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Abstract In this paper, the well-known competitive clustering algorithm (CA) is revisited

and reformulated from a point of view of entropy minimization. That is, the second term

of the objective function in CA can be seen as quadratic or second-order entropy. Along

this novel explanation, two generalized competitive clustering algorithms inspired by Renyi

entropy and Shannon entropy, i.e. RECA and SECA, are respectively proposed in this paper.

Simulation results show that CA requires a large number of initial clusters to obtain the right

number of clusters, while RECA and SECA require small and moderate number of initial

clusters respectively. Also the iteration steps in RECA and SECA are less than that of CA.

Further CA and RECA are generalized to CA-p and RECA-p by using the p-order entropy

and Renyi’s p-order entropy in CA and RECA respectively. Simulation results show that

the value of phas a great impact on the performance of CA-p, whereas it has little influence

on that of RECA-p.
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1 Introduction

Clustering is the process of grouping data points into classes or clusters so that

members of the same cluster are more similar to each other in some sense than

to members of other clusters[1,13]. Clustering is useful for exploring the underlying

structure of a given data set and has been widely used in many scientific and engineer-

ing fields such as pattern recognition, image processing, data mining, etc. Generally,

clustering methods can be divided into the following categories: partitional methods,

hierarchical methods, density-based methods, grid-based methods, and model-based

methods[13]. In this paper, we focus on competitive clustering algorithm (CA), which
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belongs to the partitional clustering algorithms. Other types of clustering methods

can be found in an excellent recent survey[13].

The CA algorithm is an extension of the well-known fuzzy c-means (FCM)

algorithm. The FCM has the shortcoming that it needs the number of clusters to

be predefined. This problem, i.e. determining the optimal number of clusters C, is

often addressed by using the general technique of cluster validity[21,23]. A typical

solution for cluster validity is to run a given clustering algorithm within a range of C

values, and then evaluate the validity of the resulting partition for each value. The

partition exhibiting the optimal validity is chosen as the true partition. Another solu-

tion for the third problem is the well-known subtractive clustering methods proposed

by Yager and Filev[22] and Chiu[6]. Recently, Yu and Cheng[23] give a detailed and

theoretical analysis on the upper bound of the optimal number of clusters in fuzzy

clustering.

In order to embed the idea of cluster validity into FCM, Frigui and Krishna-

puram first introduced an extra term to the original objective function of FCM and

derived the CA algorithm[8−9]. In the CA algorithm, there exists a process of com-

petitive agglomerating between clusters, where the clusters with small cardinalities

are discarded. That is very similar to classical hierarchical agglomerative clustering

algorithm[10]. Boujemaa regarded the added extra term of the CA objective function

as a regularization term and gave a novel explanation for the algorithm based on reg-

ularization theory, and then suggested a new clustering scheme by using various clus-

ter validity criteria as corresponding regularization terms to replace the extra term[3].

However, there exists a problem of Boujemaa’s explanation, that is, the difficulty

of choosing the regularization coefficient α. In[3], there is no explicit description on

how to determine the value of α. Recently, Medasani and Krishnapuram proposed a

similar algorithm as CA called robust agglomerative gaussian mixture decomposition

(RAGMD), which introduces an entropy regularization term into classical Gaussian

mixture[16−17]. It was reported that the entropy term in RAGMD prevented pre-

mature convergence and accelerated convergence as one neared the right number of

clusters[16]. However, in[16] only the Shannon entropy is considered.

In this paper, the CA algorithm is revisited and reformulated from a point of

view of entropy minimization[4,7,14−15,18−20]. Firstly, we show that the second (ex-

tra) term of the objective function in CA can be viewed as quadratic or second-order

entropy. We then propose a general entropy-inspired competitive clustering frame-

work, from which two distinct competitive clustering algorithms are derived based

on Renyi entropy-like function (RECA) and Shannon entropy-like function (SECA)

respectively. Furthermore, the relationship between CA, RECA and SECA are indi-

cated. Finally, we discuss further extensions on CA and RECA through introducing

high-order entropy functions. Simulation results on some synthetic and real data sets

show that CA requires a large number of initial clusters to obtain the right number

of clusters, while RECA and SECA require small and moderate number of initial

clusters respectively. Since more initial clusters means more computing time, the

computational load of RECA and SECA are less than that of CA.

