
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2022, 12(1): 31–53, doi: 10.21655/ijsi.1673-7288.00274
©2022 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

Reducing Transaction Processing Latency in Hard-
ware Transactional Memory-based Database with
Non-volatile Memory
Xingda Wei (魏星达), Fangming Lu (陆放明), Rong Chen (陈榕),
Haibo Chen (陈海波), Binyu Zang (藏斌宇)
(Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai 200240, China)
Corresponding author: Rong Chen, rongchen@sjtu.edu.cn

Abstract The emergency of Hardware Transactional Memory (HTM) has greatly boosted
the transaction processing performance in in-memory databases. However, the group commit
protocol, aiming at reducing the impact from slow storage devices, leads to high transaction
commit latency. Non-Volatile Memory (NVM) opens opportunities for reducing transaction
commit latency. However, HTM cannot cooperate with NVM together: flushing data to NVM
will always cause HTM to abort. In this paper, we propose a technique called parity version to
decouple the process of HTM execution and NVM write. Thus, the transactions can correctly
and efficiently use NVM to reduce their commit latency with HTM. We have integrated this
technique into DBX, a state-of-the-art HTM-based database, and propose DBXN: a low-latency
and high-throughput in-memory transaction processing system. Evaluations using typical OLTP
workloads including TPC-C show that it has 99% lower latency and 2.1 times higher throughput
than DBX.
Keywords non-volatile memory; in-memory transaction; hardware transactional memory;
OLTP

Citation Wei XD, Lu FM, Chen R, Chen HB, Zang BY. Reducing transaction processing latency in
hardware transactional memory-based database with non-volatile memory. International Journal of Software
and Informatics, 2022, 12(1): 31–53. http://www.ijsi.org/1673-7288/274.htm

Modern database applications including the official 12306 Chinese train ticket booking
system require transactions to process the data correctly and reliably. With the popularity
of information technology, database applications are carrying more and more traffic, so
people increasingly need high-performance transaction processing systems. In recent years,
the rise of multi-core processors and the expansion of memory capacity gave birth to some
high-throughput multi-core memory databases[1–6]. Meanwhile, the new processor feature of
Hardware Transactional Memory (HTM) further pushes the transaction throughput of multi-core
in-memory databases to a new peak[1, 7, 8].

Although existing HTM-based multi-core in-memory databases can provide extremely high
throughput, they still have high transaction commit latency. They commit transactions in a batch

This is the English version of the Chinese article ‘‘基于非易失性内存和硬件事务内存的低时延事务处理. 软件
学报, 2022, 33(3): 849–866. doi: 10.13328/j.cnki.jos.006444”.
Funding items: National Key Research and Development Program of China (2020YFB2104100); National Science
Fund for Distinguished Young Scholars of China (61925206)
Received 2021-07-01; Revised 2021-07-31; Accepted 2021-09-13; IJSI published online 2022-03-28

http://www.ijsi.org/1673-7288/274.htm

32 International Journal of Software and Informatics, 2022, 12(1)

fashion so that transactions can avoid the influence of slow storage devices without compromising
durability[1, 3, 4]. However, batch commit introduces an order of magnitude higher latency to
in-memory transactions. For example, in DBX[1], a typical HTM-based multi-core in-memory
database, the difference in commit latency between durable and non-durable transactions is
nearly 18,000 times (9 µs vs.160 ms; see Section 2.2 for details). Low latency and high
throughput are equally important for transaction processing. For example, Amazon has revealed
that each 100 ms increase in request latency results in a 1% loss in economic benefits[9].

Recently, Intel has finally released the first commercially available Non-Volatile Memory
(NVM) device, 3D-XPoint[10, 11]. With the help of NVM, this paper answers a natural question:
can we use it to significantly reduce the transaction commit latency of HTM-based multi-core
in-memory databases while retaining the benefits of HTM? Besides high performance, NVM
provides the same interface as DRAM, which means that systems can read from and write to
NVM directly in HTM. Therefore, it is possible to combine both hardware features to accelerate
in-memory databases.

In exploring the use of NVM to reduce the latency of HTM-based transaction commits,
we encountered two key challenges (Section 2.3). First, NVM does not collaborate with HTM:
writing to NVM can always abort HTM. Second, the performance characteristics of the real
NVM are completely different from those of in-memory database and difficult to reproduce by
simulators[12, 13]. Therefore, fully exploiting the high performance of NVM requires a co-design
with transaction’s implementation.

Since real NVM hardware only emerged in the last two years, existing databases designed
for HTM and NVM do not fully consider their hardware characteristics. For example,
PHyTM[14] assumes that NVM can be written in HTM, while real hardware cannot. On
the other hand, existing NVM-based persistent transactional memory systems are not designed
specifically for the transactions, which mainly focus on providing a universal transactional
programming interface[15–17]. As a result, these systems do not achieve the best performance in
the database scenario (Section 4.3). To the best of our knowledge, this paper is the first work to
reduce transaction processing latency of in-memory databases by systematically analyzing the
combination of real NVM and HTM.

To address the problem that HTM and NVM cannot collaborate, we propose a mechanism
called parity version (Section 3.1.2), which separates the operations of NVM and HTM in
transaction processing from the software level so that transactions can be accelerated by both
hardware technologies. Thanks to the fact that the parity version can be implemented by
reusing the concurrency control mechanism of existing HTM-based transaction processing
(Section 3.1.3), it has only a minor overhead. Finally, we also perform a series of implementation
optimizations for real HTM and NVM hardware characteristics (Section 3.4).

We apply the above techniques to DBX[1], a state-of-the-art HTM-based in-memory
database, and propose DBXN, an in-memory transaction system taking advantage of both
HTM and NVM features. DBXN achieves both high-throughput and low-latency transaction
processing. On the one hand, DBXN reduces the DBX latency by 99% in the typical database
transaction scenario TPC-C[18] and also has 2.1 times higher throughput. On the other hand,
DBXN can provide 65% better throughput than existing transactional durable memory systems
based on real NVM hardware (Pisces[15]) in the database scenario.

In summary, we make the following contributions:
(1) a systematically analysis on how to use NVM with HTM (Section 2);
(2) an NVM and HTM friendly transaction protocol (Section 3);
(3) DBXN, a high-throughput low-latency multi-core in-memory database that utilizes the

features of HTM and NVM (Section 3);

Wei XD, et al. Reducing transaction processing latency in ... 33

(4) DBXN can significantly reduce the transaction commit latency and improve the
transaction throughput of existing HTM-based multi-core in-memory databases in typical
transaction processing benchmarks, e.g., TPC-C (Section 4).

1 Background Knowledge
1.1 HTM

It is challenging for developers to manually ensure the Atomicity, Consistency, and Isolation
(ACI) of memory reads and writes for concurrent programs, such as by using fine-grained
locking, which is error-prone and introduces additional software overheads. HTM[19] greatly
simplifies the writing of concurrent programs and avoids the software concurrency control
overheads by ensuring the ACI properties at the CPU level. Since Intel released the new
processor feature called Restricted Transactional Memory (RTM)1, HTM has become a reality.
Specifically, RTM provides new instructions: xbegin, xend, and xabort. The program can
use xbegin and xend to indicate the beginning and the end of HTM, respectively, and xabort
to abort HTM execution. RTM is internally implemented by Optimistic Concurrency Control
(OCC)[20]: the processor uses its cache to record the set of reads and writes of program memory
and detects conflicting memory accesses with the help of a cache coherence protocol.

Though RTM simplifies application development and opens up optimization opportunities,
it has the following limitations due to the limited hardware resources[1]: first, a limited set
of instructions is allowed to execute within HTM. For example, HTM programs cannot make
system calls. Second, its read-write sets capacities are limited by the cache size: the current
implementation uses the L1 cache to record the write-set and uses the L2 cache to record the
read-set. When the size of the program’s read and write memory exceeds the size of the cache,
the HTM will be aborted.

1.2 HTM-based multi-core memory database
By observing that the high-performance ACI properties offered by HTM match the ACI

properties in ACID transaction processing of multi-core in-memory databases, people began
to explore how to improve the performance of transaction processing with HTM[1, 7, 8, 21].
Figure 1 shows an example of using HTM to accelerate transactions. In this example, the
transaction updates all data greater than 10 in column x of Table A in the database to 10. As
displayed in the left part of the figure, the system can leverage HTM to ensure the ACI properties
of the transaction by including the transaction logic in xbegin and xend.

Transaction threads
xbegin()
T = Find(A.x,>10)
foreach t in T:
 UPDATE(t.x,10)
xend()

A

…
In

 H
TM

In-memory database

Table A
Index

x y …
10

Logic of executing
transaction with HTM

Figure 1 An overview of using HTM to accelerate transaction execution in
a multi-core in-memory database

Although HTM can efficiently ensure the ACI properties, since the database transaction
logic is relatively complex, the direct execution of the transaction with a complete HTM
(Figure 1) suffers from HTM hardware limitations (Section 1.1) and thus cannot fully exploit the

1Since this paper focuses only on RTM, which is the mainstream HTM implementation, HTM herein
refers to RTM unless directly stated.

