framework (GPU-only) and the

CUDN5.1 accelerator library to deploy two target network models on the GPU platform. The
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CPU configuration is an NVIDIA Tesla K40C GPU with a maximum thread count of 2 880, a
frequency of 745–875 MHz, and a GDDR5 video memory of 12 GB.

5.2 Results
In this section, the resource consumption and power consumption of the prototype system

on the FPGA platform is first reported, and then the design is compared with Cambricon, CPU,
GPU, and previous accelerators based on FPGA from three aspects of code density, performance,
and energy efficiency.

The resource consumption of the prototype system on the target platform and the power
consumption of FPGA are obtained after the deployment report of the prototype system in the
Vivado tool is viewed, as shown in Table 2.

Table 2 Hardware resource utilization deployed on Xilinx ZC702 platform
Resource DSP BRAM LUT FF Power (W)

Total amount 220 280 53 200 106 400
2.12Used 200 181 26 177 30 665

Utilization(%) 91 65 49 29

(1) Comparison with Cambricon, CPU and GPU platforms in code density, performance,
and energy efficiency

Code density: The domain-specific instruction proposed in this paper is not only suitable
for accelerating CNN applications, but also provides support for other deep learning algorithms
(such as MLPs) with similar computational patterns. The code density between RV-CNN
instruction and the basic RV32, ARM, x86, and GPU is compared by using RV-CNN, C, and
CUDA-C to implement the popular CNN model and measure its code length. The results are
shown in Figure 11, where the length of the code realized by RV-CNN instruction set is taken as
the baseline. It can be seen that compared with the original RV32 (IMF) instruction set, the code
length after the extension of RV-CNN is reduced by 10.10 times. Compared with GPU, x86,
and ARM instruction sets, the code length of RV-CNN is reduced by 1.95 times, 8.91 times,
and 10.97 times respectively. With the code length of x86 instruction as the benchmark, the
RV-CNN code length is 1.51 times shorter than that of the Cambricon.

Figure 11 Reduction of code length against Cambricon, GPU, x86, RV32, and ARM

Performance and energy efficiency: Figure 12 shows the performance and energy
efficiency of the design compared with CPU and GPU under the inference process test of two
neural networks (AlexNet and VGG16). All values are normalized to the experimental results
of the CPU. On the Xilinx ZC702 platform, this design performs outperforms the CPU does
in implementing the two kinds of networks, accelerating them by 2.64 times and 4.23 times,
respectively. However, the platform is embedded, and DSP (91% usage), the hardware resource
for computing, is the main performance bottleneck, so the performance of implementing both
networks lags behind the GPU. In terms of energy efficiency, with performance per watt
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(GOPs/W) as the benchmark in reasoning for AlexNet and VGG-16, the design provides
101.49-fold and 167.62-fold improvement respectively compared with CPU, while 1.06-fold
and 1.40-fold improvement respectively, compared with GPU. Since the Cambricon accelerator
is designed for ASIC, the performance density (op/multiplier/cycle), namely the number of
operands completed by the multiplier per cycle, is compared. With the GPU test data as the
baseline, RV-CNN has a 1.16-fold improvement compared with Cambricon.

(a) AlexNet (b) VGG-16

Figure 12 Comparison of prototype system with CPU and GPU in performance and energy efficiency

(2) Comparison with other FPGA accelerators
Table 3 lists the results of comparison between this design and existing typical FPGA

accelerators. Due to different quantization strategies and hardware deployments for different
work, it is hard to choose an effective and accurate comparison method. With Giga Operands Per
second (GOPs) as the performance criterion, previous efforts can achieve better performance than
ours, but the higher performance consumes more resources, such as DSP and LUT resources,
power consumption increasing accordingly. With performance per watt (GOPs/W) as the energy
efficiency criterion, the design in the paper is more efficient than previous accelerators while
maintaining flexibility.

Table 3 Comparison between prototype system and previous FPGA-based accelerator deployment
FPGA 2015[23] FPGA 2016[24] FCCM 2017[25] Ours

Platform Virtex7 VX485 T Stratix5 GSD8 Stratix5 GSMD5 Zynq XC7Z020
Frequency (MHz) 100 120 150 100

Model AlexNet VGG16 VGG16 AlexNet/VGG16
Width 32-bit float 16-bit fixed 16-bit fixed 16-bit fixed

Performance (GOPs) 61.62 117.8 364.36 21.77/35.95
Power consumption (W) 18.61 25.8 25 2.12

Energy efficiency (GOPs/W) 3.31 4.57 14.57 10.27/16.96

6 Conclusions
CNN is widely used in character recognition and detection of target fields, which makes

its performance very significant. By analyzing the computation mode of typical CNN, this
paper proposes an efficient and easy-to-implement domain-specific instruction set, called RV-
CNN, which contains 10 coarse-granularity matrix instructions and provides support for the
reasoning process of the CNN model flexibly. On this basis, the mapping process of CNN
model description file to RV-CNN instruction is introduced, and then RV-CNN is compared
with typical specific instruction set from different aspects with qualitative analysis. In terms
of instruction implementation, the instruction set extends the RISC-V processor core, and the
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corresponding matrix units are embedded into the classical five-stage pipeline in a tightly coupled
way. Finally, the design is implemented comprehensively on the Xilinx ZC702 platform, and
tested with typical neural networks. The results indicate that the prototype system has the highest
energy efficiency and code density compared to the Intel i7-4790K processor and the Tesla K40C
GPU. In addition, compared to previous accelerators, the prototype system demonstrates superior
energy efficiency while maintaining flexibility.

At the moment, new CNN networks are emerging in an endless stream, whereas instruction
optimization for operations such as deep separable convolution should be considered to improve
efficiency. In addition, the design and implementation of the extension instruction should rely
on collaborative optimization for the characteristics of RISC-V. Finally, the process of code
mapping based on model and hardware information is not yet automated, and improvements are
being planned in the above aspects.
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