The rest of this paper is organized as follows. Section 2 briefly reviews the original

CA algorithm and gives it an entropy explanation. In Section 3, two entropy-inspired

competitive clustering algorithms, i.e. Renyi entropy-like function based competitive
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clustering (RECA) and Shannon entropy-like function based competitive clustering

(SECA), are presented. Section 4 generalizes RECA and SECA to CA-p and RECA-p

respectively. Simulation results are reported in Section 5. Finally, Section 6 concludes

and discusses on future works.

2 Reformulation of CA

The objective function of the original CA algorithm is defined as (1)[8],

JCA =

C
∑

i=1

N
∑

k=1

um
ikd2

ik − α

C
∑

i=1

[

N
∑

k=1

uik

]2

(1)

where uik is the membership degree of the k-th data point xk in the i-th cluster

represented by vi, and it satisfies (2),

C
∑

i=1

uik = 1, ∀1 6 k 6 N and uik ∈ [0, 1] (2)

And dik is the distance between the k-th data point xk and the i-th cluster represented

by vi, N is the total number of data points and C is the true number of clusters to

be found. The parameter m is a weighting exponent which adjusts the fuzziness and

is usually set to 2.

Although CA is proven effective in finding the optimal clusters on some data sets,

its second term in the objective function lacks intuitive explanations. In the rest of

this section, a novel explanation will be given from the view of entropy minimization.

First, define the average membership of an arbitrary data point in cluster i (also

called the relative fuzzy cardinality of cluster i) as follows:

pi =
1

N

N
∑

k=1

uik, ∀1 6 i 6 C (3)

From (2), uik take value between 0 and 1, so the value of pi is also between 0

and 1 and the sum of all pi is 1. It is worth noting that in some sense, pi in (3)

can be regarded as the probability that a random data point belongs to cluster i.

pi approaching to 1 means that cluster i dominates the whole data set while the

other clusters are nearly empty. On the other hand, every pi equal 1/C means that

all clusters have the same importance and none of them can be removed arbitrarily.

Except for those extreme cases, usually some pis are notably larger than the others,

i.e. some clusters with large pi values dominate the data set, and thus one can remove

the clusters with negligible pi values.

According to (3), we reformulate the objective function of CA as

JCA =

C
∑

i=1

N
∑

k=1

um
ikd2

ik + α

(

−

C
∑

i=1

p2
i

)

(4)

Now it is obvious that the second term −
C
∑

i=1

p2
i can be viewed as derived from the

quadratic entropy 1 −
C
∑

i=1

p2
i

[4]. Note that the only difference between these two
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terms is a constant 1, so they achieve minimum at the same pi values. The effect

of minimizing the second term in (4) is to make the number of clusters as small as

possible. Whereas the first term in (4), also called the sum of fuzzy within-class

distances, is minimized when the number of clusters is equal to that of data points,

i.e. C = N . In other words, the effect of minimizing the first term in (4) is equivalent

making the number of clusters as large as possible. The parameter α controls the

balance between the two terms to find an optimal C value.

3 Generalized CA

The reformulation of the CA algorithm from the view of entropy minimization in

the last section inspires a general framework for entropy based competitive clustering.

That is, if we replace the quadratic entropy in (4) with any other entropy, different

algorithm will be derived. In this section, we investigate using Renyi-entropy and

Shannon entropy for competitive clustering.

3.1 Renyi-Entropy Inspired Competitive Clustering (RECA)

The objective function in RECA is defined as

JRECA =

C
∑

i=1

N
∑

k=1

um
ikd2

ik + α

(

− ln

(

C
∑

i=1

(pi + 1)2

))

(5)

Here the second term − ln

(

C
∑

i=1

(pi + 1)2
)

is from Renyi’s second-order entropy

− ln

(

C
∑

i=1

p2
i

)

[18,14]. The function of the constant 1 is to assure ln

(

C
∑

i=1

(pi + 1)2
)

> 0,

and thus guarantee α > 0, as shown in the following (7). Optimizing (5) with respect

to uik under the constraint of (2) results in (6):

uik =

1

d
2/(m−1)
ik

C
∑

t=1

1

d
2/(m−1)
tk

+
α

Nd2
ik

C
∑

i=1

(pi + 1)2









pi −

C
∑

t=1

pt

d2
tk

C
∑

t=1

1
d2

tk









(6)

