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Abstract Traditional supervised learning requires the groundtruth labels for the training data,
which can be difficult to collect in many cases. In contrast, crowdsourcing learning collects
noisy annotations from multiple non-expert workers and infers the latent true labels through some
aggregation approach. In this paper, we notice that existing deep crowdsourcing work does not
sufficiently model worker correlations, which is, however, shown to be helpful for learning by
previous non-deep learning approaches. We propose a deep generative crowdsourcing learning
approach to incorporate the strengths of Deep Neural Networks (DNNs) and exploit worker
correlations. The model comprises a DNN classifier as a prior and an annotation generation
process. A mixture model of workers’ capabilities within each class is introduced into the
annotation generation process for worker correlation modeling. For adaptive trade-off between
model complexity and data fitting, we implement fully Bayesian inference. Based on the natural-
gradient stochastic variational inference techniques developed for the Structured Variational
AutoEncoder (SVAE), we combine variational message passing for conjugate parameters and
stochastic gradient descent for DNN parameters into a unified framework for efficient end-
to-end optimization. Experimental results on 22 real crowdsourcing datasets demonstrate the
effectiveness of the proposed approach.
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As one of the most studied and widely used learning paradigms in machine learning,
supervised learning requires training samples and their labels. However, in many real-world
tasks, collecting true labels is not easy. On the one hand, true labels need be annotated by domain
experts, who are usually expensive and limited resources; on the other hand, when the sample
size is large, annotation becomes time-consuming and labor-intensive. Since the emergence
of crowdsourcing platforms such as Amazon Mechanical Turk (AMT) and Crowdsflower,
crowdsourcing provides an easier approach to collecting labels. By assigning the annotating
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tasks to non-expert workers[1] that are easily accessible from the Internet, crowdsourcing can
quickly collect a large amount of supervised information. It is therefore widely used in fields
such as natural language processing[2], medical diagnosis[3], image recognition[4], and named
entity recognition[5].

Since the annotations are provided by non-expert workers, crowdsourcing usually assigns
the task to multiple workers to reduce data errors. It then couples multiple annotations to estimate
the true labels of a sample. Depending on whether Deep Neural Network (DNN) classifier
models are used, existing crowdsourcing methods can be classified into non-deep crowdsourcing
learning and deep crowdsourcing learning. The majority voting method, a common method that
uses annotated information, takes the most frequently annotated class as the true label for each
sample. Although this method is simple, fast, and easy to implement, it ignores the differences
in the abilities of different workers. By considering true labels as unknown latent variables,
the probabilistic graphical model-based approach uses different parameters to characterize the
annotation capabilities of different workers. As an early representative work in this regard,
Dawid and Skene[6] proposed the Dawid-Skene (DS) model that portrayed worker capabilities
with classification accuracy. This model iteratively estimated true labels and worker accuracy by
Expectation Maximization (EM) optimization to solve the problem of estimating more reliable
conclusions from the diagnoses of multiple non-expert workers (medical students). Since
then, many works have improved and extended the DS model from the perspectives of worker
capability portrayal, sample difficulty portrayal, optimization implementation, and annotation
correlation modeling and produced favorable results[7–12].

To exploit sample features, Raykar et al.[3] introduced a logistic regression classifier into
the DS model as the true label prior and solved the classifier and worker parameters iteratively
by EM. This idea was then extended to other types of classifier priors, such as the Gaussian
process classifier[13]. As deep learning achieves significant progress in various fields such as
visual speech[14], deep crowdsourcing learning that incorporates DNNs (to assimilate their
representational learning advantages) has become a research trend in crowdsourcing[15–17].
Since EM-style optimization requires optimizing the classifier in each iteration, its computation
complexity is undoubtedly high when the neural network model is complex[15], which renders
efficient optimization a concern for deep crowdsourcing learning. Considering the multi-
layer structure of neural networks, an approach to solve this problem is to add a layer of
coefficients behind the output layer of the neural network classifier to portray worker capability.
Thus, the final output layer of the classifier corresponds to the crowdsourcing annotation
prediction[16, 17]. The optimization can be performed in an end-to-end manner, i.e., stochastic
gradient descent of all parameters in the network is conducted on the loss of crowdsourcing
annotation predictions and the classifier and worker capabilities are estimated simultaneously.
Although this implementation avoids the computation complexity of iterative optimization, it
loses the interpretable structured representation property of the probabilistic graphical model
and fails to guarantee the maximization of the annotation likelihood or its lower bound.

