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Abstract Duration Calculus (abbreviated to DC) is an interval-based, metric-time tempo-

ral logic designed for reasoning about embedded real-time systems at a high level of abstrac-

tion. But the complexity of model checking any decidable fragment featuring both negation

and chop, DC’s only modality, is non-elementary and thus impractical. Even worse, when

such decidable fragments are generalized just slightly to cover more interesting durational

constraints the resulting fragments become undecidable.

We here investigate a similar approximation as frequently employed in model checking

situation- or point-based temporal logics, where linear-time problems are safely approximated

by branching-time counterparts amenable to more efficient model-checking algorithms. Mim-

icking the role that a situation has in (A)CTL as the origin of a set of linear traces, we define

a branching-time counterpart to interval-based temporal logics building on situation pairs

spanning sets of intervals. While this branching-time interval semantics yields the desired

reduction in complexity of the model-checking problem, from undecidable to linear in the

size of the formula and cubic in the size of the model, the approximation is too coarse to

be practical. We therefore refine the semantics by an occurrence count for crucial states

(e.g., cuts of loops) in the model, arriving at a 4-fold exponential model-checking problem

sufficiently accurately approximating the original one. Furthermore, when chop occurs in

negative polarity only in DC formulas, we have a doubly exponential model-checking algo-

rithm.
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Introduction

Duration Calculus (DC), as introduced by Zhou, Hoare, and Ravn[1] and thor-
oughly analyzed in Refs.[2, 3], is a metric-time temporal logic designed for reasoning
about embedded real-time systems at a high level of abstraction, which primarily is
achieved by basing the semantics on intervals rather than just temporal snapshots.
While the resulting abstractness is desirable for specification and analysis, it is a
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burden for automatic verification support. Checking dense-time models against DC
requires certain properties of the model, like the number of state changes being finitely
bounded over finite intervals[4] or even finitely bounded along the whole run[5], unless
the use of temporal operators or negation is seriously restricted[6−9]. Otherwise, the
model property turns out to be undecidable[2,4].

Discrete-Time DC, i.e. DC interpreted over the natural numbers instead of R�0,
has more favorable decidability properties, as shown in Refs.[10, 11]. Here, decidabil-
ity holds for various fragments featuring both negation and chop, provided that the
use of durations is confined to simple cases where the accumulated duration of a state
proposition is directly compared to a constant rather than building linear combina-
tions of durations and relating these to constants, as permitted in more expressive
fragments. There have been various attempts to build automatic verification support
for discrete-time DC, e.g. Refs.[12-14]. But none of these systems has come to be
routinely used for checking non-trivial formulas due to the extreme, non-elementary,
complexity of deciding or model-checking DC formulas[2,4,15]. In Ref.[16] there is an
interesting approach where QDDC, a discrete-time version of DC, is incorporated in
CTL*. The result is a powerful logic capable of expressing liveness and branching
properties as well as interval properties of the past. But model-checking remains
non-elementary because the DC fragment is interpreted over linear traces.

In situation-based (or, synonymously, point-based) temporal logics, an approach
towards enhancing model-checking techniques is to exploit the linear time vs. branch-
ing time dichotomy: While requirements are most naturally expressed in linear-time
idioms, the actual verification is performed using safe branching-time approxima-
tions[17]. Such an approach yields reliable certificates while being considerably more
efficient — linear-time rather than PSPACE in the size of the formula.

We shall investigate similar approximations for interval-based logics. Mimicking
the role a situation has in (A)CTL as the origin of a set of linear traces, we de-
fine a branching-time counterpart to interval-based logics building on situation pairs
spanning sets of intervals. This branching-time interval semantics yields the desired
reduction in complexity of the model-checking problem, from non-elementary (when
dealing with simple duration constraints only) or even undecidable (for linear combi-
nations of durations) to linear in the size of the formula and O( V 3) in the size of the| |
model, but the approximation is too coarse to be really useful. We therefore refine
the semantics to have finer control over traces. Adding an occurrence count for cru-
cial states (e.g., cuts of loops) in the model, properties need no longer be true for all
traces between the situation pair under investigation, but there is a filter mechanism
permitting just to focus on traces with certain properties. This filtering approach is
a compromise between the prima-facie trace underlying the linear-time interpretation
and the homogeneous treatment of complete trace ensembles underlying CTL-like
branching-time interpretations. This approximation of linear-time is for many prac-
tical purposes sufficiently accurate. We provide a model-checking algorithm with a
4-fold exponential upper bound, as opposed to the non-elementary model-checking
problem of linear-time DC. Furthermore, for DC-formulas having chop in negative
polarity only, we give a doubly exponential model-checking algorithm.

This paper is an extended version of Ref.[18]. (1) The fragment of DC consid-
ered here is significantly more expressive, addressing a fragment which is undecidable
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already in the discrete-time setting[10,3]. (2) The filtering mechanism for the traces
has been refined thereby supporting finer approximations. (3) The model-checking
algorithm is significantly improved using a solver for integer LinSAT, i.e. Boolean
combinations of linear arithmetic constraints over the integers[19], for an interesting
class of formulas.

2 Duration Calculus

Duration Calculus (DC) is a logic specifically tailored for reasoning about em-
bedded real-time systems at a high level of abstraction from operational detail. We
give a brief introduction to the discrete-time DC fragment used in this paper. For
more complete coverage of the topic we refer to Refs.[3, 20, 21].

2.1 Syntax

The syntax is defined below with two syntax categories: state expressions, ranged
over by S, S1, S2, . . ., and formulas, ranged over by φ, φ1, ψ, ψ1, . . . State expressions
are Boolean combinations of state variables, and they describe combined states of a
system at a given point in time. Formulae can be considered as truth-valued functions
on time intervals. The syntax is defined as follows:

S ::= 0 1 P S S1 ∨ S2 ,| ¬
φ ::=

|
Σ

|
i∈Ωci

�
Si

|
�� k φ φ ∧ ψ φ � ψ ,

where P ∈ StateVar , with StateVar being a countable set of state variable names,
k, ci ∈ Z, ��∈ {<,�,=,�, >}, and Ω ⊂fin N.

While the meaning of the Boolean connectives used in DC formulas should be
obvious, the temporal connective � (pronounced “chop”), which is inherited from
Interval Temporal Logic [22], may need some explanation. Formulae are interpreted
over, first, trajectories providing valuation of state variables that varies over time
and, second, over finite intervals of time, called “observation intervals”. A formula
φ � ψ is true of an observation interval iff the observation interval can be split into
a left and a right subinterval s.t. φ holds of the left part and ψ of the right part.
A duration formula 2

�
P + −1

�
Q > 3 is true of an observation interval iff the twice

the accumulated duration of state assertion P , interpreted over the trajectory, being
true over the observation interval minus the accumulated duration of state assertion
Q being true over the observation interval exceeds 3. Fig. 1 provides an illustration
of the meaning of these formulas.

2.2 Semantics

An interpretation I associates a function P : N → {0, 1} with every stateI
variable P , where N models the discrete time line. The relationship between an
interpretation for a state variable, say P , and a trajectory, as shown in Fig. 1, is
that PI(t) = 1, t ∈ N, iff the trajectory for P is high throughout the real interval
[t, t + 1). The semantics of a state expression S, given an interpretation I, is a
function: I[[S]] : N → {0, 1}:
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The formula (1
�
x � 3) ∧ (1

�
y < 3) holds on observation interval O1 = [1, 4], as the accumulated

duration of x being true over this interval is 3 and that of y being true over this interval is 2.

Analogously, 1
�
y +−2

�
(x ∧ ¬y) = 0 holds on observation interval O2 = [4, 7]. Therefore, the

formula ((1
�
x � 3) ∧ (1

�
y < 3)) � (1

�
y +−2

�
(x ∧ ¬y) = 0) holds on the catenation O3 = [1, 7] of

the other two observation intervals.

Figure 1. The meaning of accumulated durations and of the chop modality

I[[0]](t)=0

I[[1]](t)=1

[[P ]](t)=PI(t)I �
0 if I[[S]](t) = 1I[[¬S]](t)=
1 if I[[S]](t) = 0�
0 if I[[S1]](t) = I[[S2]](t) = 0

[[S1 ∨ S2]](t)=I
1 otherwise.