34 International Journal of Software and Informatics, 2022, 12(1)

high performance of HTM[21]. As shown in Figure 1, the transaction first needs to query the index
of Table A in order to find data greater than 10 in column x of Table A. Usually, there are many
memory accesses for index operations (e.g., B+Tree traversal). Thus, the transaction is likely to
be aborted due to the memory size limit of HTM access. Since it is inefficient to directly use HTM
to accelerate transactions in general cases, works have been made to mitigate HTM hardware
limitations by imposing a lightweight software concurrency control layer atop of HTM[1, 7, 8].
For example, DBX[1] uses OCC[20] to divide the transaction that requires HTM protection so
that the split part of the program can be effectively accelerated by HTM. Similarly, DrTM[8]

adopts transaction chopping[22] for the segmentation, and the segments can be accelerated using
HTM. Note that executing transactions using HTM cannot ensure durability. Thus, all the above
systems further employ logging to provide durability. We describe logging in Section 2.1.

1.3 NVM
With the release of Optane DC persistent memory[11]

2 by Intel, NVM has been commercially
available to the pubic market. Compared to traditional durable devices (such as HDD and SSD),
NVM offers lower latency and higher bandwidth. Moreover, NVM is attached to the processor’s
memory bus, so it is byte-addressable, that is the processor can read from and write to it directly
using load, store, and nt-store3 instructions, just like DRAM. There are durability issues
with reading from and writing to NVM using traditional memory instructions. For example,
memory write instructions (e.g., store) will first write to the processor’s volatile cache. To
support durability, Intel further provides an extended instruction set: the processor can use
clwb and clflush to flush data from the cache to NVM and can use sfence to wait for the
completion of the flush operation.

Although NVM provides the same interface as memory, its performance characteristics are
completely different. To make better use of NVM, researchers have investigated its performance
characteristics in depth[12, 13, 23]. In summary, when a processor reads and writes NVM, it needs
to consider the following four performance characteristics. First, NVM has asymmetric read and
write performance. Its read bandwidth is much higher than its write bandwidth[12, 13]. Second,
NVM uses a different read and write granularity than that of the processor. NVM reads and
writes at a granularity of 256 bytes, while the processor uses 64 bytes. Therefore, writing NVM
with big payloads (e.g., larger than 64 bytes) should be performed at the granularity of 256 bytes
to fully utilize NVM’s bandwidth. Third, processors’ read requests for NVM can affect the
throughput of write requests[13]. Therefore, applications should avoid asking processors to send
unnecessary read requests to NVM. For example, when a processor’s write request size is less
than 64 bytes (i.e., it does not satisfy the processor’s read/write granularity), the processor would
send an additional read request to the NVM before writing. To avoid this, the processor should
transmit the small messages (less than 256 bytes) at a granularity of 64 bytes[12]. Finally, the
processor’s cache is not NVM friendly[13, 23]. Therefore, using nt-store to write to NVM can
achieve better performance than store.

2 Analysis on Existing Drability Mechanisms and Challenges of
Using HTMwith NVM
In this section, we first introduce the existing durability mechanism of HTM-based multi-

core in-memory databases (Section 2.1). We then experimentally analyze the problems of this
mechanism in the new NVM scenario (Section 2.2).

2Since Intel’s Optane DC persistent memory is the only available NVM, we use NVM as a synonym for
the Optane memory in this paper.

3The nt-store is a special form of store, which additionally bypasses the processor’s cache.

Wei XD, et al. Reducing transaction processing latency in ... 35

2.1 Existing durability mechanism for HTM-based multi-core in-memory
databases: Redo log-based group commit

To support durable transactions in HTM-based multi-core in-memory databases, existing
systems use redo logs to store the results of transactions in durable devices[3]. Writing redo
logs to a traditional durable device (e.g., SSD) introduces an overhead much larger than the
transaction execution time[23]. For example, in a DBX[1] system, adding a write operation to
the disk after a transaction has been executed causes a 98% performance loss (compared with
a transaction that does not support durability). Therefore, HTM-based multi-core in-memory
databases or multi-core in-memory databases both use group commit to amortize the durability
overhead[1–4, 7, 12]. Group commit groups transactions in epochs (time slices) and commits all
transactions within an epoch asynchronously in a batched fashion, where epoch is the duration
between each group commit operation. This approach effectively reduces the overhead of logging
to non-volatile devices. However, the asynchronous commit process significantly increases the
transaction latency.

Figure 2 shows a specific example of executing a transaction in HTM using group commit.
When execution threads start transactions, they first obtain the current database epoch number
(¬). Thus, when the transaction is committed later (i.e., when xend() is executed), the execution
threads can record the log of the transaction in the log area corresponding to the epoch number
(). Noteworthily, since the log has not been synchronized to the durable device (e.g., NVM) at
this point, the transaction has not yet completed its commit. The transaction log is synchronized
to the durable device asynchronously by a background thread (the log thread). This thread
periodically obtains the current epoch number and synchronizes the logs of all transactions in
this epoch (®). The specific operations are as follows: first, the log thread updates the epoch
number of the current system (¯) to prevent future transactions from writing logs to that epoch.
Second, it starts collecting the logs of the relevant transactions (°). Before collecting the logs,
the thread needs to wait for all transactions in the current epoch to be finished (or aborted).
Finally, the log thread writes the collected transaction logs to the durable device via a single IO
operation (±). From this flow, we can see that a single persistent operation can write the logs of
all transactions in an epoch. Therefore, group commit can effectively amortize the overhead of
transaction persistent operations.

xbegin()
e = get-epoch()
T = Find(A.x,>10)
foreach t in T:
 UPDATE(t.x,10)
xend()
add-tx-log(e)

1

2 In-memory redo
log queue

Log thread Logic of log threads

Persistent store
e.g., NVM

while True:
 wait for some time
 e = get-epoch()
 update_epoch(e + 1)
 wait_threads_pass(e)
 logs = collect(e)
 flush_log(logs)
5
6 TX commit

⌂

33
4

Logic of executing
transaction with HTM Transaction threads

Figure 2 An overview of using redo log-based group commit to support durable transactions

Since a transaction is considered committed only when its logs are synchronized to the
durable device (i.e., the execution satisfies ACID), the commit delay of group commit is directly
related to the synchronization duration (i.e., the epoch) of the log thread. In general, systems
should select a large epoch to commit more transactions in a batch fashion as far as possible. For
example, Silo[4] and DBX[1], two typical in-memory databases, both set the epoch to 40 ms by
default. However, large epochs can introduce high latency to transactions. Reducing the epoch
improves the latency, but it affects the throughput: the log thread will block the transaction log
in the current epoch because it must wait the logs in the previous epoch to flush to the storage
device. In the next section (Section 2.2), we analyze this phenomenon in depth via experiments.

36 International Journal of Software and Informatics, 2022, 12(1)

2.2 Asynchronous nature of group commit significantly increases transac-
tion processing latency

To analyze the latency impact of group commit on HTM-based multi-core in-memory
databases, we conduct experiments on DBX[1], a representative system. We use TPC-C[18],
the standard OLTP benchmark for the evaluation. For each test, we configure the DBX to
use its peak performance configurations[1]

4: the database uses 10 transaction threads and 1
log thread. To avoid the log thread being affected by slow storage devices, we evaluate DBX
performance with both disk5 (DBX-Disk) and NVM (DBX-NVM). In DBX-NVM, the log thread
writes the transaction logs to the file system supported by NVM (which uses Ext4-DAX mode).
Figure 3 shows the results, from which we can draw the following two observations.

Group Commit duration (ms)

La
te
nc
y
(m
s)

200

160

120

80

40

0

DBX-Disk
DBX-NVM

0 20 40 60 80

(a) Latency

Group Commit duration (ms)

DBX-Disk
DBX-NVM

0 20 40 60 80

Th
ro
ug
hp
ut
 (1
03
/s
)

240

200

160

120

80

40

00

(b) Throughput

Figure 3 Effect of duration of group commit (epoch) on latency and throughput in DBX

Group commit brings a significant latency increase to HTM-based transaction
processing. Since a transaction must wait until all other transactions in an epoch are finished
before its logs are written to the durable device, the latency of a transaction is strongly correlated
with the duration of group commit (epoch). As shown in Figure 3(a), when the epoch is 1 ms,
the latency of DBX transaction commit is 2.92 ms; when the epoch is 80 ms, the latency can be
as high as 145 ms. As we mentioned earlier, the duration of the group commit is generally much
longer than the execution time of the transaction so that the effect of the group commit can be
maximized. For example, the epoch is 40 ms in DBX[1], and the same epoch is adopted by other
typical multi-core in-memory databases[3, 4]. This epoch is much longer than the transaction
execution time in mainstream transaction processing scenarios, as listed in Table 1, where
transactions take only 0.26 µs and 9.3 µs to complete execution in Smallbank[25] and TPC-C[18]

scenarios, respectively. Even for the TPC-E[26] scenario, which has a long execution time, it takes
only 310 µs to complete the execution in the in-memory database. Therefore, transactions in
common transaction scenarios have significantly longer latency when group commit is adopted
to commit transactions. Finally, NVM helps little for group commit. In Figure 3(a), the latency
of DBX-NVM is only 32% less than that of DBX-Disk at most. This is because the asynchronous
mechanism of the software is a major factor in the latency increase.

Reducing epoch can shorten the latency of transactions. For example, in Figure 3(a), the
latency of a transaction is only 0.62 ms when the epoch is set to 0.01 ms. However, a too small
epoch would significantly affects the transaction throughput. For small epochs, the throughput
of TPC-C reduces at most 44%. Based on these results, we can make another observation.

4The configuration has been confirmed by the original authors. The specific experimental configuration
is described in Section 4.1.