Here the coefficient α at iteration l is updated using the following equation

α = η0e
−l/τ

C
∑

i=1

N
∑

k=1

um
ikd2

ik

ln

(

C
∑

i=1

(pi + 1)2
) (7)

As in [8], η0 and τ are set to 1 and 10, respectively. The same settings will be

used in the rest of this paper. On the other hand, the update of prototype vi is the

same as that in FCM and is dependent on the distance measure adopted. In this

paper, only the Euclidean distance d(x, y)=||x-y||2 is considered. Thus, the updating

equation for prototype vi is
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vi =

N
∑

k=1

um
ikxk

N
∑

k=1

um
ik

(8)

Here, xk .denotes the k-th data point. Based on (6) and (8), an iterative procedure

for the RECA algorithm is as follows.

Algorithm 1: The RECA algorithm

Step 1: Fix the maximum number of clusters C = Cmax; Initialize the member-

ship uik, and set the iteration step k=0. Set ε1 and ε2 with small positive numbers.

Step 2: For i =1 to C, do:

Compute the relative fuzzy cardinality pi using (3);

If pi <ε2, then

Discard the i-th cluster;

C = C–1;

endif

endfor

Step 3: Update the prototype vi using (8).

Step 4: Update the coefficient α using (10).

Step 5: Update the membership uik using (9).

Repeat Steps 2-5 until the maximum change in uik is less than ε1.

3.2 Shannon-Entropy Inspired Competitive Clustering (SECA)

The objective function in SECA is defined as

JSECA =

C
∑

i=1

N
∑

k=1

um
ikd2

ik + α

(

−

C
∑

i=1

(1 + pi) ln (1 + pi)

)

(9)

Here the second term −
C
∑

i=1

(1 + pi) ln (1 + pi) originates from the Shannon entropy

−
C
∑

i=1

pi ln pi
[3,17]. Like in RECA, the constant 1 is added for each pi in the logarithm

function to assure ln (1 + pi) > 0, and thus guarantee α > 0, as shown in the following

(11). Optimizing (9) with respect to uik under the constraint of (2) results in the

following updating equation

uik =

1

d
2/(m−1)
ik

C
∑

t=1

1

d
2/(m−1)
tk

+
α

2Nd2
ik









ln(pi + 1) −

C
∑

t=1

ln(pt+1)
d2

tk

C
∑

t=1

1
d2

tk









(10)

where the coefficient α is updated using

α = η0e
−l/τ

C
∑

i=1

N
∑

k=1

um
ikd2

ik

C
∑

i=1

pi ln(1 + pi)

(11)
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It is worth noting that the method in[3] also used the Shannon entropy in gen-

eralized CA algorithm, but the algorithm was derived from the regularization theory.

Moreover, there are no explicit descriptions on how to choose the value of the reg-

ularization coefficient α. In contrast to it, the SECA algorithm is derived from the

principle of entropy minimization and an explicit equation for choosing the parameter

α can be given, as shown in (11).

The description of the SECA algorithm is as follows.

Algorithm 2: The SECA algorithm

Step 1-3: The same as that in the RECA algorithm.

Step 4: Update the coefficient α using (11).

Step 5: Update the membership uik using (10).

Repeat Steps 2-5 until the maximum change in uik is less than ε1.

3.3 Relations between CA, RECA and SECA

For convenience, we first derive the updating equations of the membership uik

and the coefficient α for CA, based on its objective function (4), as follows:

uik =

1

d
2/(m−1)
ik

C
∑

t=1

1

d
2/(m−1)
tk

+
α

Nd2
ik









pi −

C
∑

t=1

pt

d2
tk

C
∑

t=1

1
d2

tk









(12)

α = η0e
−l/τ

C
∑

i=1

N
∑

k=1

um
ikd2

ik

C
∑

i=1

p2
i

(13)

The equations (6), (10) and (12) all consist of two components. The first compo-

nents are exactly all the same, and are identical to the membership updating equation

in FCM; while the second terms in (6) and (12) are formally very similar, and the

item in the bracket can be rewritten as

pi −

C
∑

t=1

pt

d2
tk

C
∑

t=1

1
d2

tk

=

C
∑

t=1

1
d2

tk

C
∑

t=1

1
d2

tk

(pi − pt) (14)