In this study, crowdsourcing learning is conducted with a deep generative model, which
retains both the representational learning advantages of DNNs and the structured representation
of the probabilistic graphical model. Most of the works in this regard are based on the variational
autoencoder model and its improvements[18–20]. Works on the same topic as this study are
still relatively scarce[21–25] and ignore the use of correlations among workers. Nevertheless,
available works on non-deep crowdsourcing[10–12] show that worker correlation modeling and
utilization can help to improve the crowdsourcing learning effect. This paper proposes a
deep generative crowdsourcing learning approach with worker correlation utilization, in which
the subclass mixture model in Ref. [12] is extended to portray worker correlations and a
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DNN is utilized as a classifier. This model uses confusion matrices to describe worker
capabilities and the generation process of crowdsourcing annotations for each subclass, and
its subclass mixture model shares the latent variables for true labels with the neural network
classifier and the annotation generation process. To fit the parameters adaptively and thus
avoid manual parameter selection, we implement a fully Bayesian model to describe the
model parameters with probability distributions. To implement Bayesian inference, this paper,
resorting to the optimization techniques for the Structured Variational AutoEncoder (SVAE),
combines variational message passing for conjugate parameters with natural-gradient variational
inference and efficiently updates all parameters in an end-to-end fashion[20]. The overall
optimization process guarantees that the lower bound of the crowdsourcing annotation likelihood
is maximized. Experimental results on 22 real crowdsourcing classification datasets with those
of several methods compared show that the combination of deep representational learning with
worker correlation can effectively improve the crowdsourcing learning effect. The contributions
of this paper are summarized as follows:

(1) the deep generative crowdsourcing learning approach with worker correlation utilization
is proposed for the first time, and it combines representational learning advantages with
interpretability;

(2) efficient end-to-end natural-gradient stochastic variational inference is achieved, with a
time complexity comparable to that of training DNN classifiers with true labels;

(3) the experimental results on a large number of real datasets validate the effectiveness of
the proposed approach.

The rest of this paper is organized as follows: Section 1 outlines the related works;
Section 2 provides a formal description of the crowdsourcing learning problem and the
related background; Sections 3 and 4 present the proposed approach and the optimization
implementation respectively; Section 5 illustrates the experimental results, and the last section
concludes the whole paper.

1 Related Work
Due to the possible errors in crowdsourcing annotation, estimating true labels is a research

focus in crowdsourcing learning. As a straightforward approach, the majority voting method
uses the most frequently annotated classes as the true labels. Since it assumes that such
annotations are equally correct, it does not work well when a lot of errors occur. By treating
true labels as unknown latent variables and modeling the annotation generation process, the
probabilistic graphical model provides an alternative way to study the problem. As an early
representative work in this regard, the DS model[6]used accuracy to portray individual worker
capability and iteratively estimated worker accuracy and true labels by the EM method with the
goal of maximizing annotation likelihood. Many subsequent works improved and extended the
DS model; for example, Ref. [7] proposed variational inference including belief propagation and
a mean-field model from the optimization perspective; Ref. [8] introduced a sample difficulty
parameter so that the annotation quality can be related to both workers and samples; Ref. [9]
used a confusion matrix parameter to characterize the annotation quality of the workers for
each sample and estimated true labels of the samples and parameters according to the min/max
entropy principle. Refs. [10, 26, 27] extended the DS model from a Bayesian perspective by
introducing a Dirichlet prior for the accuracy parameter and implementing Bayesian inference
through Gibbs sampling, variational inference, and EM, respectively, to avoid manual parameter
selection. Recently, the modeling and exploitation of correlations among workers have attracted
researchers considering that correlations often exist among annotations in crowdsourcing
problems. Ref. [10] described the dependency between any two annotations with an undirected
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Markov network; Ref. [11] theoretically analyzed the min/max probability of error of the
confusion matrix-based crowdsourcing model in light of the assumption of worker clustering;
Ref. [12] reflected the tensor structure of crowdsourcing annotations by building a subclass
mixture model for real classes to describe the correlations among the workers.

To facilitate crowdsourcing learning with sample features, Ref. [3] proposed using a logistic
regression classifier from features to true labels as a prior assumption for true labels in DS models.
This idea was subsequently extended to other types of classifier models such as the Gaussian
process classifier[13]. As deep learning booms, deep crowdsourcing learning using DNNs as
classifier models has become a research trend in the crowdsourcing field[15–17]. In Ref. [15], a
convolutional neural network was used as a classifier, and iterative optimization was performed
through EM to solve the optimal neural network classifier under the current worker parameters
in each iteration. To avoid the computation overhead of the EM algorithm, Refs. [16, 17]
added a layer of coefficients behind the classifier output as the worker capability parameter
in light of the structure of neural networks. Thus, the classifier parameters and the worker
capability parameters could be considered as parameters at different layers of the network and
further updated in an end-to-end fashion by stochastic gradient descent. Although Refs. [16, 17]
avoided the high computation complexity of EM optimization, their DNNs not only lacked the
interpretable structure of the probabilistic graphical model but also failed to guarantee that the
annotation likelihood or its lower bound was maximized.

In this paper, we propose the deep generative crowdsourcing learning approach by
drawing on the development of deep generative models and their optimization techniques,
mainly the variational autoencoder model[18] and SVAE[20]. The variational autoencoder[18]