5The disk is a Seagate ST1200 MM0088 1.5 TB mechanical hard disk.

Wei XD, et al. Reducing transaction processing latency in ... 37

Table 1 Execution time of the transaction test benchmarks
Test benchmark Execution latency (µs)

TPC-C[18] 9.3
TPC-E[26] 310

Smallbank[25] 0.26

Shortening the duration of the group commit to reduce the transaction latency
lowers the transaction throughput. As shown in Figure 3(b), the transaction throughput of
DBX-NVM is affected by 23% when the epoch is 0.1 ms. This is because when the log thread
is affected by the slow persistent operation, it blocks the concurrently executed transactions,
thus triggering a drop in the system throughput. Besides, even with a rather small duration of
group commit in DBX (e.g., 0.01 ms), the transaction durability latency is still much higher
than the transaction execution time (0.62 ms vs. 9 µs for TPC-C). This is because the latency of
asynchronous/synchronous operations cannot be reduced by the duration of the group commit.

In summary, existing HTM-based multi-core in-memory databases have high latency when
supporting durable transactions, and it needs to sacrifice latency to support high-throughput
durable transactions. Meanwhile, their durability mechanisms are not suitable for acceleration
with new media such as NVM.

2.3 Reducing transaction durability latency with NVM and the challenges
of combining HTMwith NVM
Observation 1: NVM’s low latency and high throughput can efficiently support

synchronous log operations.
First, NVM provides extremely low-latency persistent operations. As shown in Table 2,

when performing 64-byte durable writes, NVM takes only 171 ns for sequential writes and
510 ns for random writes. Such latency is comparable to that of DRAM and much lower
than the access latency (in the µs level) of a traditional durable device and the execution time
of a typical transaction (see Table 1, where the execution latency of a TPC-C transaction is
13 µs). Therefore, transactions can synchronously persist transaction logs, i.e., by writing logs
directly to NVM after execution. We conducted preliminary experiments to verify the feasibility
of synchronous log writing on NVM. In the experiments, we add an additional NVM write
operation after the DBX transaction is executed. The test results show that adding an additional
NVM write only brings an 11% reduction to the DBX transaction throughput. In contrast,
writing to disk causes a 98% reduction in transaction throughput.

Table 2 Statistics of 64-byte access latency in NVM and DRAM
Device access

latency
Sequential
write (ns)

Random
write (ns)

Sequential
read (ns)

Random
read (ns)

NVM 171 510 248.06 276.6
DRAM 153 234 82.0 82.2

Note: We use Intel’s memory latency checker[27] to obtain the read latency of each device and use an LAT
tester similar to the one in the work of Yang et al.[13] to measure the write latency.

Observation 2: HTM can be accessed efficiently in NVM.
Further, we find that accessing NVM in HTM has a similar performance to accessing

DRAM. Although the access latency of NVM is larger than that of DRAM (see Table 2), the
main operations of HTM work in the processor cache. Thus, HTM does not interact with the
NVM frequently, except for reading data into the cache. To illustrate this, we replicate the
original evaluations of DBX[1] on HTM access performance except that we use NVM. As shown
in Figure 4(a) and (b), HTM’s access to NVM and access to DRAM have close abort rates in

38 International Journal of Software and Informatics, 2022, 12(1)

random read/write scenarios. This rate is limited by the processor cache size, which is the main
factor affecting the HTM performance. In sequential read/write scenarios, NVM has a 3%–20%
higher abort rate than DRAM at 16 B–256 KB, while they are close in performance at other
access sizes. This difference is mainly due to the higher read access latency of NVM (250 ns vs
82 ns), but it is not significant.

NVM write
DRAM write
NVM read
DRAM read

H
TM
 a
bo
rt
ra
te
 (%
)

100

10

1

0.1

0.01

0.001

Access data size (byte)
32 256 4K 16K 128K 1M

(a) Comparisons of HTM abort rate when
increasing the number of random
DRAM/NVM reads

H
TM
 a
bo
rt
ra
te
 (%
)

100

10

1

0.1

0.01

0.001

Access data size (byte)
32 256 4K 16K 128K 1M

NVM write
DRAM write
NVM read
DRAM read

(b) Comparisons of HTM abort rate when
increasing the number of sequential
DRAM/NVM reads

Write DRAM with memcpy

Write DRAM with memcpy+clflush
Write DRAM with memcpy+nt-store

1 32 256 1,024 4,096
Execution time (μs)

H
TM
 a
bo
rt
ra
te
 (%
)

100

10

1

0.1

0.01

0.001

(c) Comparisons of HTM abort rate when
increasing the program execution time with
different instructions

Figure 4 HTM performance feature studies in consideration of NVM

Based on the above two observations, an naive idea is to combine HTM and NVM
organically to execute transactions, leveraging the high-performance transactional ACI
properties of HTM and the high-performance transactional D property (durability) of
NVM. Figure 5(a) shows an examplee. After a transaction executes the transaction logic
(do-tx-logic) in HTM (the program area marked with xbegin and xend), it uses
add-tx-log-to-nvm to write the transaction logs persistently to the NVM. However, this
approach faces two main challenges.

Challenge 1: The persistent operation of NVM cannot be performed in HTM.
To ensure that data is written persistently to NVM, the processor needs to execute the

nt-store and clflush instructions (Section 1.3). However, nt-store and clflush always
abort the HTM. As shown in Figure 4(c), when the processor executes these two instructions
in the HTM, HTM is bound to abort regardless of how long the HTM is executed or whether
there are memory accesses. The reason is that these two instructions involve the processor
cache mechanism, on which the current HTM implementation relies (Section 1.1). Specifically,
HTM detects memory access conflicts between different cores with the help of the processor

Wei XD, et al. Reducing transaction processing latency in ... 39

cache coherence mechanism. Since nt-store bypasses the cache by design, HTM cannot
ensure the correctness of the program executed under this instruction and therefore has to be
aborted. Similarly, clflush flushes uncommitted data from the cache back into memory, so
this operation aborts HTM.

xbegin()
do-tx-logic()
xend()
add-tx-log-to-nvm()

xbegin()
do-tx-logic()
add-tx-log-to-nvm()
xend()
[]

[] With HTM

[] With NVM
(a) (b)

add-tx-log-to-nvm()
xbegin()
do-tx-logic()
xend()

(c)Abort HTM

Unable to ensure ACID

[]

[]

Figure 5 Examples of naively using HTM and NVM to boost transaction processing. In (a), the persistent
write to NVM will cause 100% HTM abort. In (b) and (c), the executions cannot guarantee ACID properties

To ensure the atomicity and durability of data modification by transactions, we must ensure
the durability of NVM operations in HTM. If we do not put the persistent operation in the HTM,
other transaction threads will observe a piece of uncommitted data. For example, in Figure 5(b),
the log is not written to the NVM after being committed by HTM. At this point, other transactions
will read a piece of uncommitted data. In Figure 5(c), if the transaction executed in HTM is
aborted, the system writes a redo log of the uncommitted transaction.

In DBXN, we use the parity version mechanism (Section 3.1.2) to properly distinguish
between transaction execution in HTM and write operations to NVM.

Challenge 2: Exploiting the high performance of the hardware requires co-optimization
for NVM.

NVM has completely different performance characteristics from those of DRAM[12, 13, 23].
If it is directly accessed as DRAM without special optimization, the system can only obtain
33% of the original NVM performance[12]. Therefore, how to apply NVM-related optimization
(Section 1.3) is crucial for HTM-based and NVM-based multi-core in-memory databases.

3 Design and Implementation of DBXN
(1) Objective
The goal of DBXN is to reduce the transaction commit latency of the existing HTM-based

multi-core in-memory databases with NVM. To achieve this objective, we need to find (i) an
efficient approach to combine NVM and HTM and (ii) a transaction commit implementation
designed with real NVM features.

(2) Overview
DBXN adopts two key techniques: (i) HTM-NVM-friendly log mechanism (Section 3.1.2)

based on parity version and (ii) real NVM-friendly log writing method (Section 3.4). (a)
The parity version efficiently and correctly distinguishes HTM operations from NVM write
operations, thus breaking the limitation of being unable to durably write to NVM in HTM
(Section 2.3). (b) Log writing is optimized according to the nature of the real NVM hardware,
which affects the performance of main interaction operations between transaction commit and
NVM.

We build DBXN atop of DBX[1], an existing state-of-the-art HTM-based multi-core in-
memory database. Its system architecture is shown in Figure 6. Similarly to the traditional
memory-based multi-core in-memory databases[1, 2, 4, 7], data (including data tables and indexes
corresponding to tables) are stored in memory. When the host’s memory is insufficient, DBXN
stores the data in NVM. A storage layer abstracts all the storage-related operations and assumes
that it provides a key-value store interface. Upon receiving a transaction request, the transaction
execution thread begins executing the transaction. The execution process includes reading and

40 International Journal of Software and Informatics, 2022, 12(1)

writing the data required by the transaction through the storage layer and executing the DBXN
protocol to ensure the ACID properties of the transaction execution. DBXN applies the parity
version to DBX’s HTM-friendly OCC protocol to execute transactions, which consists of the
following phases. The execution and validation phases (¬ and) ensure the ACI properties of
the transaction, while the logging phase (®) and commit phase (¯) ensure the D property of the
transaction. Finally, unlike DBX, DBXN does not require a background log thread to persist the
transaction log to NVM[1, 3, 4]. In the logging phase (®), DBXN writes the log directly to NVM
in a synchronous manner.