Satisfaction of formulas φ is defined over pairs (I, [a, b]) (called observations) of
an interpretation I and a time interval [a, b] with a � b and a, b ∈ N. The satisfaction
relation I, [a, b] = φ is defined as follows:|

I, [a, b] =

I, [a, b] = Σi∈Ωci

�
Si �� k iff Σi∈Ω

�
ci

�b−1 [[Si]](t)
�

�� kt=a I|
I, [a, b] = φ iff I, [a, b] = φ

I, [a, b] = φ ∧ ψ iff I, [a, b] = φ and I, [a, b] = ψ| | |
I, [a, b] = φ � ψ iff I, [a,m] = φ and I, [m, b] = ψ|

for some
|
m ∈ [a, b] ∩ N.

|

Whenever I, [a, b] = φ holds we say that φ is true in [a, b] wrt. I. A formula φ|
is valid (written = φ) if I, [a, b] = φ holds for every observation (I, [a, b]), and φ is| |
satisfiable if I, [a, b] = φ for some observation (I, [a, b]).|

Based on the temporal connective � (called “chop”) inherited from Interval Tem-
poral Logic[22], the temporal operators ♦ and �, meaning ‘in some subinterval’ and

df df‘in every subinterval’, can be defined by: ♦φ = ((� � φ) � �) and �φ = ♦ φ.¬ ¬
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The following formulas give a flavor of the kind of durational properties which
can be expressed using the primitives of DC.

df
� =

�
1 ‘interval length’

1
�
S � k ‘duration of S is at least k in an interval’

df
� = k = 1

�
1 = k ‘interval length is k’

df�
S1 =

�
S2 = 1

�
S1 +−1

�
S2 = 0 ‘S1 and S2 have the same duration in an interval’

df��S�� = 1
�

S = 0 ∧ � > 0 ‘S holds through a non-point interval’¬

These constructions and the formulas that can be built using them demonstrate that
the DC fragment we consider is quite expressive, despite its simple syntax. As an
example take the formula �(� � 10 (

�
p − 2

�
q � 1 ∧ �

p − 2
�
q � −1)1, which⇒

expresses that over all sufficiently long time frames (� � 10), process P is granted
roughly twice the run-time of process Q, if observables p and q are considered to
represent the time instances where the respective processes are executed.

It has been shown in Ref.[10] that the satisfiability problem for the above frag-
ment of DC is undecidable already over discrete time, as the linear combinations of
durations permit to encode unbounded counters. Without weighted sums of dura-
tions, i.e. with atomic formulas of the form

�
S �� k only, the discrete-time satisfia-

bility problem is decidable with non-elementary complexity due to a reduction to the
emptiness problem of extended regular expressions[10]. To this end, note that chop
coincides to concatenation of languages, ¬ to complement, ∧ to intersection, and that
the traces satisfying an atomic formula of the form

�
S �� k can be defined by a regular

expression. It has furthermore been shown that satisfiability by a dense-time trace
of finitely bounded variability (in the sense of having a fixed, uniform bound k on
the number of state changes in any unit interval of time) is also decidable for this
fragment[4].

2.3 Labelled Kripke structures

We shall consider the satisfaction problem with respect to interpretations which
are generated by Kripke structures.

Definition 1. A labelled Kripke structure (or just Kripke structure) is a tuple K =
(V, E, I, L), where

V is a finite set whose elements are called vertices or situations,•
V × V is a set of edges or transitions,• E ⊆
V is a non-empty set of initial vertices (or situations), and• I ⊆

L : V 2StateVar is a labelling function assigning to each vertex a set of state• →
variables (of DC). A vertex v fulfills state expression S, written v =L S, iff S|
is satisfied when the state variables in L(v) are assigned the value 1 and those
not in L(v) the value 0.

We shall consider the following kinds of behaviour for Kripke structures:

1Here and in the sequel, we drop factors of 1 in linear combinations and merge negative factors with

the preceding additive operator.
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Definition 2. Let K = (V, E, I, L) be a labelled Kripke structure.

A trace (or run) tr of K from i to j (i, j ∈ V ) is a non-empty, finite sequence•
of vertices: v0 v1 . . . vk where v0 = i, vk = j, and (vl, vl+1) ∈ E, for 0 � l < k.
Let img tr be the set of vertices {v0, v1, . . . , vk}.
The interpretation induced by tr, denoted Itr, is defined for any t ∈ N by•

PItr
(t) =

�
1 if t � k and P ∈ L(vt),

0 otherwise.

Definition 3. Given a labelled Kripke structure K = (V, E, I, L), a DC formula φ,
and a trace tr = v0 v2 vk of K.· · ·

The trace tr satisfies φ, written tr =K φ, if Itr, [0, k] = φ.• | |
• The Kripke structure K is a model of φ, written K |= φ, if for every trace tr of

K starting from a vertex in I we have that tr =K φ.|

The model-checking problem K = φ is undecidable. This follows directly from|
the undecidability of the satisfiability problem of the considered fragment of DC, since
we can define Kripke structures which can generate all interpretations for the state
variables occurring in a formula on arbitrary intervals. The aim of this paper is to
develop a safe approximation technique for the model-checking problem in order to
achieve efficient tool support.

Doubly Situation-Based Semantics

Given the complexity gap between model checking linear-time temporal logics
and situation-based, branching-time logics, it seems attractive to define a situation-
based variant of DC that can be used in the same way ACTL is frequently used as
an efficiently analyzable substitute for PLTL (cf., e.g., Ref.[17]). We provide such
a situation-based interpretation of DC. As DC is a logic of intervals rather than
temporal snapshots, the natural counterpart to CTL’s notion of a situation i, which
gives rise to a computation tree rooted in i, is a pair of situations (i, j) giving rise to
a bundle of runs originating in i and ending in j. This ensemble of runs corresponds
to a set of observations obtained using the labelling function of the Kripke structure.

The doubly situation-based semantics is a function K[[φ]] : V V 2B mapping→ →
a pair of situations to the power domain of truth values 2B, where the singleton
sets are interpreted as definite truth values while the other subsets of B denote the
following situations: value ∅ represents the fact that there are some traces between
the situation pair of interest satisfying and others violating the formula such that no
meaningful truth value can be assigned wrt. a universally path-quantified property. B,
on the contrary, denotes the scenario that all traces between the situations do satisfy
and violate the formula, which can only happen if there is no connecting trace. The
semantic definition is then given by:

�
{true} if j is reachable from i

K[[�]] i j =
B otherwise
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⎧
⎪

⎩
⎧
⎪

⎩
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B if j is unreachable from i

{true} if tr =K Σi∈Ωci

�
Si �� k|

for all runs tr of K from i to j
K[[Σi∈Ωci

�
Si �� k]] i j = {false} if tr = Σi∈Ωci

�
Si �� k

for all runs tr of K from i to j

∅ otherwise

{true} if K[[φ]] i j = {false},
K[[ φ]]¬ if K[[φ]]i j = {false}

K[[φ]] i j otherwise

i j = {true}

{true} if K[[φ]] i j = K[[ψ]] i j = {true}
i j is {false}[[φ ∧ ψ]] if K[[φ]] i j or K[[ψ]]K i j = {false}

K[[φ]] i j ∩K[[ψ]] i j otherwise

B if j is unreachable from i

{true} if for each run tr of K from i to j

there is k ∈ img tr with:

K[[φ]] i k = K[[ψ]] k j = {true}
if for each run tr of K from i to j

K[[φ � ψ]] i j = {false}
and for each k ∈ img tr we have :

K[[φ]] i k = {false} or K[[ψ]] k j = {false}
otherwise.∅

Note that for a pair (i, j) of situations for which j is not reachable from i,
K[[φ]] i j = {true, false}, representing the fact that all traces vacuously do both
satisfy and violate the property. Otherwise, there is at least one run connecting i

with j. The semantics then reports {true} if every run from i to j satisfies φ, it
reports {false} if every run from i to j falsifies φ. In the remaining case where some
runs satisfy φ while others falsify φ the semantics reports ∅.

Notice that negation and conjunction are interpreted by the strongest monotonic
extensions to 2B of the respective Boolean connectives. Furthermore, K[[φ � ψ]] i j

is {true} iff on each run from i to j there is an intermediate situation m such that
(i,m) and (m, j) yield {true} for φ and ψ, respectively. Similarly, it is {false} iff
on any such run from i to j, any intermediate situation yields {false} for at least
one of φ or ψ.