is a representative deep generative model that uses neural networks to learn the latent space
representation of samples and reconstructs the original space of the samples from the latent
space. By describing the latent space with probability distributions, the variational autoencoder
can randomly sample and reconstruct the data in the latent space to generate new samples. It thus
has wide applicability in data generation and is considered an important research method in the
field of non-supervised learning. Resorting to the reparameterization technique, the variational
autoencoder fits the probability distribution parameters with neural networks and implements
efficient end-to-end optimization of parameters through variational inference optimization,
thereby providing an optimization framework for deep generative models. SVAE[20] designs and
utilizes the conjugated structure of the probabilistic graphical model to represent distributions
as exponential family distributions and fits the parameters of exponential family distributions
with neural networks. This enables the autoencoder to utilize the fast Bayesian inference
method based on the conjugate distribution structure in traditional generative models such as
the topic model[28]. We note that Refs. [21–25] also proposed deep generative crowdsourcing
learning approaches on the basis of variational autoencoders and their extended models. For
example, Ref. [21] minimized the reconstruction errors in crowdsourcing annotation with
a variational autoencoder[18]; and Refs. [22–24] proposed semi-supervised crowdsourcing
classification and clustering learning methods using unlabeled data based on semi-supervised
variational autoencoders[19]. Ref. [25] proposed a fully Bayesian deep generative crowdsourcing
classification method through SVAE optimization[20]. Nevertheless, they were all based on
the assumed conditional independence of the workers and did not consider worker correlation
modeling. In this paper, we extend the subclass mixture model from Ref. [12] to a deep
generative model that learns classifiers to implement efficient Bayesian parameter inference by
using the optimization techniques developed for SVAE[20].

The above related works mainly focus on the annotation aggregation for single-labeled
classification tasks that are also the focus of this paper. The extensive needs in other fields which
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have given rise to numerous crowdsourcing-related research will not be elaborated here, such as
multi-labeled crowdsourcing learning[29], interactive feature selection based on crowdsourcing
learning[30], and research on trusted crowdsourcing mechanisms[31].

2 Problem Formalization and Related Background
2.1 Problem formalization

In this paper, the set of N samples is expressed as X = {x1, · · · , xN}, where xi ∈ Rd

refers to the ith sample and d refers to the spatial dimension of the sample features. When
the number of workers is W , the crowdsourcing annotation result on the sample set X can
be expressed as L ∈ {0, 1, · · · ,K}N×W , where K refers to the number of classes and Lij

refers to the annotation of the jth worker on the sample xi. Lij = k, for k ̸= 0, indicates
that the jth worker has annotated xi as belonging to the kth class, whereas, Lij = 0 represents
that the sample xi has not been annotated by the jth worker, i.e., the annotation is absent. In
crowdsourcing data, each worker usually annotates part of the sample data, so annotations are
often absent. The goal of crowdsourcing learning is to estimate the true classY = {y1, · · · , yN}
of the sample X from the annotations L.

Next, we outline the classical crowdsourcing learning model based on the assumption of
worker independence and then present our model.

2.2 Worker independence model
Fig. 1 shows the classical crowdsourcing generation process based on the assumption of

worker independence. For descriptive convenience and consistency with the Bayesian framework
considered in this paper, the independent Bayesian Classifier Combination (iBCC) model in
Ref. [10] is used here as an example.

Figure 1 Probabilistic graphical representation of the iBCC model

Giving no consideration to sample feature utilization, this model consists of two parts:
annotation generation process p(Lij |yi, Vj) and true label prior p(yi|π). Vj = {νjk}Kk=1

indicates the parameter of the annotation process corresponding to the jth worker, νjk =

[νjk1, · · · , νjkK ] ∈ [0, 1]K×1 represents the probability that the sample is annotated as
belonging to each class when the true label is yi = k, and π is the prior distribution parameter
of the true label. βk and α correspond to the distribution parameters of Vjk and π respectively.
This model assumes that the workers are conditionally independent, i.e., when the sample xi
and its true class yi are given, the crowdsourcing annotations are independent of each other.
Taking yi = k as an example, we have

p(Li1, · · · , LiW |yi = k, {Vj}Wj=1) =

W∏
j=1

I(Lij ̸= 0)p(Lij |yi = k, νjk) (1)
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where I( · ) is the indicator function that is set to 1 when the condition in parentheses is satisfied
and to 0 when it is not. Assuming that the samples are independent, the joint distribution of the
crowdsourcing annotationL, true labelY , and parametersV = {νjk} andπ can be expressed as

p(L, Y, V, π) = p(L|Y, V )p(Y |π)p(π)p(V )

= p(π) ·
N∏
i=1

p(yi|π) ·
W∏
j=1

I(Lij ̸= 0)p(Lij |yi, Vj) ·
K∏

k=1

p(νjk) (2)

The model in Fig. 1 can be regarded as a Bayesian extension of the DS model[6]. In contrast
to the DS model that solves the point estimation for the parameters V and π, this Bayesian model
estimates the posterior distributions of the parameters V and π, which enables it to describe
more uncertainties. For the model in Fig. 1, existing works proposed parameter estimation
methods based on inference techniques such as Gibbs sampling[10], Bayesian variational mean-
field inference[26], and EM[27].

Most existing crowdsourcing learning algorithms are based on the conditional independence
assumption of the workers. To characterize worker correlations, Ref. [10] proposed using the
undirected Markov network to describe the dependence between any two annotations; however,
it cannot handle the case with absent sample annotations. Ref. [12] proposed building a subclass
mixture model for true classes and assumed that the workers were conditionally independent
on a given subclass to describe the worker correlations. In this paper, we extend this subclass
mixture model to deep generative model learning classifiers using sample features. The specific
implementation process is presented in the following section.

