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Abstract With the rapid development of deep learning technology, research on its quality
assurance is raising more attention. Meanwhile, it is no longer difficult to collect test data owing
to the mature sensor technology, but it costs a lot to label the collected data. To reduce the cost
of labeling, the existing studies attempt to select a test subset from the original test set. The test
subset, however, only ensures that the overall accuracy (the accuracy of the target deep learning
model on all test inputs of the test set) of the test subset is similar to that of the original test set;
it cannot maintain other test properties similar to those of the original test set. For example, it
cannot fully cover all kinds of test input in the original test set. This study proposes a method
based on multi-objective optimization called Deep Multi-Objective Selection (DMOS). It firstly
analyzes the data distribution of the original test set by Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN). Then, it designs multiple optimization
objectives given the characteristics of the clustering results and then carries out multi-objective
optimization to find out the appropriate selection solution. Massive experiments are carried
out on eight pairs of classic deep learning test sets and models. The results reveal that the best
test subset selected by the DMOS method (the test subset corresponding to the Pareto optimal
solution with the best performance) can not only cover more test input categories in the original
test set but also estimate the accuracy of each test input category extremely close to that of
the original test set. Meanwhile, it can also ensure that the overall accuracy and test adequacy
are close to those of the original test set: the average error of the overall accuracy estimation
is only 1.081%, which is 0.845% lower than that of Practical ACcuracy Estimation (PACE),
an improvement of 43.87%. The average error of the accuracy estimation of each test input
category is only 5.547%, which is 2.926% less than that of PACE, an improvement of 34.53%.
The average estimation error of the five test adequacy measures is only 8.739%, which is 7.328%
lower than that of PACE, an improvement of 45.61%.
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With the rapid development of Deep Learning (DL), Deep Neural Network (DNN) models
trained on the basis of massive data have achieved excellent performance in more and more
applications[11], such as automatic driving[1], face recognition[2], speech recognition[3, 4], medical
diagnosis[5], aircraft collision avoidance systems[6], and software engineering[7–10]. However,
like traditional software systems, DNN models still have defects. Due to their complex
internal structures, such models may make incomprehensible mispredictions under any small
data disturbance. This will lead to serious consequences in security-critical areas. For
example, in 2018, a pedestrian was killed by Uber’s self-driving car in Tempe, Arizona (https:
//www.vice.com/en/article/9kga85/uber-is-giving-up-on-self-driving-cars-in-California-after-
deadly-crash). A Tesla Model S in the autopilot mode crashed into a fire truck with flashing lights
on a freeway in California in 2018 (https://www.newsweek.com/autonomous-tesla-crashes-
parked-fire-truck-california-freeway-789177). Therefore, it is crucial to ensure the quality of
DNN models. As a conventional quality assurance method, software testing can effectively
detect inherent defects in a system to be tested. Thus, designing an effective testing method for
DNN models has been a research hotspot in the fields of deep learning and software testing in
recent years.

Consistent with traditional software testing, DL testing also aims to efficiently and
adequately expose defects in the DNN model to be tested. However, as a DNN model is
data-driven, its final predictions are determined by the weight of each neuron obtained during
training, as well as test input. Therefore, for DL testing, maintaining a high-quality test set
is an important requirement to achieve the above goal. With the rapid development of sensor
technology, it is no longer difficult to collect massive data in a short time, but this also greatly
increases the testing cost of a DNN model. For example, Facebook’s face recognition system
DeepFace[12] used about 220,000 face images for testing; DeepTest[13] tested a CNN-based
self-driving model with 254,221 images; the popular dataset ImageNet[14] contains 100,000 test
images (namely, a total of 1,000 categories, each containing 100 images) for testing various
image classification models. Although massive test data can ensure complete testing of a DNN
model, a great amount of testing time will be consumed. In addition, massive raw data collection
need to be correctly labeled before being used for testing. At present, labeling is mainly done
manually, and to ensure the correctness of labeling, multiple users are generally required to
cooperate to complete labeling, which consumes a lot of manpower and material resources.
Particularly, domain-specific test data (such as images from the medical field) need to be labeled
by experts in this regard, which further raises the labeling cost. Thus, redundant test data
will not only waste colossal labeling costs but also greatly reduce the efficiency of testing. In
cooperation with enterprises, we find that the labeling of test sets has become one of the serious
challenges burdening them in testing DNN models. Therefore, maintaining a small-scale test
set with a good test capability has become an important research issue in DL testing. The DL
test input selection method aims to select representative test input (namely, data able to maintain
properties of original test sets) in original unlabeled test sets and then label constructed test
subsets to reduce the costs of overall labeling and testing.