Transaction threads

Table A

…

In-memory/NVM database

Table A
Index

ver x …
10

NVM-based log

73

Row versionTransaction protocol

Execution 1

Validation 2

Logging3

Commit3

HTM speed up
HTM speed up
NVM speed up

Figure 6 Architecture of DBXN. The detailed transaction execution protocol is shown in
Figure 7 and Figure 8

3.1 Parity version and DBXN commit protocol
In this section, we describe the parity version technique and how it is applied in DBXN to

execute the protocol for transactions. This section is organized as follows. First, we describe
the data structure of the database records in DBXN (Section 3.1.1). According to this data
structure, we describe the parity version mechanism (Section 3.1.2). Second, we describe
DBXN’s transaction protocol based on DBX’s OCC and parity version in Section 3.1.3. Third,
we give an informal argument of DBXN correctness (Section 3.2) and how it supports common
database operations (Section 3.3). Finally, we describe DBXN optimization for real hardware
(Section 3.4).

3.1.1 Data structure of database records in DBXN

To support efficient transaction processing, DBXN stores database records in the same way
as DBX with row storage.

• Data version: Represented by 8B unsigned integer, DBXN’s protocol synchronizes
information about concurrent transaction access and transaction durability between
different threads through this version.

• Data content pointer: 8B virtual address, which points to the data stored in memory
or NVM.

When a transaction modifies data, DBXN updates the data by swapping pointers. The
transaction allocates a new memory area, copies the modified data into the area, and finally
replaces the data content pointer with the newly allocated address. This design can effectively
reduce the number of memory writes, especially for transactions that modify data in HTM;
about the size of the modified data, a transaction to modify a piece of data requires only 8 bytes
(the size of a pointer) of memory or NVM to be written. Since the HTM abort rate is strongly
correlated with the size of memory accessed by the program (Figure 4), this design is effective
in reducing the HTM abort rate.

3.1.2 Parity version mechanism

To utilize both HTM and NVM, the system can only be executed in the way shown in
Figure 5(b) or Figure 5(c). Since the database writes the log of an uncommitted transaction

Wei XD, et al. Reducing transaction processing latency in ... 41

according to Figure 5(c), DBXN takes the approach in Figure 5(b) which can avoid writing
NVM in HTM. To ensure ACID properties, we need to prevent transactions from reading data
from transactions whose logs have not been written yet based on Figure 5(b)’s approach.

Parity version determines whether the transaction’s modified data has completed log
durability by version checking. The data version is divided into two states: odd version and
even version. An odd version indicates that the data has passed the ACI inspection of HTM, but
has not yet completed the persistent operation. As in Figure 5(b), the versions of the modified
data in xbegin and xend are odd. An even version indicates that the persistent operation of
data has been further made durable. When the transaction finishes logging, DBXN changes the
data modified by the transaction to an even number. When other transactions read data in an
odd version, they need to wait for it to become even before committing. These waits prevent
transactions from reading data of log that has not been written and thus ensuring the ACID
property of the transction’s execution.

Specifically, assume that all data is initialized with even versions. When a transaction
modifies data in the HTM, it increments the corresponding version of the data by one, i.e.,
making it an odd version of data that is to be committed but has not yet completed the persistent
operation. Once the increment is completed, the transaction can exit the HTM and start writing
a log to the NVM. If another transaction reads the data in an odd version, it needs to use xabort
to be aborted and retried. Once the transaction writes the log to the NVM, it needs to add one
again to the version of the data it modified, i.e., raising the version to an even version. At this
point, other transactions can correctly read the transaction’s modifications. Finally, the system
needs a specific mechanism to synchronize the operations between concurrent transactions
when they read and write data and perform version checking. Since we can perform all data
reads/modifications and version checking in HTM, there is no need for locking and the ACI
properties of HTM can be used to synchronize concurrent version checking.

Version checking in HTM slightly increases the read-set of the transaction. However, the
actual impact is negligible. First, HTM can support a larger set of reads (Figure 4(a) and
Figure 4(b)). Second, the operation can reuse the checking mechanism of OCC in DBX. We
will describe this in detail in the next section.
3.1.3 Basic transaction protocol of DBXN

In this section, we describe how to apply the parity version to the DBX transaction execution
protocol. We assume that the transaction has only read and write operations and that the
data it accesses must exist in the database. In Section 3.3, we will further discuss how it
supports common database operations such as insert-delete and read-not-existing. Figure 7 and
Figure 8 show the pseudo-code of the DBXN transaction execution. The red parts are DBXN
extensions to the original DBX protocol.

(1) Execution context of transaction
When a transaction starts, DBXN assigns a context to it to record the metadata of its

execution. The details are shown in Figure 7. ReadSet is a set of data read by the transaction;
each item includes the key to the data read by the transaction, the version of the data at the
time of reading, and a reference to that data (Section 3.1.1). WriteSet is a set of data written by
the transaction; each item adds a pointer to the data modified by the transaction on the basis of
ReadSet. Typically, all data in the WriteSet is also in the ReadSet. LogQueue is the transaction’s
log queue in NVM. As in the existing work, DBXN organizes the log content according to redo
log[3, 4], which contains the keys of all data modified by the transaction, the version of the data
committed by the transaction, and the newly modified content.

DBXN executes a transaction sequentially in execution, validation, logging, and commit
phases. The logic of the transaction is executed in the execution phase; whether the result of

42 International Journal of Software and Informatics, 2022, 12(1)

Transaction context：
- ReadSet
- WriteSet
- LogQueue

Read() operation in the execution phase
Read(tx, key, table):
1 if key in tx.WriteSet:
2 return value in the tx.WriteSet
3 xbegin()
4 value = table.get(key)
5 value_content = *(value.ptr)
7 ver = value.ver
6 xend()
8 if ver % 2 == 1:
9 ver += 1
10 tx.ReadSet.add(key, ver, value)
11 return value_content

*
*

HTM

Data：
- version： ver
- content： ptr

Figure 7 Data structure of transaction context used in DBXN and the pseudo-code of Read in the
execution phase. Lines marked as red (*) are extensions to the original DBX protocol.

the transaction execution in the execution phase can be committed, i.e., whether it satisfies the
ACI properties, is determined in the validation phase; the logging phase ensures that the result
of the transaction is stored in NVM; the result of the transaction is committed at the end of the
commit phase, namely that it can be seen by other transactions.

(2) Execution phase
In this phase, the transaction executes the logic of the user transaction by reading and

writing the data it needs. For the read/write of each data, the transaction must call the specific
Read/Write interface of DBXN to interact with the storage layer. The pseudo-code of Read is
shown in Figure 7. The main operation of Read is to call the storage layer interface to read the
value corresponding to the data key into the transaction (line 4). To support the inspection in
the validation phase, the transaction also reads the current version of the data (value.ver). Since
reading the data version and the data value must be atomic, DBXN uses HTM to protect the
reading of the data value and version as DBX (lines 3–6). Finally, when the read is completed,
the transaction adds the metadata of the data to its ReadSet (line 10). For write operations,
DBXN caches the writes in the transaction’s write set instead of updating the storage layer in
place. First, DBXN reads the data by Read into the ReadSet, allocates a new block of memory to
store the transaction’s modifications, and finally caches the modifications in the write set. Since
the logic of Write is similar to the existing OCC protocol, we omit its pseudo-code. Finally,
since a transaction needs to read its write operation, Read will inspect whether the data to be
read is in the transaction’s write set (lines 1–2) when it will read. If yes, DBXN will directly
return the data cached in the write set.

Unlike the DBX OCC, the DBXN transaction may read an odd version of the data,
i.e., data whose persistent operation is not completed, in the execution phase (Section 3.1.2).
Theoretically, the transaction needs to abort the OCC execution and be retried in this situation.
Here, DBXN adopts an optimization that delays the checks to the validation phase. This is based
on the observation that since NVM has low latency, the persistent operation of data is likely
to be finished when the transaction reaches the validation phase. This avoids the need to abort
the transaction early in the execution phase. To ensure that whether the persistent operation of
read data has been completed can be correctly detected in the validation phase, DBXN further
inspects whether the version of the data is odd in line 8 of Read. If it is odd, the transaction
needs to additionally inspect whether the version of the data becomes even in the validation
phase later. For this reason, DBXN adds one to the version (line 9) and puts it into the ReadSet.
Thus, if the transaction still has an odd version of the data in the validation phase, the transaction
will be aborted and retried because the OCC version is inconsistent. Details are shown in the
description of the validation phase below.

Wei XD, et al. Reducing transaction processing latency in ... 43

(3) Validation phase
To determine whether a transaction can be committed, DBXN validates the transaction by

means of the validation phase of OCC. Like DBX, DBXN determines whether a transaction
meets the ACI properties by validating whether the transaction’s read set has changed or not
since the execution phase.

As shown in Figure 8, the transaction first inspects whether the latest version of the data
in its read set matches the log version in the read set (line 2–3). If it does not, this indicates
that either a concurrent transaction has modified the data read by the transaction (violation of
the ACI properties) or the data has an odd version (violation of the D property). When either
happens, DBXN will abort the transaction and retry it (line 4). If the data in the transaction
read set has not been modified, the transaction will be executed in accordance with the ACID
properties. In such a case, DBXN starts trying to commit this transaction. Before entering the
logging and commit phases, DBXN first updates the database with the modifications of the data
in the write set. For all data in the write set, DBXN points the content pointer of the data to
the address assigned in the execution phase (line 7). Also, DBXN updates the version of the
write data to an odd number (line 6) so that other transactions do not read its modifications and
commit until the logging phase is completed.