Thus (14) can be regarded as the weighted arithmetic mean of differences between

the relative fuzzy cardinality of the i-th cluster of interest and the relative fuzzy

cardinality of each cluster t. Similarly, the item in the bracket of the second term of

(10) can be rewritten as

ln(pi+1)−

C
∑

t=1

ln(pt+1)
d2

tk

C
∑

t=1

1
d2

tk

=
C
∑

t=1

1
d2

tk

C
∑

t=1

1
d2

tk

(ln(pi + 1)−ln(pt + 1))=ln











C
∏

t=1

(

pi + 1

pt + 1

)

1
d2

tk
C
∑

t=1

1
d2

tk











(15)



Daoqiang Zhang, et al.: Entropy-Inspired competitive clustering algorithms 73

Now (15) is the logarithm of the weighted geometric mean of quotients between

pi + 1 and pt + 1. Equivalently, a weighted arithmetic mean of differences between

the logarithm of pi + 1 and the logarithm of pt + 1.

Substituting (7) into (6), (11) into (10), and (13) into (12) respectively, and

ignoring the effect of uik and dik, the regularization coefficients (coefficients before

the second terms of (6), (10) and (12)) in RECA, SECA and CA approximately change

into:

RRECA =
η0e

−l/τ

N

(

C
∑

i=1

(pi + 1)2

)

ln

(

C
∑

i=1

(pi + 1)2

) (16a)

RSECA =
η0e

−l/τ

2N

C
∑

i=1

pi ln(1 + pi)

(16b)

RCA =
η0e

−l/τ

N
C
∑

i=1

(pi)2
(16c)

Theorem 1. Let 0 6 pi 6 1, and
∑

i

pi = 1. As in (16), the regularization

coefficients in (6), (10) and (12) are denoted as RRECA, RSECA and RCA respectively,

then RRECA 6 RSECA 6 RCA.

Theorem 1 indicates the relationship between RECA, SECA and CA. The de-

tailed proof for Theorem 1 can be found in Appendix A. Theorem 1 states that at

each updating step of uik, CA is more affected by the second term than SECA, and

SECA is more affected by the second term than RECA. Recall that the second terms

in (6), (10) and (12) reflect the relative value between the relative fuzzy cardinality

of the i-th cluster of interest and the averaged relative fuzzy cardinalities of other

clusters (see (14) and (15)). If the value is bigger than 0, it means that the i-th

cluster is predominant in the competition with other clusters; if the value is smaller

than 0, it implies that the i-th cluster is in inferior position when competing with

other clusters. So, Theorem 1 also implies that CA advocates competition more than

SECA, and SECA more than RECA.

4 Further Generalization on CA and RECA

In the objective functions of CA and RECA, the second-order entropy-like func-

tion and Renyi’s second-order entropy-like function are adopted respectively, as shown

in (4) and (5). In fact, more general entropy functions with higher-order can also be

used. This section will derive the competitive clustering algorithms based onp-order

entropy-like function (CA-p) and Renyi’s p-order entropy-like function (RECA-p) re-

spectively.

The objective function of the CA-p algorithm is defined as

JCA−p =

C
∑

i=1

N
∑

k=1

um
ikd2

ik + α

(

−

C
∑

i=1

p
p
i

)

(17)
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Here the superscript p denotes the order of the entropy-like function but is not

to be confused with the relative fuzzy cardinality pi of the i-th cluster in terms of

context. Optimizing (9) with respect to uik under the constraint of (2) leads to the

following updating equation for uik

uik =

1

d
2/(m−1)
ik

C
∑

t=1

1

d
2/(m−1)
tk

+
α

Nd2
ik









p
p−1
i −

C
∑

t=1

pp−1
i

d2
tk

C
∑

t=1

1
d2

tk









(18)

The coefficient α is updated again using

α = η0e
−l/τ

C
∑

i=1

N
∑

k=1

um
ikd2

ik

C
∑

i=1

p
p
i

(19)

Similarly, define the objective function of RECA-p as follows

JRECA−p =

C
∑

i=1

N
∑

k=1

um
ikd2

ik + α

(

− ln

(

C
∑

i=1

(pi + 1)p

))

(20)

Optimizing (20) with respect to uik under the constraint of (2) leads to

uik =

1

d
2/(m−1)
ik

C
∑

t=1

1

d
2/(m−1)
tk

+
pα

2Nd2
ik

C
∑

i=1

(pi + 1)p









p
p−1
i −

C
∑

t=1

pp−1
t

d2
tk

C
∑

t=1

1
d2

tk









(21)

Here the coefficient α is updated using the following equation

α = η0e
−l/τ

C
∑

i=1

N
∑

k=1

um
ikd2

ik

ln

(

C
∑

i=1

(pi + 1)p

) (22)

When p is set to 2, CA-p degenerates to CA and RECA-p degenerates to RECA,

respectively. The descriptions of CA-p and RECA-p are similar to those of CA and

RECA.