3 DeepGenerativeCrowdsourcingLearningApproachwithWorker
Correlation Utilization
Fig. 2 shows the structure of the proposed method in the form of a probabilistic graphical

model. Similarly to the model shown in Fig. 1, this model also consists of two main
parts: annotation generation process p(Lij |yi, gi, Vj) and true label prior p(yi|xi, γ, π). The
difference is that the true label prior in this model depends on sample characteristics. A DNN
classifier with the parameter γ is used to characterize the dependency process; moreover, an
additional latent variable gi ∈ {1, · · · ,M} is introduced into the annotation generation process
to characterize worker correlation. The numberM refers to the value range of the latent variable
gi. The parameter νjkm ∈ [0, 1]K×1 corresponds to the probability that the sample is annotated
as belonging to each class by the jth worker when the latent variables are {yi = k, gi = m}.
We set Vj = {νjkm}k,m, where k = 1, · · · ,K and m = 1, · · · ,M . The specific meaning of
each part of the model is given below.

3.1 Annotation generation process
Unlike Eq. (1), which assumes that the workers are independent of each other when true

labels are given, Ref. [12] portrays each class as a mixture model with M subclasses, i.e.,
the dataset is divided into a total of K × M subclasses, and the workers are conditionally
independent in each subclass. By taking class k as an example, its subclass distribution p(g|y =

k) is represented by a discrete probability distribution on the class M with the parameter
τk ∈ [0, 1]M×1:

p(g|y = k) ≜ p(g|y = k, τk) = Categorical(g|τk) (3)

For each sample xi, two latent variables yi ∈ {1, · · · ,K} and gi ∈ {1, · · · ,M} are used
to represent the true class yi of the sample and one of its subclasses gi respectively. With
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Figure 2 Probabilistic graphical representation of the proposed model

yi = k, gi = m as an example, if the parameter νjkm ∈ [0, 1]K×1 refers to the probability
that the sample is annotated as belonging to each class by the jth worker, the probability of the
annotation Lij can be obtained by Eq. (4).

p(Lij = l|yi = k, gi = m,Vj) ≜ p(Lij = l|yi = k, gi = m, νjkm) = νjkml (4)

Then, the joint distribution of multiple annotations for sample xi can be expressed as

p(Li1, · · · , LiW |yi = k, gi = m, {Vj}Wj=1) =
W∏
j=1

I(Lij ̸= 0)p(Lij |yi = k, gi = m, νjkm)

(5)

Eq. (3) and Eq. (5) are combined to obtain Eq. (6):

p(Li1, · · · , LiW |yi = k, {Vj}Wj=1)

=

M∑
m=1

p(gi = m|yi = k)p(Li1, · · · , LiW |yi = k, gi = m, νjkm) (6)

By comparing Eq. (6) with Eq. (1) of the worker independence model in the previous
section, we can see that the crowdsourcing annotations are no longer independent of each other
when the true labels of the sample are given. Assuming that the samples are independent of
each other, the generation process of annotation L can be expressed as

P (L|Y,G, V ) =

N∏
i=1

W∏
j=1

I(Lij ̸= 0)p(Lij |yi, gi, Vj) (7)

3.2 True label prior
For the prior model p(yi|xi, γ, π) of true labels, p(yi|π) and p(yi|xi, γ) are used to

represent the feature-independent prior and the feature-related prior, respectively, and the DNN
classifier f( · )with the parameter γ is used to implement p(yi|xi, γ). The two priors are defined
as below:

p(yi|π) = Categorical(yi|π), p(yi|xi, γ) = Categorical(f(xi; γ)) (8)

Assuming that the samples are independent of each other, the prior with regard to Y can be
expressed as

p(Y |X, γ, π) = p(Y |X, γ)p(Y |π) =
N∏
i=1

p(yi|π)p(yi|xi, γ) (9)
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3.3 Parameter conjugate prior
In addition to the above annotation generation process and true label prior, this paper

assumes that the parameters νjkm, π, and τk obey the conjugate Dirichlet prior distribution as
defined below:

p(νjkm) = Dir(νjkm|βk), p(π) = Dir(π|α), p(τk) = Dir(τk|ατ ) (10)

3.4 Joint distribution
According to the above definition, the joint distribution of the crowdsourcing annotation L,

latent variablesY andG, and parameterΘ = {V = {νjkm}, π, τ = {τk}} can be expressed as

p(L, Y,G,Θ|X, γ) = p(L, Y,G, V, π, τ |X, γ)

= p(L|Y,G, V )p(Y |π)p(Y |X, γ)p(G|Y, τ)p(V )p(π)p(τ) (11)

3.5 Learning objective
For the model expressed by Eq. (11), the objective of this paper is to estimate the posterior

distributions p(Y |L,X), p(G|L,X), and p(Θ|L,X) of true label Y of the sample, subclassG,
and parameter Θ = {V, π, τ} by maximizing the crowdsourcing annotation likelihood p(L).