Lemma 1 (Approximation). Let K = (V, E, I, L) be a Kripke structure, i, j ∈ V

two situations, and tr a run of K from i to j. Then

1. K[[φ]] i j = {true} implies tr =K φ,|
2. K[[φ]] i j = {false} implies tr =K φ,

i.e., if the situation-based semantics provides a definite truth value then this truth
value coincides with that assigned by the linear-time semantics to all runs between
the respective situations.
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Proof. Straightforward induction on the structure of φ. �
For Kripke structures where there is at most one run between any pair of sit-

uations, the doubly situation-based semantics is precise, and we get the following
result.

Lemma 2 (Preciseness) . Let K = (V, E, I, L) be a Kripke structure, where E

constitutes a set of trees, i, j ∈ V are two situations, and tr is a run of K from i to
j. Then

1. tr =K φ implies K[[φ]] i j = {true},
2. tr

|
=K φ implies K[[φ]] i j = {false}.

3.1 Model checking

We present an algorithm for checking whether a Kripke structure K = (V, E, I, L)
satisfies a formula φ wrt. the doubly situation-based semantics. The time-complexity
of this algorithm is O( V 3) in the size of the Kripke structure K and linear in the size| |
of φ. The algorithm proceeds by induction on the structure of φ, marking situation
pairs (i, j) with the subformulas of φ and the associated values. I.e., marking a
situation pair (i, j) with just (ψ, b), b ∈ B means that K[[ψ]] i j = {b}, and a mark
(ψ, ∅) is provided whenever K[[ψ]] i j = ∅.

In order to deal with the case where j is not reachable from i, i.e. K[[φ]] i j =
{true, false}, we mark such situation pairs (i, j) with both (φ, true) and (φ, false).
This is done in an initialization step and the time complexity of that is O( V 3). When| |
we consider a situation pair (i, j) below, we tacitly assume that j is reachable from i.

1. Base case φ = �. As � is satisfied by all pairs (i, j), all such pairs become
marked with (�, true). These markings can be performed in O( V 2) time.|

2. Base case φ = Σi∈Ωci

�
Si < k. The other cases of Σi∈Ωci

�
Si �� k

|
are similar.

Let Δ(v) denote the contribution of Σi∈Ωci

�
Si when staying one time unit in

the vertex v, i.e. Δ(v) = Σj∈{i∈Ω|v|=LSi}cj . Associate to K a weighted graph
which has vertices V and edge weights

iff (v1, v2) �∈ E,
w(v1, v2) =

�∞
W (v1) iff (v1, v2) ∈ E,

where W (v1) = Δ(v1) if we are determining lower bounds on Σi∈Ωci

�
Si (or

W (v1) = −Δ(v1), respectively, for upper bounds). We can then use an all-pairs
shortest-path algorithm to determine the lower bound (upper bound, resp.) of
Σi∈Ωci

�
Si along all paths between all pairs of vertices in K. This part takes

O( V 2.575) time using Zwick’s algorithm for directed graphs with integer edge| |
weights of small absolute value[23]. We assign markings to all pairs (i, j) within
one sweep over V × V as follows:

mark (i, j) with (Σi∈Ωci

�
Si < k, true) iff the upper bound on Σi∈Ωci

�
Si•

along paths between i and j is strictly less than k,
mark (i, j) with (Σi∈Ωci

�
Si < k, false) iff the lower bound on Σi∈Ωci

�
Si•

on paths from i to j is greater than or equal to k,
otherwise, mark (i, j) with (Σi∈Ωci

�
Si < k, ∅).•
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The complexity of the second step is O( V 2) such that the overall complexity| |
coincides with that of the all-pairs shortest-path algorithm.

3. Case φ = ψ. We assign values for ¬ψ to all pairs (i, j) within one sweep over¬
V × V taking O( V 2) time as follows:| |

mark (i, j) with (¬ψ, true) iff (i, j) is marked with (ψ, false),•
mark (i, j) with (¬ψ, false) iff (i, j) is marked with (ψ, true),•
otherwise, we mark (i, j) with (¬ψ, ∅).•

4. Case φ = χ ∧ ψ. We assign values for χ ∧ ψ to all pairs (i, j) within one sweep
over V × V taking O( V 2) time as follows:| |

mark (i, j) with (χ∧ψ, true) iff both (χ, true) and (ψ, true) are markings•
of (i, j),
mark (i, j) with (χ ∧ ψ, false) iff (χ, false) is a marking of (i, j) or•
(ψ, false) is a marking of (i, j),
otherwise, mark (i, j) with (χ ∧ ψ, ∅).•

5. Case φ = χ � ψ. We assign values for χ � ψ to all pairs (i, j) as follows:

mark (i, j) with (χ � ψ, true) iff i and j are unconnected in the graph•
(V, E�) obtained from (V, E) by removing all situations k ∈ V which have
both (i, k) marked with (χ, true) and (k, j) with (ψ, true),
mark (i, j) with (χ � ψ, false) iff for all k ∈ V reachable from i and•
backward reachable from j, (i, k) is marked with (χ, false) or (k, j) with
(ψ, false),

otherwise, we mark (i, j) with (χ � ψ, ∅).•
The complexity of this step is O( V 3).| |

As the algorithm recurs over all subformulas of φ in order to determine the
situation pairs satisfying φ, the overall complexity of this algorithm is O( 3).|φ||V |

Theorem 1 (Correctness of model checking algorithm). Let K = (V, E, I, L)
be a Kripke structure, i, j ∈ V two situations, and φ a DC formula.

If K[[φ]] i j = {x}, x ∈ B then the model-checking algorithm marks (i, j) with
(φ, x) and there is no dissenting marking (φ, y) of (i, j) with x = y.

If K[[φ]] i j = ∅ then the model-checking algorithm marks (i, j) with (φ, ∅) and
there is no other marking of (i, j) for φ.

If j is not reachable from i in K and, hence, K[[φ]] i j = {true, false}, then the
algorithm marks (i, j) with both (φ, true) and (φ, false).

Proof. The proof is by induction on the syntactic structure of φ. Correctness of the
base case φ = � is obvious, and so is that the all-pairs shortest-path algorithm reports
the correct bounds on Σi∈Ωci

�
Si. Furthermore, the two recursive cases φ = ψ and¬

φ = χ ∧ ψ are simple.
For the correctness of the algorithm for chop, observe that K[[χ � ψ]] i j = {true}

iff all runs from i to j visit some run-dependent chop point m with K[[χ]] im =
K[[ψ]]mj = {true}. Taking the graph (V, E�) obtained from (V, E) by removing all
vertices m ∈ V which have (i,m) marked with (χ, true) and (m, j) marked with
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(ψ, true), we have that j is reachable from i in (V, E�) iff there is some run from
i to j not passing through any state k with (i, k) marked with (χ, true) and (k, j)
marked with (ψ, true). By induction hypothesis, this implies that j is reachable from
i in (V, E�) iff there is some run tr from i to j s.t. all situations k visited by tr have
K[[χ]] i k = {true} or K[[ψ]] k j = {true}, i.e. iff K[[φ]] i j = {true}. Consequently,
the algorithm marks (i, j) with (χ � ψ, true) iff K[[χ �

�
ψ]] = {true} or j is not

reachable from i in K.
The remaining parts are easily proved. �

Example: Consider the Kripke structure in Fig. 2, which we want to model check
against the formula φ = ¬(� � (

�
1 < 4 ∧ ¬�

p < 3) � �), which is the unfolding of
the abbreviations in �(� < 4 ⇒ �

p < 3).

Figure 2. A sample Kripke structure

The markings produced by the model-checking algorithm are shown in Table 1.