Validate(tx):
1 xbegin()
2 for _, ver, value in ReadSet:
3 if value.ver != ver:
4 abort()
5 for _, _, value,n_ptr in WriteSet:
6 value.ver += 1
7 value.ptr = n_ptr # omit GC for simplicity
8 xend()

*

HTM

Log(tx):
1 for key, _, _, n_ptr in WriteSet:
2 tx.LogQueue.add(key,n_ptr)
3 tx.LogQueue.write_to_nvm()
4 tx.LogQueue.flush()

*
*

*
*

Commit(tx):
1 for _, _, value, _ in WriteSet:
2 value.ver += 1*

*

NVM

Figure 8 Pseudo-code of validation, logging, and commit phase in DBXN.
Lines marked as red (*) are extensions to the original DBX protocol

In OCC, the validation of the read set and the writing to the write set (i.e., lines 2–7) need to
be performed in line with atomicity to ensure correctness. Usually, the implementation of this
operation requires global or fine-grained locks for protection[1, 4]. However, locking operations
introduce additional overhead. Like DBX, DBXN includes these operations in a single HTM
(lines 1 and 8) to ensure atomicity efficiently with hardware.

(4) Logging phase
This phase ensures that the modifications made by the transactions are stored in a durable

(i.e., NVM) log. In this way, the results of the transaction can be recovered from the durable
log after downtimes. DBXN uses the mechanism of SiloR[3] for recovery, so this paper will not
go into details. Since NVM has very low write memory latency, DBXN chooses to synchronize
the log writing operation directly after the validation phase is completed. As shown in Figure 8,
DBXN first organizes the modifications made to the database by the transaction into a redo
log in Log (lines 1–2). After that, it writes the log to NVM (line 3). As writing directly to
NVM cannot ensure that the log content is durable (e.g., data is written to the processor cache),
DBXN further utilizes the extended instruction set of NVM after writing the log to ensure that
the written content is flushed to NVM. On current hardware platforms, DBXN can use clwb
and sfence to ensure that the data is written to NVM.

(5) Commit phase
When a transaction has completed the logging phase, its modifications are guaranteed to be

durable. At this point, the transaction can be considered committed, and the transaction commit
status is returned to the user. Meanwhile, to allow other transactions to read the modifications

44 International Journal of Software and Informatics, 2022, 12(1)

made by this transaction, DBXN changes the version of the data written by this transaction
to an even number in accordance with the parity version mechanism (lines 1–2 of Commit in
Figure 8). It should be noted that the commit phase does not require HTM protection: this is
because other concurrent transactions cannot commit when the data version of the transaction
is odd. Thus, there are no concurrent writes that conflict with the transaction.

3.2 Correctness
Strict serializability is a desirable ACI property for ACID transactions. This section shows

informally that DBXN ensures both strict serializability and durability of transactions.

3.2.1 Strict serializability

We illustrate that DBXN ensures strict serializability by reducing the protocol of
DBXN to Strict Two-Phase Locking (S2PL)[28], a concurrency control protocol that ensures
strict serializability. In S2PL, the transaction execution is divided into two phases.
In the first phase, the transaction locks all read and write data (when that data is
read). After the transaction is committed, it executes the second phase of S2PL, which releases
all the locks applied in the first phase.

In DBXN, when a transaction is committed, the data it reads or writes can be reduced as
applying locks in the execution phase (line 10 of Figure 7) and releasing locks in the commit phase
(line 2 of Commit in Figure 8). This is because no other transaction can modify the data it reads
or writes, and the effect is equivalent to that of applying locks. In DBXN, only when the data
version changes from an even number to an odd number or from an even number to another even
number will its contents be changed according to the parity version mechanism (Section 3.1.2).
When a transaction reads data of an odd version (v), line 9 of Read and lines 3–4 of Validate
ensure that the transaction will be only committed if the data version is (v + 1) at the commit
moment. The data read at this point has not been modified, as indicated by the parity version.
When a transaction reads data of an even version, the transaction will be aborted whenever the
data version changes (i.e., the contents change). Therefore, if a transaction is committed, the
data it reads and writes will not be modified by other transactions during execution.

In DBXN, if a processor core commits a transaction, subsequent processors must be able
to read the database modifications made by the transaction. Here, we assume that the Commit
operation is completed. First, DBXN updates the database with the new contents of the data
in HTM when the transaction is committed (line 7 of Validate). The HTM feature ensures
that read operations of subsequent memory/NVM (of this processor or other processors) will
definitely read its modifications. Second, DBXN will read the data directly from memory/NVM
(line 4 of Read). Thus, according to the features of the previous HTM, when a processor
commits a transaction, subsequent processors must read the modifications by this transaction.

3.2.2 Durability

To illustrate that DBXN supports durability, we just need to show that the transactions in
it do not read the modifications by a transaction whose log is not durable. According to the
pseudo-code of the logging phase shown in Figure 8, the transaction only becomes even after
the log is flushed to the NVM (line 4 of Log). According to the parity version mechanism, only
transactions that read an even version of data can be committed.

3.3 Support for common database operations
This section describes how to further support common database operations such as

insert, delete, and range lookup based on the basic transaction protocol presented in
Section 3.1.3. In DBXN, these operations are performed similarly to the original DBX

Wei XD, et al. Reducing transaction processing latency in ... 45

scheme. In other words, adding NVM-based low-latency transaction logs does not affect the
execution of these operations in DBX.

3.3.1 Read data not existing in the database

When a transaction reads data that does not exist in the database, DBXN needs to detect
its conflict with the transaction that inserts the data concurrently. DBXN makes use of the
DBX storage layer’s get-with-insert interface to facilitate the detection of this condition.
As the name suggests, get-with-insert inserts null data corresponding to this data key when
it encounters the data that does not exist. Thus, a concurrent transaction inserting this data is
transformed into a conflicting write operation. Therefore, DBXN can detect concurrent insertion
conflicts according to read/write conflicts in the validation phase. It should be noted that this
insertion is not added to the DBXN log because it does not insert real data.

3.3.2 Insert and delete

When DBXN encounters an insert operation in the execution phase, it inserts null data at
the storage level via get-with-insert and caches the inserted data in the transaction’s write
set. In this way, the insert operation can be considered as the proper execution of a normal
write operation in the DBXN protocol. For a delete operation, DBXN cannot delete the data
directly in the execution phase because the transaction may be aborted. Therefore, DBXN, like
DBX, treats the delete operation as a write operation that writes a null pointer. This scheme
causes memory waste in the index, and DBX uses the group commit based epoch mechanism for
garbage collection. Since there is no group commit in DBXN, it just reuses the epoch mechanism
of DBX for garbage collection.

3.3.3 Range lookup

Like DBX, DBXN relies on the B+ tree index in the storage layer to support range lookup.
On the basis of the protocol given in Section 3.1.3, the support for range lookup requires
additional detection of phantom[29]. Like DBX, DBXN recognizes this phenomenon by detecting
in the protocol whether the leaf nodes involved in a transaction range lookup have changed. For
purpose of supporting the detection, all leaf nodes of the B+ tree need to record an additional
version number, which is the same as the data version (Section 3.1.1). When a leaf node is
inserted or split, its version number is incremented. Also, when a transaction performs a range
lookup, DBXN records all the leaf nodes of the B+ tree it visits in the read set. To ensure
atomicity, DBXN uses HTM to protect the operations of accessing leaf nodes and reading
version numbers. With these two mechanisms, DBXN can detect phantoms in the validation
phase by detecting whether the version of the leaf nodes in the transaction read set has changed.
It should be noted that DBXN does not record the modifications of the tree in the transaction
redo log because index operations can be rebuilt during recovery. Therefore, the version number
update of leaf nodes is a plus-2 operation. In other words, it changes from even to even, instead
of adding 1 as DBXN does.

3.4 Implementation and optimization
We implemented DBXN based on the code of DBX[1]. There are two advantages of DBX-

based implementation. First, DBXN can reuse DBX’s high-performance storage layer, i.e.,
DBX-store. DBX-store uses an HTM-based B+ tree to support concurrent ordered key-value
storage efficiently. In addition, DBXN can also reuse a series of implementation optimizations
of DBX for HTM, such as fall back handler. On the basis of DBX, DBXN further makes a series
of optimizations for NVM.

NVM-friendly logwritingmethod: In Section 2.3, we have mentioned that designing in
combination with NVM requires optimizing for real hardware characteristics. For this purpose,

46 International Journal of Software and Informatics, 2022, 12(1)

we optimize the log writing operation in DBXN by referring to the existing research work for
real NVM features[12, 13]. First, when DBXN writes logs to the NVM (line 3), DBXN uses
nt-store instead of the traditional memcpy for writing. On the one hand, the characteristic of
nt-store that it by passes the processor cache is friendlier to the real NVM[13]. Further, after
the logs are ensured to be written to the NVM in line 4, the use of nt-store eliminates the
need to perform clflush/clwb, which saves instruction overhead. In addition to nt-store,
DBXN performs a padding operation on the logs to select the most suitable access granularity
for writing to NVM. For transaction logs smaller than 256 B, DBXN writes them to NVM with
a granularity of 64 B[12]. For logs larger than 256 B, DBXN writes them with a granularity
of 256 B[13]. We will analyze the performance impact of these three optimizations on DBXN
through experiments in Section 4.4.