Research on this problem is still in its infancy. Li et al.[15] first proposed a Confidence-based
Stratified Sampling (CSS) method. The method adopts a DNN model to divide the predicted
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confidence of each test input into intervals and then conducts sampling in each interval according
to a certain proportion until reaching the labeled number specified by users. However, the CSS
method is only suitable for models with high accuracy. Later, Li et al.[15] proposed a Cross
Entropy-based Sampling (CES) method, which first randomly samples data in an original test
set and then iterates the process continuously. With the optimization objective of reducing
cross entropy between the test subset and the original test set, the iteration terminates when the
specified threshold is reached. Compared with CSS, CES has better generalization performance;
however, affected by randomness, it is of poor stability and thus can hardly be applicable to
actual scenarios. Zhou et al.[16] presented the two-stage selection method DeepReduce based
on two objectives: firstly, on the basis of Neuron Coverage (NC), a test subset is selected by a
greedy strategy, and the neuron output of the last layer of the DNN model to be tested is extracted
as the feature representation of each input. Then, with the optimization objective of minimizing
relative entropy between the test subset and the original test set, samples are heuristically
selected from the original test set and added to the test subset until the specified threshold is
reached. Chen et al.[17] developed a Practical ACcuracy Estimation (PACE) method. In this
method, an original test set is first clustered by Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN)[18]. Then, the clustered results are sampled according to
corresponding proportions by MMD-critic-based prototype sampling[19] and adaptive random
selection[20] separately. Finally, the samples are merged to form the test subset. Tests showed
that PACE can effectively reduce the size of the original test set and accurately estimate the
overall accuracy of the DNN model to be tested. In other words, PACE can achieve the overall
accuracy close to that of the original test set using only about 2% of the test input samples
selected from the original test set, with an average error of only 1.181%–2.302%. However,
it fails to guarantee that the selected test subset can cover different categories of test input in
the original test set, and it produces a huge error in estimating the accuracy of the test input of
each category. For example, according to the test results, in the test set CIFAR100 with 100
categories, under a sampling rate of 1.5%, the test subset selected by PACE will miss 28% of
the test-input categories in the original test set. In addition, for the DNN model ResNet20 to be
tested, the accuracy estimation of the test input of each category in the test subset selected by
PACE has an average error as high as 43%.

If a selected new test subset is only close to the original test set in terms of overall accuracy,
it will probably fail to cover all categories of test input in the original test set and lose other
test properties of the original test set on the DNN model to be tested. The quality evaluation
of a test subset needs to examine whether the test subset can fully possess multiple attributes
and characteristics of the original test set. Therefore, we hope that a selected test subset should
not only cover all test-input categories in the original test set but also enable precise accuracy
estimation of test input in corresponding categories (namely, reaching an accuracy level close to
that of the original test set). To this end, this paper proposes a Deep Multi-Objective Selection
(DMOS) method. Specifically, DMOS first extracts the features of each test input in an original
test set through the DNN model to be tested and conducts hierarchical clustering through
HDBSCAN[18] to ensure sampling quality as much as possible. Then, with the objective of
minimizing the difference between the original test set and the test subset in terms of category
distribution in each cluster generated by clustering, the classical multi-objective optimization
algorithm NSGA-II[21] is employed for solutions. Given the number of selections specified by
users, if the selected test-input samples are biased to some cluster, samples in other clusters
will be reduced, which enlarges the difference between the proportions of other clusters in the
selected test subset and those in the original test set. Clearly, there is a conflict among these
optimization objectives. Finally, DMOS returns a non-dominated solution set, and each solution
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in this set represents a specific selection scheme, the constituent element of which represents
the weight of selecting the test input at this location. Users can choose appropriate solutions
according to their preference for test requirements to form a final subset for labeling, so as to
save labeling and testing costs. On the basis of ensuring overall accuracy, this method enables
the selected test subset to cover different categories of test input in the original test set more
completely and estimate the accuracy of test input in each category more precisely.