Table 1 Markings for the Kripke structure from Fig. 2.

i, j j = 1 j = 2 j = 3 j = 4

i = 1 (�, true)

(#, ∅)
(�, true)

(#, ∅)
(�, true)

(#, ∅)
(�, true)

(#, ∅)
i = 2 (�, true)

(#, ∅)
(�, true)

(#, ∅)
(�, true)

(#, ∅)
(�, true)

(#, ∅)
i = 3 (∗, ∗) (∗, ∗) (�, true)

(
�
1 < 4, true)

(
�
p < 3, true)

(¬�
p < 3, false)

(ξ, false)

(� � ξ, false)

((� � ξ) � �, false)

(φ, true)

(�, true)

(
�
1 < 4, ∅)

(
�
p < 3, true)

(¬�
p < 3, false)

(ξ, false)

(� � ξ, false)

((� � ξ) � �, false)

(φ, true)

i = 4 (∗, ∗) (∗, ∗) (∗, ∗) (�, true)

(
�
1 < 4, ∅)

(
�
p < 3, true)

(¬�
p < 3, false)

(ξ, false)

(� � ξ, false)

((� � ξ) � �, false)

(φ, true)

In this table, (∗, ∗) denotes (ψ, x) for each subformula ψ of φ and each x ∈
{true, false}, and # stands for all subformulas different from the aforementioned
subformulas. Furthermore, ξ = (

�
1 < 4 ∧ ¬�

p < 3) and φ = ((� � ξ) � �). Unfor-¬
tunately, the approximation by the doubly situation-based semantics is too coarse to
decide φ, as the state pairs (1, 1) to (1, 4), which represent the traces anchored in the
initial vertex 1, all become marked with (φ, ∅).
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4 Counting Semantics

To reduce the information loss encountered in the situation-based approximation,
we will add information on the frequency of visits to certain crucial vertices in the
Kripke structure, e.g. to cut points of loops such that the number of iterations of
loops can be determined. Let K = (V, E, I, L) be a Kripke structure.

We define a multiset m on V as a partial function

m : V
part−→ N

Let Mset denote the set of all multisets on V .
The main idea is that m conveys information about how many times a given

vertex is visited. For example, if m(i) is defined (i ∈ dom m) and equal to n, then
vertex i is visited n times in the concerned traces. If m(i) is undefined (i �∈ dom m)
then we do not know how many times i is visited. For a run v0 v1 . . . vk, the number
of times vertex v is visited is n = i < k ∧ v = vi}|, i.e. we disregard the last|{i ∈ N |
vertex, as that vertex does not contribute to the duration of any state variable for
that run.

A run in K from i to j is consistent with m if, for every k ∈ dom m, k is visited
m(k) times in the run. The set of m-consistent runs from i to j is denoted Ri,j,m in the
sequel. With Vi,j,m we denote the set of all vertices visited on some m-consistent runs
from i to j in K, i.e. Vi,j,m =

�
tr∈Ri,j,m

img tr. Furthermore, we call K consistent

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪

wrt. i, j and m if there is a run from i to j which is consistent with m, i.e. if Ri,j,m = ∅.
A consistent decomposition of m wrt. K and three situations i, j, k is a pair of

multisets m1,m2 where dom m = dom m1 = dom m2 and m = m1 + m2 and K is
consistent wrt. i, k,m1 and wrt. k, j, m2.

The counting semantics is a function K[[φ]]c : V V Mset 2B:→ → →
�

B if Ri,j,m =
K[[�]]c i j m = {true} if Ri,j,m

∅
=� ∅

B if Ri,j,m = ∅
{true} if Ri,j,m = ∅ and

for all tr

�
∈ Ri,j,m : tr =K Σi∈Ωci

�
Si �� k|

∅ and

�
Si �� k]][[Σi∈ΩciK c i j m = {false} if Ri,j,m = �

Si �� kfor all tr ∈ Ri,j,m : tr =

∅ otherwise

{true} if K[[φ]]

K Σi∈Ωci

c i j m {false}=
K[[ φ]]¬ if K[[φ]]c i j m = {false}

K[[φ]]c i j m otherwise
c i j m = {true}

B if Ri,j,m = ∅
{true} if K[[φ]]c i j m = K[[ψ]]c i j m = {true}

c i j m is {false}K[[φ ∧ ψ]]c i j m =
if K[[φ]]c i j m or K[[ψ]]{false}

∅ otherwise

⎨
⎪

⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎧
⎪

⎩
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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K[[φ � ψ]]c i j m=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B if Ri,j,m = ∅
true} if there is a k ∈ Vi,j,m such that{

for each consistent decomposition

m1,m2 of m wrt. i, j, k :

K[[φ]]c i k m1 = K[[ψ]]c k j m2 = true}{
if for each k ∈ Vi,j,m and for each{false}
consistent decomposition m1,m2 of m

wrt. i, j, k :

K[[φ]]c i k m1 = {false} or

K[[ψ]]c k j m2 = {false}
otherwise∅

Note that while a witness vertex is existentially chosen in the semantics of chop,
the decompositions of the multisets are universally quantified. This is for the sake
of consistency as we are only dealing with universal path properties such that each
possible, i.e. compatible with the counts in the multiset, path through the witness
vertex has to be inspected.

This semantic function extends the previous semantic function K[[φ]] by con-
sidering m-consistent traces only. For example, K[[φ]]c i j m = true} when every{
m-consistent trace from i to j in K satisfies φ.

Lemma 3 (Approximation). Let K = (V, E, I, L) be a Kripke structure, i, j ∈
V , and m ∈ Mset. Then

1. K[[φ]]c i j m ⊇ {true} implies ∀tr ∈ Ri,j,m : tr =K φ,|
2. K[[φ]]c i j m ⊇ {false} implies ∀tr ∈ Ri,j,m : tr =K φ,

i.e., if the counting semantics provides a definite truth value in the form of a singleton
set then this truth value coincides with that assigned by the linear-time semantics to
all runs consistent with the respective situations and multiset.

Proof. Straightforward induction on the structure of φ. �
For an acyclic Kripke structure and a fully defined multiset m with dom m = V ,

there is at most one m-consistent run between any pair of situations, and the counting
semantics is in this case precise.

Lemma 4 (Preciseness for acyclic Kripke structures). Let K = (V, E, I, L)
be a Kripke structure, where E constitutes a directed acyclic graph, let i, j ∈ V be
two situations and m ∈ Mset a multiset with dom m = V . Then

∀tr ∈ Ri,j,m : tr =K φ iff true ∈ K[[φ]]c i j m .|

Uniqueness of the m-consistent path, however, is a sufficient yet not necessary
condition for preciseness. As between chop points, paths visiting the same states in
different sequence are indistinguishable, counting visits to all basic blocks of a Kripke
structure suffices to determine satisfaction of a formula for all paths consistent with
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the count, provided that chop and conjunction occur in restricted polarity. Note
that it is to be expected that we have preciseness for restricted classes only, because
precise approximation for arbitrary formulas and Kripke structures would conflict
with our goal of providing a decidable model checking problem and an elementary
model checking procedure.

Hereby, a basic block is a connected component of the graph that remains after
eliminating all incoming edges to vertices having more than one incoming edge or
being initial and additionally having an incoming edge (i.e., all joins) and all outgoing
edges of vertices having more than one outgoing edge (i.e., all forks). Note that except
for unreachable cycles, the (transitive closure of the) edge relation in the graph pruned
according to these rules constitutes a linear order on the states in a basic block. Given
a reachable basic block B of K, we denote by minB (or max B, resp.) the unique
minimal (maximal) element with respect to that order. We say that W ⊆ V covers
the basic blocks of K iff VB ∩W = ∅ for each basic block VB ⊂ V of K.

Lemma 5 (Preciseness when counting basic blocks). Let K = (V, E, I, L) be
a Kripke structure, i, j ∈ V two situations, and m ∈ Mset a multiset with dom m

covering the basic blocks of K. Let φ be a formula where all occurrences of chop are
under the same polarity and all occurrences of conjunction under the dual polarity,
i.e. chops are either all in negative context and conjunctions in positive or all chops
are in positive and all conjunctions in negative context. Then

∀tr ∈ Ri,j,m : tr =K φ iff true ∈ K[[φ]]c i j m|

whenever the occurrences of chop are in negative and the occurrences of conjunction
in positive context and

∀tr ∈ Ri,j,m : tr =K φ iff false ∈ K[[φ]]c i j m

whenever the occurrences of chop are in positive and those of conjunction in negative
context.

Proof. By induction on the structure of the formula φ. The induction has two base
cases:

1. φ = �: The conjecture holds, as tr =K � for each tr and as true ∈ K[[�]]c i j m,|
and because false ∈ K[[ ]]c i j m implies Ri,j,m = ∅.