When a DNN classifier is not used as a true label prior, the model in this paper is equivalent
to the non-deep model with worker correlation utilization in Ref. [12], and it can directly use the
optimization methods for the model in Fig. 1, which assumes the workers are independent. For
example, the Bayesian variational mean-field message passing method[26] was employed for fast
inference in Ref. [12]. However, iterative optimization with Gibbs sampling[10] and EM[27]are
inefficient when a neural network classifier p(Y |X, γ) is introduced. On the other hand, the
variational mean-field message passing method[26] requires the annotation likelihood p(L) to
conform to the conjugate exponential family distribution, which is not satisfied by the nonlinear
neural network classifier prior. In the next section, we propose an optimization algorithm with
stochastic variational inference for the proposed model by drawing on the optimization progress
of SVAE[20], such that to implement efficient end-to-end optimization of the parameters in the
model, and guarantee that the variational lower bound of the logarithmic annotation likelihood
is maximized.

4 Natural-gradient Stochastic Variational Inference
As a representative deep generative model, the variational autoencoder[18], by utilizing

the reparameterization technique, fits the parameters of a probability distribution with neural
networks and performs end-to-end gradient descent. Ref. [20] extended it to the SVAE in the
Bayesian framework by designing and exploiting the conjugated structure of the probabilistic
graphical model, so that it can use the fast Bayesian inference method based on the conjugated
distribution structure as traditional generative models such as the topic model[28]. Specifically,
Ref. [20] expressed distributions as exponential family distributions in light of the natural-
gradient Stochastic Variational Inference (SVI) framework in Ref. [28]. Parameters for the
exponential family distributions of true labels are fitted with a neural network, and mean-field
message passing and natural gradient calculation are performed, which achieve efficient second-
order optimization. Drawing on Ref. [20], this paper proposes an optimization method for the
deep generative crowdsourcing model with labeling correlation utilization. The implementation
details are as follows.

Assume that the posterior distributions of true label Y , subclass G, and parameter Θ =

{V, π, τ} obey the variational mean-field distribution, i.e., q(Y,G,Θ) = q(Y )q(G)q(Θ).
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Similarly to the case of the variational autoencoder, the variational Evidence Lower BOund
(ELBO) of the logarithmic annotation likelihood log p(L) for Eq. (11) can be expressed as

log p(L) ≥ L(Y,G,Θ, γ) ≜ Eq(Y,G,Θ)

[
log

p(L, Y,G,Θ|X, γ)
q(Y )q(G)q(Θ)

]
(12)

Toutilize the conjugated structureof thedistribution,weuseη to represent natural parameters
in exponential family distribution, t( · ) to denote the sufficient statistics, and logZ( · ) to indicate
the logarithmic partition functions. In this paper, the equations p(νjkm, p(π), p(tauk), p(Y |π),
and p(g|y = k, τk) defined in Eqs. (10), (8), and (3) are rewritten as exponential family
distributions:

p(νjkm) = exp{⟨ηνjkm , t(νjkm)⟩ − logZ(ηνjkm)} (13)

p(π) = exp{⟨ηπ, t(π)⟩ − logZ(ηπ)} (14)

p(τk) = exp{⟨ητk , t(τk)⟩ − logZ(ητk )} (15)

p(y|π) = exp{⟨ηy(π), t(y)⟩ − logZ(ηy(π))} = exp{⟨t(π), (t(y), 1)⟩} (16)

p(g|y = k, τk) = exp{⟨ηg(τk), t(g)⟩ − logZ(ηg(τk))} = exp{⟨t(τk), (t(g), 1)⟩} (17)

For Eqs. (13)–(17), the specific values of η, t(·), logZ(·) are

ηνjkm =

βk1 − 1
...

βkK − 1

 , ηπ =

α1 − 1
...

αK − 1

 , ητk =

 ατ1 − 1
...

ατM − 1

 ,

ηy(π) =

 log π1

...
log πK

 , ηg(τk) =
 log τk1

...
log τkM

 (18)

t(νjkm) =

 log νjkm1

...
log νjkmK

 , t(π) =
 log π1

...
log πK

 , t(τk) =
 log τk1

...
log τkM

 ,

t(y) =

 y1...
yK

 , t(g) =
 g1...
gM

 (19)

logZ(ηνjkm) =

K∑
l=1

log Γ(βkl)− log Γ

(
K∑

k=1

βkl

)
,

logZ(ηπ) =

K∑
k=1

log Γ(αk)− log Γ

(
K∑

k=1

αk

)
(20)

logZ(ητk ) =

M∑
m=1

log Γ(ατm)− log Γ

(
M∑

m=1

ατm

)
,

logZ(ηy(π)) = 0, logZ(ηg(τk)) = 0 (21)

where Γ(·) represents the Gamma functions. Similarly, the variational posterior distributions
q(Y ), q(G), and q(Θ) can also be written as exponential family distributions:

q(θ) = exp{⟨ηθ, t(θ)⟩ − logZ(θ)}, θ ∈ Y ∪G ∪Θ (22)
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Through the above expressions of exponential family distributions, the variational ELBO
given in Eq. (12) can be rewritten as an objective with respect to the natural parameters:

L(ηY , ηG, ηΘ, γ) ≜ Eq(Y,G,Θ)

[
log

p(L, Y,G,Θ|X, γ)
q(Y )q(G)q(Θ)

]
(23)

To exploit the conjugated nature of the model, similarly to the case of SVAE[20], the
potential function of the prior p(yi|xi, γ) under a conjugate model is constructed with the
output of DNNs γ( · ):