5 Experiments

5.1 Data Sets

In this section, the performances of CA, RECA, SECA, CA-p and RECA-p are

compared six real data sets from the UCI machine learning repository[2]. Table 1

lists the information of the experimental data sets. Here Breast denotes the ‘breast-

cancer-wisconsin’ data set whose first attribute has been discarded, and Pid denotes

the ‘pima-indians-diabetes’ data set.
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Table 1 Data sets used in the experiments

Data sets information Bupa Pid Breast Ionosphere Wine Soybean

True number of clusters 2 2 2 2 3 4

Number of data points 345 768 683 351 178 47

Data dimension 6 8 9 34 13 35

In all the experiments, the parameter ε1 is set to 0.001 and the exponent m is set

to 2. For all the five algorithms, experiments are performed for a range of values of

Cmax and the parameter ε2 is set to 1/Cmax. A standard FCM randomly initialized

under the constraint of (2) is run for five iterations, and then the memberships after

five iterations are used as the initial membership uik for CA, RECA, SECA, CA-p

and RECA-p. Euclidian distance measure is used in the objective functions of the

above algorithms.

5.2 Results on CA, RECA and SECA

In this subsection, the performances of CA, RECA and SECA are compared. For

each value of Cmax, 100 independent runs of CA, RECA and SECA are performed

with different initializations, and the percent of matches are counted, where the word

‘match’ implies that the numbers of clusters found respectively by CA, RECA and

SECA are equal to the true number of clusters of the data set. That is, the percent

of repeated runs that came up with the true number of cluster in the actual data is

computed. At the same time, the iteration steps used by the algorithms and their

resulting cluster validity are also considered. The well-known Xie-Beni index is used

to measure the cluster validity, which is defined as[21]

VXB =

C
∑

i=1

N
∑

k=1

u2
ik ‖xk − vi‖

2

N

(

min
j 6=i

‖vj − vi‖
2

) (23)

Here the numerator component denotes the fuzzy within-cluster distances and the

denominator component represents the between-cluster distances. The equation (23)

reflects an intuitive idea that when a data set is well partitioned its within-cluster

distances values should be as small as possible, whereas its between-cluster distances

should be as large as possible. Thus for a good partition VXB should be as small as

possible.

Figure 1 gives the percent of finding the true number of clusters by CA, RECA

and SECA, respectively, under a series of Cmax values. In order to further compare the

performances of the three algorithms when they all find the true number of clusters,

we compute the averaged iteration steps and the cluster validity index VXB under

different Cmax values when the algorithms find the true number of clusters. Table 2

shows the corresponding results.

Figure 1 indicates that almost for every data set, the distribution of the appropri-

ate Cmax values for the three algorithms are different. Generally, RECA, SECA and

CA find the true number of clusters with high possibility when using small, moderate

and large initial Cmax values, respectively. This phenomenon is more apparent on

Bupa and Pid, where there exist clear boundaries between the regions of the appro-

priate Cmax values for the three algorithms. Within their own regions, the percent
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of repeated runs that came up with the true number of cluster in the actual data is

nearly one, whereas outside their own regions, the ratio drops to zero rapidly. Recall

that larger Cmax values naturally lead to more computing time in the early iterations,

the computational cost of CA is bigger than that of RECA and SECA, which is ver-

ified by the left part of Table 2. The right part of Table 2 shows that the cluster

validity indices are very close.