4 System Evaluation
To test the performance of DBXN using HTM and NVM to accelerate the transaction

processing of multi-core in-memory databases, we conducted tests on a server equipped with
real NVM and HTM (Section 4.1). Our tests are expected to answer the following questions.

• Can the combination of HTM and NVM help DBXN significantly reduce the latency of
DBX durable transaction processing (Section 4.2)?

• How is the transaction processing performance of DBXN compared with the existing
NVM-based transaction systems (Section 4.3)?

• How does each design of DBXN affect its performance (Section 4.4)?

4.1 Test platform configuration
We conduct all tests on a server equipped with a 10-core Intel Xeon Gold 5215 M processor

that supports the HTM feature. The server has 192 GB of RAM and 750 GB of Intel Optane
PM NVM. The NVM consists of 6 NVM DIMMs. This configuration is the one that can realize
the highest NVM performance: 320 Gb/s read bandwidth and 100 Gb/s write bandwidth.

4.1.1 Comparison objects and configuration of each system

We compare DBXN with the following systems. DBX-DRAM[1] is a typical current HTM-
accelerated multi-core in-memory database that uses an OCC protocol similar to that of DBXN
to reduce the impact of HTM hardware limitations on transactions. By default, DBX-DRAM
does not enable durable transactions (so we mark it as DRAM). Therefore, it represents the
upper limit of system performance that can be achieved in the experiments. DBX-NVM is the
version of DBX with durability that supports durable transactions on NVM-based file systems
using the group commit mechanism (Section 2.2). DBX-naïve is the simplest way to accelerate
DBX durable transactions using NVM (Figure 5(a)), which cannot combine NVM and HTM
effectively (Section 2.3).

In addition to comparing with the multi-core in-memory databases represented by DBX,
we also compare DBXN with Pisces[15], a programming framework of NVM-based persistent
transactional memory. Since persistent transactional memory supports the ACID properties, it
can also be used to perform database transactions[15]. By default, Pisces puts all data (including
indexes) into NVM. To ensure a fair comparison, we also compare Pisces with DBXN-NVM:
DBXN-NVM puts all data (including indexes) in NVM on the basis of DBXN.

We use the configurations to realize the highest performance that each system can achieve
unless otherwise stated. For example, in DBXN and DBX-DRAM, the maximum performance
of the system is configured as using 10 threads (the maximum number of processor cores on the
server) for transaction processing.

Wei XD, et al. Reducing transaction processing latency in ... 47

4.1.2 Test benchmarks

We analyze DBXN and its counterparts according to two typical transaction processing
test benchmarks: TPC-C[18] and Smallbank[25]. TPC-C simulates a stock trading scenario, and
its transactions include relatively complex processor operations. For example, the logic of the
transaction with the highest percentage in TPC-C, the new-order transaction, is to purchase a
dozen stocks. This transaction needs to read and write stocks to the database and insert the
corresponding orders. In TPC-C, we deploy a database size of 10 warehouses. Smallbank
simulates a simple bank transaction system with a transaction logic of read/write operations of
one or two databases. For example, the logic of the deposit checking transaction in Smallbank is
to transfer the amount from one bank account to another bank account. In Smallbank, we have
deployed a database with 250,000 accounts.

4.2 End-to-end performance comparison
4.2.1 Throughput analysis on TPC-C

Figure 9(a) shows an end-to-end comparison of DBXN’s throughput with that of the
comparison objects on the TPC-C test benchmark. DBXN achieves the highest throughput
in each configuration ensuring durable transactions (DBX-NVM, DBX-naïve, and DBXN):
with 10 threads, it processes 432,000 TPC-C transactions per second, achieving 86% of the
DBX-DRAM throughput without durable transactions (432,000 vs.505,000). This experimental
result shows that DBXN’s use of the durability mechanism provided by NVM has a little
overhead compared with DBX’s original HTM-based transaction concurrency control method.
Meanwhile, DBXN has 2.1 and 1.9 times higher throughput than DBX-NVM and DBX-
naïve, respectively. DBX-NVM still uses DBX’s default group commit mechanism to
commit transactions, and the system performance is affected by the transaction and log
thread interactions underlying this design, which cannot achieve the full high performance
of NVM. Since DBX-naïve does not consider the problem that NVM writes would abort the
execution of HTM, it cannot use HTM for transaction commit. Therefore, it cannot fully
utilize HTM. DBXN effectively circumvents both of these design problems and can utilize both
HTM and NVM to achieve high throughput.

Th
ro
ug
hp
ut
 (1
03
/s)

Number of threads

DBX-naive
DBX-DRAM
DBXN

1 2 3 4 5 6 7 8 9 10

600

400

200

0

DBX-NVM

(a) Throughput

DBX-naive
DBX-DRAM
DBXN

DBX-NVM

C
on
m
m
it
la
te
nc
y

65 ms
45 ms
25 ms
60 μs

40 μs

20 μs

0 μs0 μs

Number of threads
1 2 3 4 5 6 7 8 9 10

(b) Latency

Figure 9 Comparisons of DBXN’s throughput and latency with other systems on TPC-C workloads

4.2.2 Latency analysis on TPC-C

Figure 9(b) further illustrates the latency comparison between DBXN and its counterparts
on the TPC-C test benchmark. DBXN achieves the lowest latency under the configurations
ensuring durable transactions: with ten threads, DBXN has a latency of 22 µs for durable
transactions, while with one thread, it has a latency of 13 µs. These two latencies are only

48 International Journal of Software and Informatics, 2022, 12(1)

1.15 times and 1.1 times higher than the non-durable transaction latency, respectively. With
ten threads, the transaction will have a higher latency due to the synchronous operation of
concurrency control. The latency of DBX-NVM is 2,720 times that of DBXN. In DBX-NVM,
the asynchronous transaction commit mechanism is the main reason for the latency increase
(Section 2.2). Thus, even a low-latency NVM cannot reduce its latency. Finally, the latency of
DBXN is reduced by 53%–83% compared with that of DBX-naïve. Since DBX-naïve cannot
utilize HTM for concurrency control, it can only degrade to a software concurrency control
mechanism with higher overhead.
4.2.3 Latency analysis on Smallbank

Figure 10(a) analyzes the latency comparison between DBXN and its counterparts on the
Smallbank test benchmark. Since the comparison of the throughput of systems in Smallbank is
similar to that of TPC-C, we omit the analysis for the sake of brevity. From the test charts, we can
see that the trend of latency comparison among systems is similar to that in TPC-C (Figure 9(b)):
DBX-DRAM has the lowest latency because it does not support durable transactions. DBXN
uses NVM on the basis of DBX-DRAM to provide low-latency transactions, whose latency
is 1.7–2.4 times higher than that of DBX-DRAM. DBX-naïve cannot take advantage of the
hardware features of HTM and NVM together. Thus its latency is 1.2–3 times higher than that
of DBXN. Finally, the asynchronous commit mechanism of DBX-NVM introduces a four-order-
of-magnitude difference in latency (40,000–50,000 times that of DBXN).

1 2 3 4 5 6 7 8 9 10
Number of threads

45 ms
30 ms
15 ms
6 μs

4 μs

2 μs

0 μs

C
on
m
m
it
la
te
nc
y

DBX-NVM
DBX-naive
DBX-DRAN
DBXN

(a) Comparisons of DBXN with other systems in
terms of latency on Smallbank workloads

600

400

200

0

Pisces
DBXN-NVM
DBXN

Th
ro
ug
hp
ut
 (1
03
/s)

Number of threads
1 2 3 4 5 6 7 8 9 10

(b) Comparison of DBXN-NVM with Pisces on
TPC-C workloads

Figure 10 Comparisons of DBXN with other systems in terms of latency on Smallbank workloads,
and comparison of DBXN-NVM with Pisces on TPC-C workloads

4.3 Performance comparison with existing real NVM-based persistent-
transactional memory systems

We compare the performance of DBXN, DBXN-NVM, and Pisces on TPC-C (Figure 10(b)).
DBXN-NVM and Pisces can be compared directly because they both put all database data
(including indexes) into NVM. DBXN-NVM is 1.65–3.41 times faster than Pisces. This
performance improvement comes from three main sources. First, Pisces is a general-purpose
persistent transactional memory mechanism. Thus, it is not optimized for the specific scenario
of database transactions. Second, although Pisces uses real NVM to accelerate the persistent
operation, it is not optimized depending on the hardware characteristics of real NVM. In
contrast, DBXN is designed and implemented according to the characteristics of the real NVM
(Section 3.4). Pisces’ protocol is not accelerated according to HTM.

Compared with DBXN, DBXN-NVM has an additional performance loss of 9%–16%. This
is due to the additional data structures (e.g., indexes) it puts in the NVM. The access operations
to the NVM are slower than that to DRAM (Table 2).