ψ(yi|xi, γ) ≜ ⟨γ(xi), t(yi)⟩ (24)

The variational lower bound is obtained using the potential functionψ(yi|xi, γ) to substitute
p(yi|xi, γ):

L̂(ηY , ηG, ηΘ, γ) ≜ Eq(Y,G,Θ)

[
log

p(L, Y,G,Θ) exp{ψ(Y |X, γ)}
q(Y )q(G)q(Θ)

]
(25)

The distributions in the variational ELBO L̂ are now exponential family distributions with
conjugated structures, and their parameters are the natural parameters ηY , ηG, and ηΘ in the
exponential family distributions and the neural network parameter γ. The natural-gradient SVI
in Ref. [28] can then be used to solve the parameters as follows.

(1) Solution of ηY with other variables given
When the other variables are given, the optimal solution q∗(Y ) for the latent variable Y

is independent of the samples, i.e., q∗(Y ) =
∏N

i=1 q
∗(yi), and the distribution q∗(yi) of each

sample has a closed-form solution as follows:

log q∗(yi) = Eq(π) log p(yi|π) + ⟨γ(xi), t(yi)⟩

+ Eq(gi)q(V ) log p({Lij}j∈Wi |yi, gi, V ) + const (26)

η∗yi = Eq(π)t(π) + γ(xi) +

W∑
j=1

I(Lij ̸= 0)[Eq(νjLij
)t(νjLij )] ∗ [Eq(gi)t(gi)] (27)

where the Lij in νjLij is a subscript. With Lij = k as an example, νjk refers to the matrix
in which νjkm is the column, specifically νjk = [νjk1, · · · , νjkM ] ∈ [0, 1]K×M . Eq(νjLij

)

and t(νjLij ) refer to operations on each column in the matrix νjLij , and * refers to matrix
multiplication.

(2) Solution of ηG with other variables given
When the other variables are given, the optimal solution q∗(G) for the latent variable G

is independent of the samples, i.e., q∗(G) =
∏N

i=1 q
∗(gi), and the distribution q∗(gi) of each

sample has the following closed-form solution:

log q∗(gi) = Eq(yi)q(τyi )
log p(gi|yi, τyi) + Eq(yi)q(V ) log p({Lij}j∈Wi |yi, gi, V ) + const

(28)

η∗gi = [Eq(τ)t(τ)] ∗ [Eq(yi)t(yi)]

+

W∑
j=1

I(Lij ̸= 0)[Eq(νjLij
)t(νjLij )]

T ∗ [Eq(yi)t(yi)] (29)
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Here, τ refers to a matrix with τk as the column in the form τ = [τ1, · · · , τK ] ∈ [0, 1]M×K ;
Eq(τ) and t(τ) refer to the operations on each column in the matrix τ . T stands for the matrix
transpose, and * is the matrix multiplication.

(3) Solution of ηΘ and γ with ηY and ηG given
η∗Y and η∗G are substituted into Equation (23) to obtain the following optimization objective

with regard to ηΘ and γ:

J (ηΘ, γ) ≜ L(η∗Y , η∗G, ηΘ, γ) (30)

In terms of Eq. (30), Ref. [20] proves that J (ηΘ, γ) is the optimal lower bound regarding
Eq. (23), i.e.,

maxηY ,ηGL(ηY , ηG, ηΘ, γ) ≥ J (ηΘ, γ) (31)

According to Ref. [20], the gradient of J ( · ) with respect to ηΘ can be derived as follows:

∇̃ηΘJ =
[
η0Θ + Eq∗(Y )q∗(G)(t(Y,G,X,L), 1)− ηΘ

]
+∇ηY ,ηG (L (η∗Y , η

∗
G, ηΘ, γ) , 0)

(32)

Here, η0Θ refers to the natural parameter of the prior distribution for parameter Θ when the
model is used. For the model in this paper, the following equations can be derived for the natural
gradients of ηνjkm , ηπ , and ητk :

∇̃ηvjk
J = η0vjk +

N∑
i=1

I(Lij ̸= 0)
[
Eq∗(yi)t(yi)⊗ Lij

]∗ [
Eq∗(gi)t(gi)

]T − ηvjk (33)

∇̃ηπJ = η0π +

N∑
i=1

Eq∗(yi)t(yi)− ηπ (34)

∇̃ητJ = η0τ +

N∑
i=1

[
Eq∗(gi)t(gi)

]
∗
[
Eq∗(yi)t(yi)

]T − ητ (35)

Here, ηνjk refers to the matrix with ηνjkm as the column in the form ηνjk = [ηνjk1 , · · · ,
ηνjkM ] ∈ [0, 1]K×M , ητ is the matrix with ητk as the column in the form ητ =[ητ1 , · · · , ητK ] ∈
[0, 1]M×K . ∇̃νjkJ and ∇̃ητJ represent the derivative operation on each column of the matrixes
ηνjk and ητ respectively. Lij refers to the one-hot encoding representation of Lij . As for the
neural network parameter γ, its gradient ∇γJ can be calculated by using existing DNN back
propagation.