2. φ = Σi∈Ωci

�
Si �� k: As the basic blocks are branch- and join-free, m together

with i, j fully determines the frequency of visit to each individual vertex in
V when m covers the basic blocks of K. Thus, Σi∈Ωci

�
Si is the same for

all m-consistent traces from i to j in K. Consequently, either Ri,j,m = ∅, in
which case the counting semantics assigns {true, false} consistently with the
trivially satisfied fact that ∀tr ∈ Ri,j,m : tr =K φ as well as ∀tr ∈ Ri,j,m :
tr =K φ, or Ri,j,m = ∅ and ∀tr ∈ Ri,j,m : tr =

|
K φ, in which case the counting

semantics correctly assigns {true} according to its definition, or Ri,j,m = ∅ and
∀tr ∈ Ri,j,m : tr =K φ, in which case the counting semantics correctly assigns
{false}.
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For the induction step, the case φ = φ1 is straightforward taking into account that¬
the polarities swap, and the case φ = φ1 ∧ φ2 is easy because the conjunction has
positive polarity here.

For φ = φ1 � φ2, we observe that chop occurs in positive context here and we
thus have to prove that

∀tr ∈ Ri,j,m : tr =K φ iff false ∈ K[[φ]]c i j m.

As the implication from right to left is covered by Lemma 3, it remains to be shown
that ∀tr ∈ Ri,j,m : tr =K φ implies false ∈ K[[φ]]c i j m. As the latter is trivially
satisfied by definition of the counting semantics whenever Ri,j,m = ∅, we assume in
the remainder that Ri,j,m is non-empty and tr =K φ for each tr ∈ Ri,j,m.

Let k ∈ Vi,j,m and m1, m2 be a consistent decomposition of m wrt. i, j, k. For
each consistent decomposition m1, m2 of m, the multisets m1 and m2 both cover the
basic blocks of K if m does. Hence, we know from the induction hypothesis that

∀tr ∈ Ri,k,m1 : tr =K φ1 iff false ∈ K[[φ1]]c i k m1

as well as
∀tr ∈ Rk,j,m2 : tr =K φ2 iff false ∈ K[[φ2]]c k j m2 .

This implies that false ∈ K[[φ1]]c i k m1 or false ∈ K[[φ2]]c k j m2, as otherwise
there were tr1 ∈ Ri,k,m1 and tr2 ∈ Rk,j,m2 such that tr1 =K φ1 and tr2 =K φ2, i.e.| |
tr1 � tr2 =K φ1 � φ2 and tr1 � tr2 ∈ Ri,j,m, contradicting the assumption that|
tr =K φ for each tr ∈ Ri,j,m.

Thus, false ∈ K[[φ1]]c i k m1 or false [[φ1]]c k j m2 for each k ∈ Vi,j,m∈ K

and each consistent decomposition m1, m2 of m wrt. i, j, k, which implies false ∈
K[[φ]]c i j m by the definition of the counting semantics. �

We say that a multiset m2 is more defined than a multiset m1 (written m1 � m2),
if the domain of m1 is included in the domain of m2 and they agree on vertices for
which they are both defined, i.e. dom m1 ⊆ dom m2 and for all v ∈ dom m1 we have
that m1(v) = m2(v).

For the fully undefined multiset ⊥M (with empty domain), we have that every
run is ⊥M-consistent, and in this case, the counting semantics will degenerate to the
doubly situation-based semantics as stated in the following lemma.

Lemma 6. Let K = (V, E, I, L) be a Kripke structure and i, j ∈ V . Then

K[[φ]]c i j⊥M = K[[φ]] i j .

Furthermore, if m2 is more defined than m1, then an m2-consistent run is also m1-
consistent, and, therefore, more defined multisets yield more precise approximations.

Lemma 7 (Refinement). Let K = (V, E, I, L) be a Kripke structure, i, j ∈ V ,
and m1,m2 ∈ Mset. Then

m1 � m2 = K[[φ]]c i j m1 ⊆ K[[φ]]c i j m2 .⇒
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Notice that ∅ gives least precision and {false, true} represents a contradiction.

4.1 A integer-linear programming formulation of the consistency condition

Let K = (V, E, I, L) be a Kripke structure and m a partial multiset covering the
basic blocks of K. Any covering of the basic blocks will do, but we will choose one
consisting just of the maximal elements of the basic blocks, i.e.

dom m = {max B where B is a basic block of K}|
We denote by vB the representative of the basic block B in dom m.

For each vertex vB ∈ dom m we introduce a variable named m[vB ]. Let m

denote the vector of variable m[vB1 ],m[vB2 ] . . . m[vBn
], where domain dom m =

{vB1 , vB2 , . . . , vBn
}. Furthermore, for each edge (v, w) ∈ E in the Kripke structure

which is not an edge inside any basic block, i.e. only for edges transferring control
between basic blocks, we introduce a variable e[v, w] counting the number of times
control is transferred via edge (v, w).

We shall give a system of linear constraints having m and e as the only free vari-
ables, named C(K, i0, j0,m, e), so that m-consistency wrt. K, i0 and j0 is equivalent
to satisfiability of C(K, i0, j0,m, e).

To achieve this, we extend the notation m[v] to all vertices v ∈ V without
introducing new variables beyond m. Instead, we alias appropriate variables in m as
follows. For each basic block VB ⊂ V and each v ∈ VB \ dom m, let

m[v] = m[vB ] + Iv + Jv ,

where
�−1 if v comes strictly before i0

Iv =
0 otherwise,�
1 if v comes strictly before j0,

Jv =
0 otherwise.

where “comes strictly before” is understood wrt. to the control flow in the basic block.
Note that above m[v] can be used as a symbolic term determining the visiting

frequency of unaccounted vertices v without introducing further variables m[v], i.e.
without extending the multiset.

The constraints (defined in the following) express informally that the “inflow”
is the same as the “outflow” for any basic block V �. The start and end vertices i0
and j0, respectively, get special treatment to express that i0 has an extra outflow of
1, and that the last visit to j0 is not counted in the multiset m. We assume below
that i0 and j0 are in different basic blocks. The equations for the case where they are
in the same block are obtained by a straightforward revision taking into account the
mutual position of i0 and j0 in the block.

For every basic block B neither containing the start vertex i0 nor the end vertex
j0, i.e. i0, j0 �∈ VB , there are two equations expressing that the frequency of visiting
the start vertex vs = min B of the block coincides with the number of entries to B as
well as with the number of exits from the last vertex vB of B:

Σ(l,vs)∈Ee[l, vs] = m[vs] and m[vB ] = Σ(vB ,l)∈Ee[vB , l] (1)
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where vs = min B and l ∈ V is arbitrary. Note that due to the aliasing rules m[vs] is
identical to m[vB ] when i0 and j0 are not elements in the block.

In order to characterize runs from i0 to j0, we give i0 one visit extra beyond its
inflow through edges and analogously j0 one visit less than its inflow (the last visit
to the terminal edge is not counted in m, as it does not contribute to accumulated
durations). For all the other vertices, we keep in- and outflow balanced and let them
agree with the number of visits.

Assume that i0 is in basic block B (and that j0 is not in that block). Let
vs = min B be the first vertex and vB the last vertex of B as before. The equations
for the block containing the start vertex are:

1 + Σ(k,vs)∈Ee[k, vs]=m[i0] (2)
m[vB ]=Σ(vB ,k)∈Ee[vB , k]

Assume now that j0 is in basic block B (and that i0 is not in that block). Then
the equations for the block containing the end vertex are:

Σ(k,vs)∈Ee[k, vs]=m[j0] + 1
(3)

m[vB ]=Σ(vB ,k)∈Ee[vB , k]

The constraints presented so far, which contain 2 equations per basic block,
constitutes a necessary condition for consistency. I.e., for every trace from i0 to
j0, there is a corresponding satisfying assignment to the above constraints. But the
converse is not necessarily true as the simple example in Fig. 3 shows. It is easy to see
that the fixed-point-equations arising permit assigning uniform visiting frequencies to
a cycle without actually reaching it.