Wei XD, et al. Reducing transaction processing latency in ... 49

4.4 Impact of design factors on performance
We analyze the impact of design factors on DBXN performance (Figure 11). First, we

can see from +durability that DBX-NVM improves the latency of DBX-DRAM by an order
of magnitude from 19.7 µs to more than 60 ms. This latency improvement is mainly due
to the software mechanism of asynchronous transaction commit. The synchronous write to
disk, i.e., +synchronous log (Disk), reduces latency to 796.8 ms, but brings a 94% drop in
transaction throughput. This is because the slow disk becomes a performance bottleneck for
high-throughput in-memory databases. NVM [+synchronous log (NVM)] effectively reduces
the durability overhead of synchronous log: it further reduces latency to 38.9 µs and increases
throughput to 256,000 transactions per second. However, this configuration is still far from
optimal performance (432,000 per second). This is because (1) it does not take advantage
of HTM and (2) it does not perform optimization for real NVM. When the parity version
(+Parity Version) mechanism is adopted, DBXN is able to effectively utilize HTM for transaction
commit, which further improves the throughput by 1.35 times and reduces the latency by 26%.
Finally, +64 alignment, +nt-store, and +256 alignment (optimizations according to real NVM
characteristics) improve DBXN throughput (on the basis of +Parity Version) by 1.1, 1.18, and
1.24 times and reduce latency by 9%, 15%, and 20%, respectively.

60,240.064,000

52,000

800
720
50
40
3030
20
10
0

C
om
m
it
la
te
nc
y
(μ
s)

No
 du
rab
ilit
y

+D
ura
bil
ity

+S
yn
c l
og
 (d
isk
)

+S
yn
c l
og
 (N
VM
)

+P
ari
tyV
ers
ion

+6
4 a
lig
nm
en
t

+n
t-s
tor
e

+2
56
 al
ign
me
nt

(a) TPC-C latency

Th
ro
ug
hp
ut
 (1
03
/s)

600

400

200

0

No
 du
rab
ilit
y

+D
ura
bil
ity

+S
yn
c l
og
 (d
isk
)

+S
yn
c l
og
 (N
VM
)

+P
ari
tyV
ers
ion

+6
4 a
lig
nm
en
t

+n
t-s
tor
e

+2
56
 al
ign
me
nt

(b) TPC-C throughput

Figure 11 Effect of design factors on DBXN in terms of TPC-C latency and throughput

4.5 Scalability test
Finally, we analyze the scalability of DBXN in the case of larger databases. As the data size

increases, DBXN and its counterparts suffer from a decrease in the cache hit ratio, which results
in a decrease in performance accordingly. The number of warehouses deployed in TPC-C is
increased for testing (Figure 12). The DBXN performance is affected by the increase in data
size in this scenario. When 200 warehouses are adopted, the performance of DBXN drops by
57% compared with that in the case of using 10 warehouses. This drop is mainly due to the drop
in the system cache locality. For example, DBX-DRAM also has a 48% performance drop on a
database of 200 warehouses. Noteworthily, DBXN still outperforms DBX-naïve by a factor of
1.63–2.07 even at larger data sizes.

5 Related Work
5.1 Study of real NVM nature

Yang et al.[13] systematize the study of real NVM nature for the first time. They summarize
the characteristics of real NVM, including read/write asymmetric performance and access

50 International Journal of Software and Informatics, 2022, 12(1)

DBX-DRAM
DBX-naive
DBXN

Number of warehouses

Th
ro
ug
hp
ut
 (1
03
/s)

0 40 80 120 160 200

600

400

200

0

Figure 12 Performance when scaling with more warehouses in TPC-C benchmark

granularity. RDPMA[12] systematically summarizes how to efficiently co-design NVM together
with new network hardware. Kalia et al.[23] find that processor caching affects the utilization of
NVM bandwidth by upper layer systems. In implementing DBXN for real NVM, we draw on
the optimizations adopted in these studies for NVM.

5.2 Systems utilizing NVM or HTM
Database and system researchers have done long research on how to accelerate systems with

NVM and HTM. NVM has long been used to accelerate the performance of file systems[30]. In
addition, NVRC[31] proposes a log update strategy to reduce the write operations in NVM. Xu
et al.[32] studied the possible security issues of using NVM systems. Luo et al.[33] investigated
how to optimize the disk connection operations of traditional databases with the architecture
of DRAM and NVM. Meanwhile, some studies explore how to design NVM-friendly data
structures[34–36] and NVM-friendly key-value store[37]. Finally, Shu et al.[38] summarize the
research and opportunities related to NVM.

In terms of hardware transactional memory, Wu et al.[39] compare the performance between
the design of concurrent chain tables accelerated by HTM and traditional lock-based concurrent
chain tables. HybridTCache[40] is a hardware-software cooperative transactional memory system
based on a dedicated transactional cache. Similarly, DBXN uses software serving DBX to break
the limitation of hardware transactional memory. Zeng et al.[41] find that the dependency graph-
based HTM has better performance than the current conflict detection-based HTM. SPINRTM[42]

combines with HTM to design a new synchronization mechanism for virtual machines.
In addition to those using NVM or HTM exclusively, many studies explore how HTM and

NVM could work in tandem[14, 43, 44]. Due to the lack of real NVM hardware at the time, these
studies only consider designs based on simulated NVM. Similar to these studies, DBXN also
focuses on how to better utilize HTM and NVM to accelerate database transaction processing.
Meanwhile, DBXN further considers the impact of real NVM hardware features. Crafty[43]

uses an undolog mechanism to synchronize transactions executed in HTM, while DBXN uses
a redo log mechanism. NV-HTM[44] considers the problem that HTM cannot collaborate with
NVM, and it proposes a hysteresis mechanism to properly commit transactions. DBXN uses
the parity version mechanism to make HTM and NVM collaborate. PHyTM[14] is a hybrid
transactional memory and HTM hybrid in-memory transaction system that focuses on how to
solve the problem of limited progress and working sets in HTM. PHyTM does not consider the
problem that NVM and HTM cannot be combined. Unlike it, DBXN’s parity version mechanism
effectively combines HTM and NVM.

6 Conclusion
The emerging of new low-latency NVM provides an opportunity to reduce the transaction

commit latency of HTM-based multi-core in-memory databases. In this paper, we propose

Wei XD, et al. Reducing transaction processing latency in ... 51

DBXN, a multi-core in-memory database, to accelerate existing HTM-based in-memory
database’s commit latency with NVM. DBXN efficiently combines HTM and NVM to reduce
transaction latency through a series of designs including the parity version. Implementations on
existing HTM-based multi-core in-memory databases show that DBXN can reduce transaction
commit latency by an order of magnitude while improving transaction processing throughput.

References
[1] Wang ZG, Qian H, Li JY, et al. Using restricted transactional memory to build a scalable in-

memory database. Proc. of the 9th European Conf. on Computer Systems (EuroSys 2014). New
York: Association for Computing Machinery, 2014. Article 26. [doi: 10.1145/2592798.2592815]

[2] Wu YJ, Chan CY, Tan KL. Transaction healing: Scaling optimistic concurrency control on multicores.
Proc. of the 2016 Int’l Conf. on Management of Data (SIGMOD 2016). New York: Association for
Computing Machinery, 2016. 1689–1704. [doi: 10. 1145/2882903.2915202]

[3] Zheng WT, Tu S, Kohler E, et al. Fast databases with fast durability and recovery through multicore
parallelism. Proc. of the 11th USENIX Conf. on Operating Systems Design and Implementation (OSDI
2014). USENIX Association, 2014. 465–477.

[4] Tu S, Zheng WT, Kohler E, et al. Speedy transactions in multicore in-memory databases. Proc. of
the 24th ACM Symp. on Operating Systems Principles (SOSP 2013). New York: Association for
Computing Machinery, 2013. 18–32. [doi: 10.1145/2517349.2522713]

[5] Thomson A, Diamond T, Weng SC, et al. Calvin: Fast distributed transactions for partitioned database
systems. Proc. of the 2012 ACM SIGMOD Int’l Conf. on Management of Data. 2012. 1–12.

[6] Yu XY, Bezerra G, Pavlo A, et al. Staring into the ABYSS: An evaluation of concurrency
control with one thousand cores. Proc. of the VLDB Endowment, 2014, 8(3): 209–220. [doi:
10.14778/2735508.2735511]

[7] Leis V, Kemper A, Neumann T. Exploiting hardware transactional memory in main-memory
databases. Proc. of the 2014 IEEE 30th Int’l Conf. on Data Engineering. 2014. 580–591. [doi:
10.1109/ICDE.2014.6816683]

[8] Wei X, Shi J, Chen Y, et al. Fast in-memory transaction processing using RDMA and HTM. Proc. of
the 25th Symp. on Operating Systems Principles. 2015. 87–104.

[9] Amazon found every 100ms of latency cost them 1% in sales. 2019. https://www.gigaspaces.com/
blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales.

[10] https: / /www.anandtech.com/show/9541/ intel- announces- optane- storage- brand- for- 3d- xpoint-
products，2015.

[11] Smith R. Intel announces optane storage brand for 3D XPoint products. 2015. https://www.anandtech.
com/show/9541/intel-announces-optane-storage-brand-for-3d-xpoint-products.

[12] Wei XD, Xie XT, Chen R, et al. Characterizing and optimizing remote persistent memory with RDMA
and NVM. Proc. of the 2021 USENIX Annual Technical Conf. (USENIX ATC 2021). USENIX
Association, 2021.

[13] Yang J, Kim J, Hoseinzadeh M, et al. An empirical guide to the behavior and use of scalable persistent
memory. Proc. of the 18th USENIX Conf. on File and Storage Technologies (FAST 2020). USENIX
Association, 2020. 169–182.