After the model training is completed, the probability of the true labels of the samples
and the worker capability parameters can be obtained with the expectations Eq∗(yi)t(yi) and
Eq∗(νjkm)t(νjkm) corresponding to sufficient statistics of posterior distributions:

Eq∗(yi)t(yi) =

πyi1

...
πyiK

 , Eq∗(νjkm)t(νjkm) =

φ(β
∗
k1)

...
φ(β∗

kK)

− φ(

K∑
l=1

β∗
kl) (36)

The overall implementation process is given in Algorithm 1. It can be seen that, compared
with the ordinary neural network training process, the calculation of closed-form solutions η∗yi
and η∗gi is added to each iteration besides the gradient update of the parameters ηΘ and γ. The
overall computation complexity of the algorithm depends on the number of gradient updates
and proves to be comparable to that of the ordinary neural network training process.
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Algorithm 1. Deep generative crowdsourcing learning algorithm with worker correlation
utilization
Input: Training samples X = {x1, · · · , xN}, annotations L ∈ {0, 1, · · · ,K}N×W , and

parameter Θ (corresponding to the natural parameter η0Θ)
Output: Predicted true label Y = {y1, · · · , yN}
1. Initialization: Initialize the parameters ηΘ, γ, ηY , ηG
2. repeat
3. With fixed ηΘ, γ, ηG, calculate the natural parameter η∗yi of the posterior distribution of the

true label for each sample xi by Eq. (27)
4. With fixed ηΘ, γ, ηY , calculate the natural parameter η∗gi of the posterior distribution of the

subclasses for each sample xi by Eq. (29)
5. With fixed η∗yi , η

∗
gi
, calculate the natural gradient ∇̃ηΘJ of ηΘ by Eqs. (33)–(35), calculate

the gradient∇γJ of neural network parameter γ by back propagation, and perform stochastic
gradient ascent update for ηΘ, γ

6. until The variational lower bound J (ηΘ, γ) converges or the maximum number of iterations is
reached

7. Prediction: Obtain predicted true labels by Eq. (36)

5 Experiments
5.1 Experimental setup
5.1.1 Experimental data

In this paper, two multi-labeled crowdsourcing image datasets, i.e., dataset1 and
dataset2, collected by Ref. [32] are used. They contain 700 and 1,495 images corresponding
to 6 and 16 classes respectively. The original data contain annotations from 18 and 15 workers
respectively. Annotation accuracy is calculated for the sample subset corresponding to each
worker, and the MacroF1 results are mainly distributed in [0.700, 0.800], indicating that most
of the workers are reliable and thus using these two datasets to verify crowdsourcing learning is
feasible. The experimental results in Ref. [32] show that most methods tend to be consistent when
the number of workers reaches 10. Therefore, to improve experimental efficiency, we choose
the 9 workers with the largest number of annotated samples and the original 1248-dimensional
Fisher vector features. Single label crowdsourcing learning is performed independently on each
class to obtain 22 datasets of binary classification tasks.

5.1.2 Comparison methods

In this paper, three groups of representative crowdsourcing learning methods are compared:
(1) the Majority Voting (MV) method using annotated information, the DS model[6], and the
MaxEn model based on the min/max entropy principle[9]; (2) the non-deep generative method
Yutc[3] with a logistic regression classifier as its true label prior; (3) deep generative model
BayesDGC[25] with no regard to worker correlations.

The proposed method is denoted as BayesDGC-w, and it is equivalent to BayesDGC when
worker correlations are not considered, i.e., the numberM of subclasses in the subclass mixture
model of each class is 1. When theDNNclassifier is not usedas the true label prior,BayesDGC-w
is equivalent to the EBCC method in Ref. [12] that utilizes annotated information. Therefore,
as for the deep generative models BayesDGC and BayesDGC-w, this paper also compares their
non-deep Bayesian variants, i.e., BayesGC and BayesGC-w that do not use sample features, to
examine the respective effects of DNN classifiers and worker correlations on crowdsourcing
learning.

The proposed method BayesDGC-w uses a perceptron with a single latent layer (the number
of nodes is 100) as a DNN classifier. The numberM of subclasses in the subclass mixture model
is set to 3, and Dirichlet priors Dir(νjkm|β0

k), Dir(π|α0), and Dir(τk|τ0) are adopted for the
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parameters νjkm, π, and τk respectively. As for the worker capability parameter νjkm, its prior
parameter β0

k ∈ RK is set to β0
kk = 5, β0

kk′ = 2, when k ̸= k′, to reflect the superiority
of the worker capabilities over random guesses. For α0 ∈ RK and τ0 ∈ RM , the value of
each element is 1.1. The optimization process is carried out using Adam optimizer[33], with
learning rate of 0.001 and the number epochs is 400. The BayesDGC method is implemented
under the same settings for the other parameters when M = 1. The BayesGC and BayesGC-w
are implemented in the absence of a neural network classifier. Except for the DS model which
uses the confusion matrix to characterize the worker capability, all the other methods under
comparison use the parameter settings suggested in the original paper.