Figure 3. A Kripke structure

The constraint system for the case where the starts vertex is i0 = 0, the end
vertex is j0 = 1, and the domain of the multiset is dom m = {0, 1, 2} due to all
vertices forming atomic basic blocks is:

1 + e[0, 0]=m[0]

m[0]= e[0, 0] + e[0, 2] + e[0, 1]

e[0, 1]=m[1] + 1

m[1]=0

e[0, 2] + e[2, 2]=m[2]

m[2]= e[2, 2]

These equations express that

1. vertex 0 is visited once more than entered through edges, as it is initial due to
i0 = 1,
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2. the outflow through the three outgoing edges departing from 0 coincides with
the frequency of visiting 0,

3. the visit frequency of vertex 1 is one less than the frequency of entering edges
taken, as the last visit to 1 is not accounted for due to j0 = 1,

4. the number of visits to 1 accounted for (i.e., excluding the final visit) coincides
to the number of leaves via an outgoing edge, which is zero due to no outgoing
edges being present,

to explain just the first four.
These first four equations imply that e[0, 2] = 0, which is meaningful since there

can be no transition from vertex 0 to vertex 2 for a trace starting in vertex 0 and
ending in vertex 1. But this means that the only constraint on e[2, 2] and m[2]
remaining is

e[2, 2] = m[2] ,

allowing satisfying assignments which do not correspond to any trace from vertex 0
to vertex 1, like the assignment m[0] = 2,m[1] = 0 and m[2] = 1000.

To avoid such undesirable assignments, we add the additional constraints that a
loop has to be entered to have a non-zero visit frequency. Loops involving the start
vertex i0 can be disregarded as the start vertex by default is entered.

For simplicity, we assume that the loops are structured and, consequently, have
exactly one entry point vs which by definition is the start vertex of some basic block,
thus being covered by vector e. As the frequency of visiting vs (and all subsequent
vertices in the loop) is zero unless the loop is explicitly entered by either i0 being
in the loop or via an edge going into vs from outside the loop, we add the following
constraint for each start vertex vs of a loop not containing io:

m[vs] > 0 =
�

e[v�, v] > 0 (4)⇒
(v�,v)∈E�,v� outside and v inside the loop

For the simple example in Fig. 3 only the self-loop in vertex 2 is relevant, as the
other loop involves the start vertex, and we generate one constraint in this case:

m[2] > 0 = e[0, 2] > 0.⇒

Adding the extra constraints (4) we have achieved a necessary and sufficient
consistency condition. Let C(K, i0, j0,m, e) denote the conjunction of the above con-
straints (1)-(4). Given n ∈ Mset, we write n = C(K, i, j,m, e) if C(K, i0, j0,m, e)
after, for each k ∈ dom m, substituting n(k) for

|
m[k] is satisfiable.

Lemma 8. Let n ∈ Mset with dom n ⊇ dom m.

n is consistent wrt. K, i, j if and only if n = C(K, i, j,m, e).|

Proof. The implication: n is consistent wrt. K, i, j implies n = C(K, i, j,m, e), is|
not difficult to establish. Given an n-consistent trace from i to j is it easy to verify
that the constraints in C(K, i, j,m, e) are satisfied.

For the other direction assume that n = C(K, i0, j0,m, e). We must show that|
there is an n-consistent trace from i0 to j0. The main idea is to remove “active loops”
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in K in a “well-chosen way” resulting in a new assignment n� satisfying that there is
no active loop in K given n�. Furthermore, the loop removals preserve the constraints
C(K, i0, j0,m, e) and the property that there is an n-consistent trace from i0 to j0 iff
there is an n�-consistent trace from i0 to j0.

This idea is now formalized for a given Kripke structure K. We start with the
following definitions:

By abuse of notation, we let m and e together denote a satisfying assignment•
for C(K, i0, j0,m, e).
A sequence of vertices vs1vs2 . . . v vs1 , where each vsi

is the start vertex of• sk

some basic block with representative vBi , is called an active loop in K given
assignment m and e, if e[vBi

, v ] � 1, for 1 � i < k, and e[vBk
, v ] � 1. Bysi+1 s1

the loop frequency we shall understand the minimal frequency on the edges of
the loop, i.e. f = min({e[vBi

, v ] 1 � i < n} ∪ {e[vBk
, v ]}).si+1 s1|

Let vs1vs2 . . . v vs1 , be an active loop in K with frequency f given assignment
m and e. By removal of that active loop, we shall understand a new assignment

• sk

and e� defined as follows:m�

�
m(v)− f, if v is a part of the loop

m�(v)=
m(v), otherwise�
e[v, v�]− f, if the edge (v, v�) is a part of the loop

e�[v, v�]=
e[v, v�], otherwise

A guard of an active loop vs1vs2 . . . vsk
vs1 in K given assignment m and e is an•

edge (v, vsi) ∈ E for which v is some loop vertex, v does not belong to anysi

basic block in the loop and e[v, v ] � 1.si

Notice that the consistency constraints (4) guarantee that each active loop has
at least one guard.

It is not difficult to check that loop removal preserves the flow-constraint part of
the consistency condition, i.e. equations (1)-(3), in the sense that if m and e satisfy
these constraints, then so will m and e� do. But in general, the last type of constraints
(4) will not be preserved. The problem is that removal of one loop may result in that
another loop will become unreachable because all guards to that loop are removed.
We shall devise a safe method of removing loops while preserving all consistency
constraints.

Let L1 and L2 two active loops given m and e. L1 subsumes L2 if

the guards of L2 belong to the loop L1 and•
L1 is the only loop which edges of L2 are guarding.•

If L1 subsumes L2, then L2 can be safely removed. To see this, notice first that
the structured loop consisting of L1 and L2 is active as well, and must have an
external guard, which must be a guard of L1 alone as every guard of L2 belongs to
L1. Therefore, if m and e� result from removing L2, the constraint (4) is preserved
(and the others as well) as the only involved loop L1 still has an active guard.

Let v be a vertex and L an active loop including v given m and e. v subsumes L

if
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All edges in L and vertices in L except v have the same frequency f and•
v has a visiting frequency which exceeds f .•

If v subsumes L, then L can safely be removed since the edges of L do not act as
guards.

Suppose that no subsumed loop exists given m and e. Consider an arbitrary
active basic loop L, i.e. a loop with no repetitions except for the start and end vertex.
Every active loop has guards from two different loops as otherwise it would be a
subsumed loop. Therefore, L can be safely removed.

It is not difficult to see that each of these three rules for safe loop removal
preserves the trace property: there is a consistent trace from i0 to j0 given m and e�

iff there is a consistent trace from i0 to j0 given m and e.
The safe loop removal method is now to repeat the following two steps until all

active loops are removed:

1. Removed all subsumed active loops.
2. Remove an arbitrary active basic loop, when no subsumed active loop exists.

The resulting assignment m and e� satisfies the consistency constraints and will
define a unique path from i0 to j0 since the flow equations hold, i0 has an extra
inflow of 1, j0 has an extra outflow of 1, and each vertex has an outflow of at most
1, as otherwise there would be an active loop. There can be no isolated sequential
components, since that would imply the existence of a vertex with a net inflow of 0
and a positive visiting frequency and this would violate the constraints. �

Satisfiability of C(K, i, j,m, e) is a necessary and sufficient condition for existence
of an m-consistent trace from i to j. Note that the formula C(K, i, j,m, e) has size
linear in V + E and can be generated in O( V + E ) time.| | | | | | | |
4.2 Model checking

We now present an algorithm for checking whether a given Kripke structure
K = (V, E, I, L) satisfies a formula φ wrt. the counting semantics. It consists of, first,
an exponential (in the chop depth) labelling phase which generates a side condition
in the form of a Presburger formula, i.e. a quantified Boolean combination of integer
linear constraints and, second, the satisfiability check of this condition, which can be
done in triple exponential time. For formulas φ having chops in negative polarity only,
the formulas to be checked for satisfiability are quantifier free and can be checked in
NP using a decision algorithm for integer LinSAT, i.e. quantifier-free Boolean combi-
nations of linear constraints over the integers, such as SAT-modulo-theory over linear
integer arithmetic[19].

Phase 1: Labelling state pairs

The input to this phase consists of the Kripke structure K, the formula φ and the
domain of the multiset dom m = {v1, . . . , vn}, where we use the same domain as in
the construction of the consistency formula C(K, i, j,m, e).