[14] Avni H, Brown T. Persistent hybrid transactional memory for databases. Proc. of the VLDB
Endowment, 2016, 10(4): 409–420. [doi: 10.14778/3025111.3025122]

[15] Gu JY, Yu QQ, Wang XY, et al. Pisces: A scalable and efficient persistent transactional memory. Proc.
of the 2019 USENIX Annual Technical Conf. (USENIX ATC 2019). 2019. 913–928.

[16] Liu MX, Zhang MX, Chen K, et al. DudeTM: Building durable transactions with decoupling for
persistent memory. Proc. of the 22nd Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2017). New York: Association for Computing Machinery, 2017.
329–343. [doi: 10.1145/3037697.3037714]

[17] Giles ER, Doshi K, Varman P. SoftWrAP: A lightweight framework for transactional support of storage

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://www.anandtech.com/show/9541/intel-announces-optane-storage-brand-for-3d-xpoint-products
https://www.anandtech.com/show/9541/intel-announces-optane-storage-brand-for-3d-xpoint-products
https://www.anandtech.com/show/9541/intel-announces-optane-storage-brand-for-3d-xpoint-products
https://www.anandtech.com/show/9541/intel-announces-optane-storage-brand-for-3d-xpoint-products

52 International Journal of Software and Informatics, 2022, 12(1)

class memory. Proc. of the 31st Symp. on Mass Storage Systems and Technologies (MSST). IEEE,
2015. 1–4.

[18] The Transaction Processing Council. TPC-C Bench-mark V5.11, 2022. http://www.tpc.org/tpcc/.

[19] Herlihy M, Moss JEB. Transactional memory: Architectural support for lock-free data structures.
Proc. of the 20th Annual Int’l Symp. on Computer Architecture (ISCA’93). New York: Association
for Computing Machinery, 1993. 289–300. [doi: 10.1145/165123.165164]

[20] Kung HT, Robinson JT. On optimistic methods for concurrency control. ACM Trans. on Database
Systems, 1981, 6(2): 213–226. [doi: 10.1145/319566.319567]

[21] Chen HB, Chen R, Wei XD, et al. Fast in-memory transaction processing using RDMA and HTM.
Article 3. ACM Trans. on Computer Systems, 2017, 35(1): Article No.37.

[22] Shasha D, Llirbat F, Simon E, et al. Transaction chopping: Algorithms and performance studies. ACM
Trans. on Database Systems, 1995, 20(3): 325–363. [doi: 10.1145/211414.211427]

[23] Kalia A, Andersen D, Kaminsky M. Challenges and solutions for fast remote persistent memory
access. Proc. of the 11th ACM Symp. on Cloud Computing (SoCC 2020). New York: Association for
Computing Machinery, 2020. 105–119. [doi: 10.1145/ 3419111.3421294]

[24] Stonebraker M, Madden S, Abadi DJ, et al. The end of an architectural era: It’s time for a complete
rewrite. Proc. of the 33rd Int’l Conf. on Very Large Data Bases (VLDB 2007). 2007. 1150–1160.

[25] The H-store team. SmallBank benchmark. 2022. http://hstore.cs.brown.edu/documentation/
deployment/ benchmarks/smallbank/.

[26] The transaction processing council. TPC-E Bench-mark V1.14, 2022. http://www.tpc.org/tpce/.

[27] INTEL. Intel® memory latency checker v3.7. 2019. https://software.intel.com/en-us/articles/intelr-
memory-latency-checker, 2019.

[28] Gray J, Reuter A. Transaction Processing: Concepts and Techniques. Elsevier, 1992.

[29] Eswaran KP, Gray JN, Lorie RA, et al. The notions of consistency and predicate locks in a database
system. Communications of the ACM, 1976, 19(11): 624–633. [doi: 10.1145/360363.360369]

[30] Xu J, Swanson S. NOVA: A log-structured file system for hybrid volatile/non-volatile main memories.
Proc. of the 14th USENIX Conf. on File and Storage Technologies (FAST 2016). 2016. 323–338.

[31] Fan PH, Huang GR, Jin PQ. NVRC: Write-limited logging for non-volatile memory. Compute Science,
2021, 48(3): 130–135 (in Chinese with English abstract).

[32] Xu CH, Yan JF, Wan H, et al. A survey on security and privacy of emerging non-volatile memory.
Journal of Computer Research and Development, 2016, 53(9): 1930–1942 (in Chinese with English
abstract).

[33] Luo YP, Jin PQ. Optimizing join algorithms for NVM+DRAM-based hybrid memory architecture.
Chinese Journal of Computers, 2020, 43(6): 1069–1085 (in Chinese with English abstract).

[34] Venkataraman S, Tolia N, Ranganathan P, et al. Consistent and durable data structures for non-volatile
byte-addressable memory. Proc. of the FAST, Vol.11. 2011. 61–75.

[35] Zuo P, Hua Y, Wu J. Write-optimized and high-performance hashing index scheme for persistent
memory. Proc. of the 13th USENIX Symp. on Operating Systems Design and Implementation (OSDI
2018). 2018. 461–476.

[36] Yang J, Wei Q, Chen C, et al. NV-tree: Reducing consistency cost for NVM-based single level systems.
Proc. of the 13th USENIX Conf. on File and Storage Technologies (FAST 2015). 2015. 167–181.

[37] Kannan S, Bhat N, Gavrilovska A, et al. Redesigning LSMs for nonvolatile memory with NoveLSM.
Proc. of the 2018 USENIX Annual Technical Conf. (USENIX ATC 2018). 2018. 993–1005.

[38] Shu JW, Lu YY, Zhang JC, et al. Research progress on non-volatile memory based storage system.
Science & Technology Review, 2016, 34(14): 86–94 (in Chinese with English abstract).

[39] Wu ZW, Zhang W. A concurrent linked list based on hardware transactional memory. Computer
Engineering & Science, 2018, 40(S1): 154–158 (in Chinese with English abstract).

[40] Wu SG, Wu D, Pang ZB, et al. HybridTCache: Tightly coupled hybrid transactional memory system
to support efficient unbounded transactions with strong isolation. Chinese Journal of Computers, 2008,

http://www.tpc.org/tpcc/
http://hstore.cs.brown.edu/documentation/deployment/
http://hstore.cs.brown.edu/documentation/deployment/
http://www.tpc.org/tpce/
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker

Wei XD, et al. Reducing transaction processing latency in ... 53

31(11): 1907–1917 (in Chinese with English abstract).

[41] Zeng K, Yang XJ. A best-efort hardware transactional memory based on dependency graph. Journal
of Computer Research and Development, 2012, 49(1): 44–54 (in Chinese with English abstract).

[42] Yu QQ, Dong MK, Chen HB. Hardware transactional memory assisted synchronization mechanism
in virtualized environment. Journal of Frontiers of Computer Science and Technology, 2017, 11(9):
1429–1438 (in Chinese with English abstract).

[43] Genç K, Bond MD, Xu GQH. Crafty: Efficient, HTM-compatible persistent transactions. Proc. of the
41st ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI 2020).
New York: Association for Computing Machinery, 2020. 59–74. [doi: 10.1145/3385412.3385991]

[44] Castro D, Romano P, Barreto J. Hardware transactional memory meets memory persistency. Proc.
of the 2018 IEEE Int’l Parallel and Distributed Processing Symp. (IPDPS). 2018. 368–377. [doi:
10.1109/IPDPS.2018.00046]

Xingda Wei, Ph.D., assistant
professor. His research interests
include operating systems and
distributed systems.

Haibo Chen, Ph.D.,
professor, doctoral supervisor,
distinguished member of CCF.
His research interests include
operating systems and parallel
and distributed systems.

Fangming Lu, bachelor. His
research interests include
operating systems and
distributed systems.

Binyu Zang, Ph.D., professor,
distinguished member of CCF.
His research interest is operating
systems.

Rong Chen, Ph.D., professor,
senior member of CCF. His
research interests include
operating systems and distributed
systems.

	1 Background Knowledge
	1.1 HTM
	1.2 HTM-based multi-core memory database
	1.3 NVM

	2 Analysis on Existing Drability Mechanisms and Challenges of Using HTM with NVM
	2.1 Existing durability mechanism for HTM-based multi-core in-memory databases: Redo log-based group commit
	2.2 Asynchronous nature of group commit significantly increases transaction processing latency
	2.3 Reducing transaction durability latency with NVM and the challenges of combining HTM with NVM

	3 Design and Implementation of DBXN
	3.1 Parity version and DBXN commit protocol
	3.1.1 Data structure of database records in DBXN
	3.1.2 Parity version mechanism
	3.1.3 Basic transaction protocol of DBXN

	3.2 Correctness
	3.2.1 Strict serializability
	3.2.2 Durability

	3.3 Support for common database operations
	3.3.1 Read data not existing in the database
	3.3.2 Insert and delete
	3.3.3 Range lookup

	3.4 Implementation and optimization

	4 System Evaluation
	4.1 Test platform configuration
	4.1.1 Comparison objects and configuration of each system
	4.1.2 Test benchmarks

	4.2 End-to-end performance comparison
	4.2.1 Throughput analysis on TPC-C
	4.2.2 Latency analysis on TPC-C
	4.2.3 Latency analysis on Smallbank

	4.3 Performance comparison with existing real NVM-based persistenttransactional memory systems
	4.4 Impact of design factors on performance
	4.5 Scalability test

	5 Related Work
	5.1 Study on real NVM nature
	5.2 Systems utilizing NVM or HTM

	6 Conclusion
	Xingda Wei
	Haibo Chen
	Fangming Lu
	Binyu Zang
	Rong Chen