To test the effect of the size of crowdsourcing annotations on each learning method, the
mean and standard deviation of 10 repetitions of the experiment are recorded by randomly
retaining 10%–100% of the annotations at 10% intervals. Since the original data are based
on multi-labeled tasks, the classes are severely unbalanced. For example, each image has 1.24
positive labels on average in the 6 classes corresponding to dataset1, while such a number is
1.80 for the images in the 16 classes corresponding to dataset2. The area under the receiver
operating characteristic (ROC) curve (AUC) is used as the evaluation measure.

5.2 Experimental results
Fig. 3(a) shows the average AUC results of BayesDGC-w and the comparison methods

under 10 labeling ratios (220 experiments) on 22 datasets; we can see that the MV method
without considering annotation quality modeling is the least effective. The deep crowdsourcing
methods BayesDGC-w and BayesDGC are far better than the non-deep crowdsourcing methods,
and the average AUC of BayesDGC-w (BayesGC-w) that considers the utilization of labeling
correlations is significantly better than that of BayesDGC (BayesGC) that does not consider
the utilization of labeling correlations. Fig. 3(b) shows the results of the Nemenyi tests. The
Nemenyi test is a common test to compare the overall performance of multiple methods on
multiple datasets[34]. The numbers on the upper horizontal line in Fig. 3(b) indicate the average
ranking of each method over 220 experiments. When the difference in the average ranking
of two methods is greater than a Critical Difference (CD), it indicates that the two methods
hold a significant statistic difference, otherwise they do not. CD depends on the number
of methods compared, the number of experiments, and the significance p. By setting p =

0.05, we obtain CD = 0.70789 for our experiments. The red lines in the figure connect
the algorithms whose difference in ranking is less than CD. It can be seen that the deep generative
method BayesDGC-w (BayesDGC) significantly outperforms the non-deep methods and that
BayesDGC-w with labeling relation utilization has effects comparable with those of BayesDGC.

The lth class corresponding to the two datasets in the binary classification task is expressed
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Figure 3 Overall AUC effects of BayesDGC-w and 7 other comparison methods on 22 real datasets
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Figure 4 AUC results of comparison methods on 22 real datasets

by l. The specific experimental results on 22 datasets are given in Fig. 4. It can be seen that
in most cases the proposed BayesDGC-w method consistently outperforms the other methods.
The AUC effect of each method tends to increase steadily with the labeling size. Compared
with BayesDGC-w, BayesDGC, and Yutc using sample features, especially in the case of
fewer annotations (≤ 40%), the methods (MV, DS, MaxEn, BayesGC, and BayesGC-w) only
using annotations have equivalent effects, which are nevertheless significantly poorer than
those of BayesDGC-w and BayesDGC. This indicates that sample features contain important
complementary information. The method Yutc using a logistic regression classifier achieves
comparable or even better results on some datasets such as dataset1 (l = 6) and dataset2
(l = 3, 14, 16). However, its results are not stable on some datasets such as dataset2 (l =
5, 10, 13), probably because the linear model complexity is lower than that required by data
fitting and the non-Bayesian implementation of this method significantly affects the parameter
setting on the results. In contrast, the DNNs of BayesDGC-w and BayesDGC provide sufficient
learning capabilities, and the parameters that best fit the data are automatically fitted by Bayesian
inference, thus saving the need of manual parameter selection. The comparison between
BayesDGC-w (BayesGC-w) and BayesDGC (BayesGC) demonstrates that the utilization of
worker correlations helps to improve the crowdsourcing learning effect, which is consistent with
the results in Ref. [12]. The next section presents the effects of this method when the number
M of subclasses is set to different values.

5.3 Parameter discussion
This section discusses the influence of the numberM of subclasses in the subclass mixture

model on the BayesDGC-w model. Fig. 5 shows the AUC results of BayesDGC-w on four
datasets when M = 1, 3, 5, 10, 20, 30, and 100% annotations are used. The case of M = 1 is
equivalent to that where annotation correlations are not considered. Two sets of representative
results are shown here: (1) dataset2 (l = 1, 12) correspond to the case where considering the
worker correlations (M > 1) helps to improve learning; (2) dataset2 (l = 3, 11) correspond
to the case where too many subclasses (M = 20, 30) are not conducive to learning, due to
the over large hypothesis space of the worker capability parameter {νjkm}, which renders the
optimization prone to local optima. Therefore, we set the number of subclasses to M = 3 for
the sake of optimization stability. We will further investigate this problem from the perspective
of regularizing the worker capability parameters or nonparametric Bayesian learning.
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Figure 5 Influence of parameter M on learning performance of BayesDGC-w

6 Conclusion

In this paper, we proposed a deep generative crowdsourcing learning method with worker
correlation utilization to capture annotation correlations by introducing a mixture model of
workers’ capabilities within each class into the annotation generation process. To implement
Bayesian inference, this paper, resorting to the optimization technique of SVAE, used the
conjugated structure of probability distributions to combine variational message passing with
stochastic gradient descent for neural network parameters and thereby implement efficient end-
to-end optimization. In this way, the proposed method avoids the iterative computational
overheads of the EM algorithm and the Gibbs sampling method. It is found that the number of
mixed components in the mixture model has a great influence on the model performance. In
future work, we will explore this problem from the perspective of parameter regularization or
nonparametric Bayesian learning, and try to extend the idea of worker correlation modeling to
label correlation modeling for multi-label crowd sourcing learning.
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