This phase of the algorithm proceeds by induction on the syntactic structure of
φ, marking situation pairs (i, j) ∈ V ×V with triplets (ψ, b, lin(m, e)) of a subformula
ψ of φ, a Boolean value b, and an integer linear satisfiability problem lin(m, e), having
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the vectors m and e as the only free variables. A marking (ψ, b, lin(m, e)) of (i, j)
denotes that:

{b} = K[[ψ]]c i j m

for all multi-sets m with dom m = {v1, . . . , vn} satisfying m = lin(m, e).|
For each state pair (i, j) and each subformula ψ of φ, we provide two markings

(ψ, true, lint(m, e)) and (ψ, false, linf (m, e)).

1. Base case φ = �. As the formula � is satisfied by all consistent triplets (i, j, m),
all state pairs become marked with (�, true, C(K, i, j,m, e)) and (�, false,
false). Given the O( V + E ) size of the formula C(K, i, j,m, e), these mark-| | | |
ings can be performed in O( V 2( V + E )) time.| | | | | |

2. Base case φ = Σi∈Ωci

�
Si < k. The other cases of Σi∈Ωci

�
Si �� k are similar.

As m covers the basic blocks and m has been (symbolically) extended to all
vertices, we can assign conditions for satisfaction or violation by a multi-set m

to all pairs (i, j) within one sweep over V × V as follows: mark (i, j) with

�
Σi∈Ωci

�
Si < k, true, C(K, i, j,m, e) ∧�

i∈Ω ci

�
v∈V,v =Si

m[v] < k
�

and• �
Σi∈Ωci

�
Si < k, false, C(K, i, j,m, e) ∧�

i∈Ω ci

� |

v∈V,v =Si
m[v] � k

�
.• |

The complexity of this is O( V 2( V + E )) due to the size of C(K, i, j,m, e).| | | | | |
This means that the overall time complexity of marking formula Σi∈Ωci

�
Si <

k is O( V 2( V + E )). The generated individual formulas are again of size| | | | | |
O( V + E ).| | | |

3. Case φ = ψ. We assign markings for ¬ψ to all pairs (i, j) within one sweep¬
over V × V as follows:

mark (i, j) with (¬ψ, true, µ) iff (i, j) is marked with (ψ, false, µ), and•
mark (i, j) with (¬ψ, false, ν) iff (i, j) is marked with (ψ, true, ν).•

With appropriate data structures supporting the sharing of common
(sub-)formulas, the time complexity of this step is O( V 2).| |

4. Case φ = χ ∧ ψ. We assign markings for χ ∧ ψ to all pairs (i, j) within one
sweep over V × V as follows:

mark (i, j) with (χ ∧ ψ, true, µ ∧ ν) iff (i, j) is marked with (χ, true, µ)•
and with (ψ, true, ν), and
mark (i, j) with (χ∧ ψ, false, µ∨ ν) iff (i, j) is marked with (χ, false, µ)•
and with (ψ, false, ν).

Using appropriate data structures, the time complexity of this step is again
O( V 2).| |

5. Case φ = χ � ψ. We assign markings for χ � ψ to all pairs (i, j) as follows:
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mark (i, j) with (χ � ψ, true, lint(m, e)) for•

⎞
⎟

lint(m, e) =

⎠ ,

⎛
⎜⎝
∃m1,m2, e1, e2 : µ�

k∈V ∧

⎞
⎟

(µk[m1, e1/m, e] ∧ νk[m2, e2/m, e])

⎠ ,

∀m1,m2, e1, e2 : µ ⇒
µ =

v,w∈dom m

⎛
⎜⎝

m[v] = m1[v] + m2[v]

∧ e[v, w] = e1[v, w] + e2[v, w]

C(K, i, k,m1, e1) ∧ C(K, k, j,m2, e2)∧

where ml = ml[v1], . . . , ml[vn] and el = el[v1, w1], . . . , el[vn, wn], for l ∈
{1, 2}, are four vectors of fresh variables, (i, k) is marked with (χ, true, µk)
and (k, j) with (ψ, true, νk). We use ξ [y1, . . . , yn/x1, . . . , xn] to denote the
formula obtained from ξ by substituting every free occurrence of xj with
yj , for 1 � j � n.

mark (i, j) with (χ � ψ, false, linf (m, e)) for•

linf (m, e) =

C(K, i, j,m, e)

∧�
k∈V m2, e2/m, e])

�
∀m1,m2, e1, e2 : µ ⇒ (µk[m1, e1/m, e] ∨ νk[

where µ is as in the previous case, (i, k) is marked with (χ, false, µk) and
(k, j) with (ψ, false, νk).

Note that this step, in contrast to the previous steps which generate markings
linear in the size of the DC formula, yields a V -fold blow-up in formula size,| |
which thus dominates the space complexity of the whole procedure. The size
of the formulas generated is O(u( V + E ) V c), where c is the chop nesting| | | | | |
depth of φ and u the nesting depth of conjunctions.

This algorithm recurs over all subformulas of φ in order to determine the situation
pairs satisfying φ.

Lemma 9 (Correctness of marking algorithm) . Let K = (V, E, I, L) be a
Kripke structure, i, j ∈ V , φ a DC formula, and m a multiset. Let (φ, true, lint(m, e))
and (φ, false, linf (m, e)) be the (unique) markings obtained for formula φ on (i, j)
using the domain of m. Then

{true} = K[[φ]]c i j m iff m = lint(m, e) (a)|
{false} = K[[φ]]c i j m iff m = linf (m, e) (b)|

Proof. The proof is by induction on the structure of φ.
The base cases and the two recursive cases φ = ψ and φ = χ ∧ ψ are simple.¬
For the correctness of the markings computed for chop, observe that these mark-

ings try all possible chop points as well as all possible decompositions of the original
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multiset into two parts, thus checking all consistent decompositions as required by the
counting semantics. The correctness of the marking thus follows from the induction
hypothesis. �
Corollary 1. Let K = (V, E, I, L) be a Kripke structure, i, j ∈ V , and φ a DC
formula. Let (φ, true, lint) be a marking for the formula φ on (i, j) for some domain
V � ⊆ V of a multiset. Then validity of C(K, i, j,m, e) ⇒ lint over the integers implies
that tr =K φ holds for each run tr from i to j.|
Proof. Assume that tr = φ for some run tr of K from i to j. The trace tr induces at
assignments for the two vector of variables m and e, for which C(K, i, j,m, e) is true
according to Lemma 8. Furthermore, K[[φ]]c i j m = {true} according to Lemma 3
and, therefore, according to Lemma 9:
invalid.

m �|= lint. Hence, C(K, i, j,m, e) ⇒ lint is
�

Phase 2: Deciding the Presburger side condition

When checking a formula φ, the marking phase yields a marking (φ, true, µi,j) for each
state pair (i, j). The next step is to check the linear formulas C(K, i, j,m, e) ⇒ µi,j

for validity:

6. For each initial vertex i ∈ I and each j ∈ V decide the satisfiability of the
formula C(K, i, j,m, e)∧¬µi,j , where (φ, true, µi,j) is the marking of (i, j) from
steps 1 to 5. Satisfiability can be decided using any decision procedure for
Presburger arithmetic. If all these formulas are unsatisfiable then report “K =|
φ”.

The size of µi,j is O(u( V + E ) V c), where c is the chop depth and u the depth| | | | | |
of conjunctions in φ. As the µi,j are formulas of Presburger arithmetic, these can be
checked in triple exponential time rendering the overall algorithm 4-fold exponential.

The following theorem is a consequence of Corollary 1.

Theorem 2. Above model checking algorithm is sound. I.e., if it reports “K = φ”|
in step 6 then K satisfies φ.

The algorithm based on the above marking can be simplified, knowing that we
should check formulas of the form C(K, i, j,m, e)∧¬µi,j for satisfiability. In particular,
we can make make Boolean simplification as well as quantifier eliminations. Let
lint(φ, i, j,m, e) and linf (φ, i, j,m, e) be the true and false markings of φ for the
situation pair (i, j). We shall devise a marking algorithm containing simpler formulas
simt(φ, i, j,m, e) and simf (φ, i, j,m, e) so that

m = C(K, i, j,m, e) ∧ ¬linb(φ, i, j,m, e) iff m = C(K, i, j,m, e) ∧ ¬simb(φ, i, j,m, e)| |
for b ∈ {t, f}.