Table 2 Averaged iteration steps and the cluster validity index VXB of CA, RECA and SECA

Data sets
Iteration steps Cluster validation (VXB)

CA RECA SECA CA RECA SECA

Bupa 69 42 61 0.12 0.12 0.12

Pid 67 43 59 0.12 0.12 0.12

Breast 52 27 43 0.11 0.11 0.11

Ionosphere 63 37 54 0.71 0.71 0.71

Wine 66 25 49 0.13 0.13 0.12

Soybean 54 25 45 1. 78 1.78 1.79

Why does this interesting phenomenon happen? Why can different Cmax values

bring so great differences for CA, RECA and SECA? The reason may be partially

ascribed to the different entropy-like functions used in CA, RECA and SECA. In

Section 3.3, it has been shown that CA advocates competition more than SECA, and

SECA more than RECA. When Cmax is apparently larger than the true number of

clusters, the active competition between clusters in CA can rapidly remove most clus-

ters in inferior position in the early stage, and only support the remaining few clusters

for final competition in later stage, which can avoid getting into local minimum to

some degree. But the under-competition in RECA can easily lead to getting into local

minimum, i.e. finding more clusters than the true number of clusters. On the other

hand, when Cmax is only a little bigger than the true number of clusters, the serious

competition in CA may lead to over-competition, i.e. real clusters are also discarded.

Whereas RECA can effectively deal with this case because the competition in the

early stage in RECA is not as strong as that in CA. Therefore, it seems that SECA

achieves a tradeoff between CA and RECA.

To verify the above conjecture, CA, RECA and SECA are run on Bupa under

Cmax =30, 17, and 8 respectively, and the numbers of clusters found by the three

algorithms at each iteration are correspondingly plotted in Fig. 2 (a), (c) and (e). It

can be seen that CA, SECA, and RECA correctly find the true number of clusters

with Cmax =30, 17, and 8 respectively. One can also infer this result from Fig. 1 (a),

where the percent of finding the true number of clusters of CA, SECA and RECA

under 30, 17 and 8, respectively, are nearly one. Fig.2(a), (c) and (e) also show that

when finding the true number of clusters, RECA and SECA need less iteration than

CA before ceasing, i.e. the maximum change in uik is less than ε1, which coincides

with the left part of Table 2. Fig.2 (b), (d) and (f) show values of the regularization

coefficients (see (16)) in CA, RECA and SECA at each iteration when Cmax=30, 17

and 8 respectively. Fig.2 clearly shows that when Cmax is small, the over-competition

makes CA produce clustering result with only one cluster rapidly. Whereas for large

values of Cmax, the under-competition makes RECA generate clustering result with

more clusters than the ground truth. The performance of SECA is between RECA

and CA, which tries to seek a tradeoff.
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Figure 1 has shown that CA, RECA and SECA have their unique regions for Cmax

values where they can find the right number of clusters with the highest possibility.

Here these regions are called as working regions, which means that the algorithms

work well within those regions while may fail outside the regions. As can be seen

Figure 1. Percent of repeated runs that came up with the true number of cluster in the actual data

for a range of Cmax values. (a) On Bupa. (b) On Pid. (c) On Breast. (d) On Ionosphere. (e) On

Wine. (f) On Soybean
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from Fig.1 that, as Cmax increases, RECA, SECA and CA come into their working

regions in succession. When Cmax approaches some large value, none of the three

algorithms can find their right number of clusters any more. Fig.1 also indicates that

the working region of RECA is narrower than those of both SECA and CA, and

thus RECA is more sensitive to the choice of Cmax. Table 3 computes the areas of

each curve (CA, RECA and SECA) in Fig.1. The areas of curves reflect the whole

likelihood of finding the true number of clusters by the three methods for a range of

Figure 2. Results on Bupa vs. iteration. (a), (c) and (e) are number of clusters found by CA,

RECA and SECA at each iteration when Cmax=30, 17 and 8 respectively. (b), (d) and (f) are values

of regularization coefficients in CA, RECA and SECA at each iteration when Cmax=30, 17 and 8

respectively
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Cmax values. It can be seen from Table 3 that the averaged likelihood of SECA is

similar as that of CA and both are much higher than that of RECA.