The simplified formulas are defined as follows:

simt(�, i, j,m, e)=true

simf (�, i, j,m, e)=false

simt(Σi∈Ωci

�
Si < k, i, j,m, e)=

�
i∈Ω ci

�
v∈V,v =Si

m[v] < k

simf (Σi∈Ωci

�
Si < k, i, j,m, e)=

�
i∈Ω ci

�
v∈V,v

|

=Si
m[v] � k|
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simt(¬φ, i, j,m, e)= simf (φ, i, j,m, e)

simf (¬φ, i, j,m, e)= simt(φ, i, j,m, e)

simt(φ1 ∧ φ2, i, j,m, e)= simt(φ1, i, j,m, e) ∧ simt(φ2, i, j,m, e)

simf (φ1 ∧ φ2, i, j,m, e)= simf (φ1, i, j,m, e) ∨ simf (φ2, i, j,m, e)

and

simt(φ1 � φ2, i, j,m, e) =

�
k∈V

⎛
⎜⎝
∃m1,m2, e1, e2 : µ

∧
m1,m2, e1, e2 : µ ⇒ (simt(φ1, i, k,m1, e1) ∧ simt(φ2, k, j,m1, e2))∀

⎞
⎟⎠

simf (φ1 � φ2, i, j,m, e)

(simf (φ1, i, k,m1, e1) ∨ simf (φ2, k, j,m2, e2))
�=

�
k∈V µ ⇒

where
⎛
⎜⎝

⎞
⎟⎠

m[v] = m1[v] + m2[v]

[v, w] = e1[v, w] + e2[v, w]=µ e∧
v,w∈dom m C(K, i, k,m1, e1) ∧ C(K, k, j,m2, e2)∧

Lemma 10 (Correctness of simplified markings).

m = C(K, i, j,m, e) ∧ ¬linb(φ, i, j,m, e)|
iff m = C(K, i, j,m, e) ∧ ¬simb(φ, i, j,m, e)|

for b ∈ {t, f}.
The proof is a simple inductive proof following the structure of formulas.
Step 6. for checking φ can now be improved by checking satisfiability of the

formulas C(K, i, j, m, e) ∧ ¬simt(φ, i, j,m, e) for every i ∈ I and j ∈ V . If the chop-
formulas of φ all occur in a negative polarity, it is easy to inspect that the formulas to
be checked will be quantifier free and can be checked in NP using a decision algorithm
for integer LinSAT, e.g. state of the art satisfiability-modulo-theory solvers supporting
the theory of linear constraints over the integers, like Sateen[24], Z3[25], or YICES[26].
Since the generated formulas are of size exponential in the chop-depth, the algorithm
is doubly exponential in the case where chop just occurs in negative polarity in φ.

Example: This model-checking algorithm can be used to establish K = φ, for φ =|
�(� < 4

�
p < 3) and Kripke structure K from Fig. 2. Expanding the abbreviations⇒

in φ, we obtain the equivalent formula φ� = ((� � (
�
1 < 4∧ �

p < 3)) � �). Table 2¬ ¬
shows the relevant markings generated by the model-checking algorithm. The Kripke
structure K has three basic blocks. Vertices 1 and 2 belong to one block, where 1 is
the start vertex and 2 the representative for that block, and vertices 3 and 4 constitute
two singleton basic blocks. In the markings, we have omitted the vector e of edge
variables and we have simplified the markings exploiting logical equivalences; but in
some columns we have not expanded the abbreviation m[1] for illustrative purposes.
These simplifications render the tautology checks in step 6 of the algorithm trivial.
The model-checking algorithm consequently reports “K |= �(� < 4

�
p < 3)”.⇒
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Table 2 Linear constraints assigned to state pairs (i, j) of the Kripke structure from Fig. 2

when checking φ = �(� < 4
�
p < 3)⇒

i, j C(K, i, j, m, e) linear constraint η assigned to state pair i, j in marking (ψ, tv, η)

after for tv = false and ψ = for tv = true and ψ =

simplification
�
true < 4

�
p < 3 ζ ♦ζ

�
p < 3 ♦ζ¬ ¬

1,1 m[3] = m[4] = 0 m[1] > 2 m[1] < 3 true true m[1] < 3 true

1,2 m[3] = m[4] = 0 m[1] > 2 m[1] < 3 true true m[1] < 3 true

1,3 m[3] = m[4] = 0 m[1] > 1 m[1] < 3 true true m[1] < 3 true�
m[1] > 1

�
1,4 m[2] > 0 ∧m[3] = 1 m[1] � 1 true true m[1] � 1 true∨m[4] > 0�

m[3] = m[4] = 0
�

2,{1,3} m[1] > 1 m[1] < 2 true true m[1] < 2 true∧m[2] > 0

2,2 m[3] = m[4] = 0 m[1] > 1 m[1] < 3 true true m[1] < 3 true�
m[2] > 0

� �
m[1] > 0

�
2,4 m[1] = 0 true true m[1] = 0 true∧m[3] = 1 ∨m[4] > 1

3,{1,2} false true true true true true true�
m[2] = m[3]

�
3,3 false true true true true true

= m[4] = 0�
m[2] = 0

�
3,4 m[4] � 3 true true true true true∧m[3] = 1

4,{1,2,3} false true true true true true true

4,4 m[2] = m[3] = 0 m[4] � 4 true true true true true

The formulas occurring in the table are simplified. Second column: condition for
path existence. Columns 3 to 6: markings (ψ, false, η) generated by the algorithm
for the different sub-formulas ψ occurring negatively in φ. The formula ζ abbrevi-
ates

�
1 < 4 ∧ ¬�

p < 3, i.e. ♦ζ is the original formula φ. Columns 7: markings¬
(ψ, true, η) generated for positive sub-formulas, simplified. Column 8: the formula
C(K, i, j,m, e) ⇒ lint to be checked for validity, simplified. Hence, the algorithm
answers “K = φ”.|

Notice that chop occurs in negative context in the formula φ and the doubly
exponential algorithm applies in this case.

Conclusion

Aiming at efficient model checking by approximating its standard linear-time
semantics, we have investigated two branching-time semantics for discrete-time DC,
where intervals are generated from runs between two situations in a Kripke structure.
Model checking is linear in the size of the formula and O( V 3) in the size of the model| |
for the first semantics, which unfortunately approximates linear time too coarsely to
be useful. The second semantics extends the first with an occurrence count for crucial
states, yielding a model-checking problem with a 4-fold exponential decision algorithm
which approximates sufficiently accurately. For a restricted class of DC formulas the
decision algorithm is doubly exponential.

Comparing this to the classical procedure proposed by Zhou, Hansen and Sestoft[10]

and practically implemented by Skakkebæk and Sestoft[12] and by Pandya[14], it is not
immediately obvious which procedure is more well-behaved in practice. The classi-
cal procedure maps a DC formula to an observer automaton of non-elementary size
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and then builds an automaton product with the Kripke structure, thus being non-
elementary in the formula size yet linear in the size of the Kripke structure, while
ours is doubly or even four-fold exponential in the Kripke structure also. In order to
shed some light on this, we note the following facts:

1. In practice, building the observer automaton in the classical procedure often
already fails for moderately sized formulas such that the procedure cannot even
proceed to build the automaton product. The reason is that not only the alter-
nation of chop and negation (which tends to be of rather low depth in practice)
leads to explosion of the observer automaton, but also non-trivial time constants
do, requiring a lot of counting in the observer. The counting structures in the
automaton are exponential in the number of duration terms occurring in the for-
mula, with the time constants as base. Note that our algorithm is less sensitive
to time constants, as these are copied to the Presburger formulae representing
the side conditions, where — at least in the quantifier-free case — they may be
discharged by numerical procedures like integer linear programming.

2. The complexity figures stated for our procedure are extremely pessimistic in
practice, as the procedure essentially collapses basic blocks to a single represen-
tative such that the number of basic blocks rather than the number of vertices
determines the size of the formulas generated, which makes a tremendous dif-
ference in practice.

3. The classical procedure, being based on building an observer automaton, fails for
the fragment of DC considered herein, as DC with weighted sums of durations
is undecidable even in the discrete-time case.

Hence, it seems that the algorithms have a distinctly different scope. An interesting
topic for future research could be whether there are useful combinations of the two.
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