Table 3 Are a under the curve of Fig.2

Data sets CA RECA SECA

Bupa 7.71 2.47 5.89

Pid 8.87 4.66 5.97

Breast 1.96 1.57 1.46

Ionosphere 0.01 1.58 3.08

Wine 6.38 1.38 5.42

Soybean 0.04 0.76 3.46

Averaged 4.16 2.07 4.21

Finally, Fig.3 plots the Xie-Beni index of RECA, SECA and CA for a range of

Cmax values on Bupa and Pid. Compared with Fig.1, the regions corresponding to the

lowest part of the curves of Fig.3 are very close to the corresponding working regions

of RECA, SECA and CA in Fig.1 (a) and (b). On the other hand, Fig.4 plots the

curves of the most frequent number of clusters obtained by the three algorithms for

a range of Cmax values on bupa and Pid. Fig.4 confirms that the competitive ability

among clusters of SECA is weaker than that of CA and better than that of RECA.

It is worthy noting that both Fig.3 and Fig.4 are generated without knowing the true

number of clusters of data sets.

Both Fig.3 and Fig.4 can be used to estimate the working regions of CA, RECA

and SECA. From Fig.3, one can find the lowest and widest stable regions. Here

the stable region means that when Cmax take values from that region, the cluster

validation indexes have little changes. For example, the lowest and widest stable

regions of Fig.3(a) and (b) are 5-33 and 5-40 respectively. Once that region is found,

a natural method to combine the results of RECA, SECA and CA is as follows: 1)

when Cmax is between that region (e.g. 5-33 for Fig. 3 (a)), we first find the stable

sub-regions for RECA, SECA and CA (e.g. the stable sub-regions in Fig. 3(a) are

5-9, 10-22 and 22-33 respectively), and then use results of RECA, SECA and CA in

their respective stable sub-regions as the final results; 2) when Cmax takes values

Figure 3. Cluster validation index of CA, RECA and SECA. (a) On Bupa. (b) On Pid
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Figure 4. Most frequent number of clusters obtained by CA, RECA and SECA. (a) On Bupa. (b)

On Pid

before that region (e.g. <5 for Fig. 3(a)), we use the results of RECA as the final

results; 3) when Cmax takes values after that region (e.g. >33 for Fig. 3(a)), we use

the results of CA as the final results. Fig.5 shows the combining results on Bupa and

Pid. It can be seen from the figure that the combining method effectively use their

respective advantages of RECA, SECA and CA.

Figure 5. Results of combining CA, RECA and SECA. (a) On Bupa. (b) On Pid

5.3 Results on CA-p and RECA-p

In this subsection, the performances of CA-p and RECA-p are tested. For both

algorithms, the parameter p is varied from 1.1 to 2.5 with the step size of 0.1. For

each data set, experiments are performed under a series of different values of Cmax

and then the results are averaged. Concretely, the Cmax values are from 5 to 14 for

Bupa, Breast, Pid and Ionosphere.,7 to 16 for Wine, and 10 to 35 for Soybean.

Figure 6 plots the averaged percent of finding the true number of clusters of

CA-p and RECA-p vs. the parameter p. It is interesting that the curve of RECA-p in

nearly all the sub-figures of Fig. 6 is almost a horizontal line, while the curve of CA-p

is irregular and fluctuates greatly. In other words, the value of phas a great impact
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Figure 6. Averaged percent of repeated runs that came up with the true number of cluster in the

actual data for a range of p values. (a) On Bupa. (b) On Pid. (c) On Breast. (d) On Ionosphere.

(e) On Wine. (f) On Soybean

on the performance of CA-p, whereas it has little influence on that of RECA-p. To

explain that interesting phenomenon, it is helpful to revisit the p-order entropy-like

function −
C
∑

i=1

p
p
i in (17) and Renyi’s p-order entropy-like function − ln

(

C
∑

i=1

(pi + 1)p

)

in (20). Note that except for the extreme one-cluster case, where pi=1 for some i and
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pj=0, for all j 6= i, in most cases 0< pi <1 for all i. Then

− ln

(

C
∑

i=1

(pi + 1)p

)

≈ − ln

(

C
∑

i=1

(

1 + ppi + O(p2
i )
)

)

= − ln

(

C + p +

C
∑

i=1

O(p2
i )

)

(24)

C is usually bigger than p. According to (24), changes of the value of p cannot have

dominant effect on the value of the logarithm in (24), unlike the case in the p-order

entropy-like function in (17). Therefore, RECA-p is less affected by the value of p

than CA-p.

Figure 6 indicates that for all data sets, using p value smaller than 2 in CA-p

outperforms using p=2, which reflects that p=2 in conventional CA algorithm is not

a good choice. From Fig. 6, a satisfactory value for the parameter p should be around

1.5. Thus it suggests using p=1.5 in CA-p for practical use. Table 4 shows that the

averaged iteration steps of RECA-p are much less than that of CA-p and the cluster

validity indices of both algorithms are very close.

Table 4 Averaged iteration steps and the cluster validity index VXB of CA-p and RECA-p

Data sets
Iteration steps Cluster validation (VXB)

CA-p RECA-p CA-p RECA-p

Bupa 52 38 0.12 0.12

Pid 51 42 0.12 0.12

Breast 41 24 0.11 0.11

Ionosphere 46 34 0.71 0.71

Wine 52 25 0.12 0.13

Soybean 39 33 1.79 1.79

6 Conclusion and Future Work

In this paper, the competitive clustering (CA) algorithm is generalized based

on entropy-like functions. Four generalized competitive clustering algorithms called

RECA, SECA, CA-p and RECA-p are proposed, which are based on Renyi’s second-

order entropy-like function, Shannon entropy-like function, p-order entropy-like func-

tion and Renyi’s p-order entropy-like function, respectively. Simulation results show

that in order to obtain the true number of clusters with the highest possibility, CA

requires a large number of initial clusters, while RECA and SECA require small and

moderate number of initial clusters respectively. Thus, the iteration steps in RECA

and SECA are less than that of CA. Furthermore, experimental results on both CA-p

and RECA-p show that the value of phas a great impact on the performance of CA-p,

but little influence on that of RECA-p.

In the objective functions of CA, RECA, SECA, CA-p and RECA-p, only the

Euclidean distance measure is considered in this paper. However, there exist two

disadvantages of Euclidean distance when it is used in the objective functions of

FCM-like algorithms. First, the algorithm adopting Euclidean distance can only

detect spherically-distributed clusters. To detect complicated clusters, other dis-

tance measures should be used, as[8] did. Second, Euclidean distance is not very

robust[12]. In [9], weight functions were used to robustify the Euclidean distance.
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Since kernel-induced distance measures have been proven effective in avoiding the

above two problems[5,24−25], it can be expected that the use of kernel-induced dis-

tance measures is also effective in CA and generalized CA algorithms, which will be

investigated in future work.

The estimation of initial Cmax value is essential not only to RECA and SECA

but also to CA. In[8−9], the authors empirically set Cmax to N/(n) for CA, where N is

the total number of data points and n is a flexible parameter which is usually chosen

a little larger than 10 for large-size data sets and less than 10 for moderate-size data

sets. Accordingly, we may empirically set Cmax to N/(2n) and N/(4n) for SECA and

RECA respectively based on our observations in experiments.

Furthermore, instead of estimating the exact Cmax values, in this paper we find a

region for it based on cluster validation index. This method requires clustering on the

whole data set for a range of Cmax values, and hence is very time-consuming on large

data sets. To deal with that problem, a feasible technique is to first perform a sub-

sampling on the whole data sets and then estimate the region of Cmax on the reduced

or sub-sampled data set. Another direction for future research is to investigate efficient

methods for integrating RECA, SECA and CA. In this paper, we combine results of

the three methods simply based on cluster validation index. Can we integrate them

more directly? For example, we are currently investigating integrating RECA, SECA

and CA into a unified objective function and directly optimize them. Both these

issues will be further investigated in the future.
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Appendix A: Proof of Theorem 1.

Proof: Since 0 6 pi 6 1, 1 6 pi + 1 6 2 can be derived, then

(

C
∑

i=1

(pi + 1)2

)

ln

(

C
∑

i=1

(pi + 1)2

)

=

C
∑

i=1

[

(pi + 1)2 ln

(

C
∑

i=1

(pi + 1)2

)]

>

C
∑

i=1

(2pi) ln(1 + pi)

(25)

Let f(pi) = 2 ln(1 + pi) − pi, then its derivative is

f ′(pi) =
2

1 + pi
− 1 > 0 (26)

Thus, f(pi) is a monotonously increasing function. Since 0 6 pi 6 1, f(0) = 0,
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and f(1) = 2 ln 2 > 0, having f(pi) > 0 for 0 6 pi 6 1. So

2

C
∑

i=1

pi ln(1 + pi) >

C
∑

i=1

(pi)
2 (27)

As η0e
−l/τ > 0, according to (A.1) and (A.2), the inequality (A.1) is proved.
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