We carried out empirical research on eight test objects constructed by the combination of
classical DL test sets and DNN models. DNN models in the eight test objects are all used for
classification. In terms of overall accuracy, these models can be classified into high-precision
(namely that overall accuracy is more than 0.8) and low-precision (namely that overall accuracy
is not more than 0.8) models. In terms of the hierarchical structure of networks, these models
can be classified into Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN) models. Data sets in the test objects can be divided into speech and image data in terms
of sample types. The test results reveal that test subsets selected by DMOS are significantly
better than those selected by the latest method PACE regarding overall-accuracy estimation and
accuracy estimation of the test input of various categories[17]. In addition, the test adequacy
of test subsets selected by DMOS is more similar to that of the original test sets. Specifically,
the average error of DMOS in overall-accuracy estimation is only 1.081%, which is 0.845%
lower than that of PACE, an improvement of 43.87%. The average error of DMOS in accuracy
estimation of test input of various categories is only 5.547%, which is 2.926% lower than that of
PACE, an improvement of 34.53%. The average error of DMOS in estimating five test adequacy
measures is only 8.739%, which is 7.328% lower than that of PACE, an improvement of 45.61%.

In conclusion, the main contributions of this paper can be summarized as follows:
(1) We model DL test input selection as a multi-objective optimization problem for the first

time and propose DMOS for solutions. DMOS solves the problem by the clustering
method HDBSCAN[18] and the classical multi-objective optimization algorithm NSGA-
II[21]. According to the test results, non-dominated solution sets returned by DMOS can
ensure that the selected test subsets can cover test-input categories in original test sets as
many as possible and accurately estimate the accuracy of the test input of each category.
This method can effectively reduce the cost of DNN model testing and improve testing
efficiency.

(2) We conduct in-depth experiments on eight groups of classical DNN models and DL test
sets and verify the effectiveness of DMOS in different types of data sets and models.

(3) We implement DMOS on top of the Keras 2.3.1 and the TensorFlow 1.15.0 frameworks
and shared it on internet (https://github.com/EzioQR/ DMOS2021) to facilitate follow-up
research by other researchers.

1 Background Knowledge
1.1 DL testing and optimization

A DNN model consists of multiple layers, and each layer contains many neurons[22].
Interlayer neurons are connected by weighted links, and the weights of these links are calculated
according to the training data and training processes. Given these calculated weights, the DNN
model maps input to output. At present, DNN models are mainly classified into CNN and RNN
models. Involving convolution calculation, a CNN model is usually used to process data with
mesh topology (such as images)[23], while an RNN model usually makes processing decisions
on the basis of information calculated by existing data, which is more suitable to deal with
varying time-series information, such as speech, natural language, and other data containing
sequence information[24]. Software testing is a common method used to ensure the quality of
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a DNN model[25, 26]; similarly to traditional software testing, DNN model testing also concerns
test input and test oracles. By test input in DNN-model testing is meant various data collected to
test model performance, such as speech, images, and texts, and test oracles are mainly manual
category labels. In other words, each test input requires manual labeling of its basic facts.
By comparing labeled actual types with predicted ones, researchers can judge whether a DNN
model correctly predicts test input.

Nevertheless, it is costly to label massive test input collected. To improve the efficiency of
DNN model testing, researchers have proposed two kinds of optimization methods.

1.1.1 The first kind starts with test input selection

Methods of this kind aim to select a small-scale test subset to accurately estimate the overall
accuracy of the test set. Users can only label such test input to complete testing, effectively
saving labeling costs. In the earlier research, Li et al.[15] proposed CSS and CES. The CSS
method sorts the prediction of all test input in an original test set through a DNN model to be
tested and divides it into intervals accordingly. Then, given the specified number of selections,
the method samples data hierarchically and merges the samples to form the final test subset.
The CES method selects the test input by continuously reducing the cross entropy between the
test subset and the original test set on the basis of the output of the last hidden layer of the DNN
model to be tested. Zhou et al.[16] proposed a two-stage selection method of sequential sampling,
DeepReduce. Guided by NC, this method first selects a test subset from the original test set
by a greedy strategy; then, it continuously reduces the relative entropy between the test subset
and the original test set according to the output of the last layer of the DNN model to be tested
until the specified number of selections is reached. Recently, Chen et al.[17] proposed the PACE
method based on clustering. This method clusters test input according to their features extracted
by the DNN model to be tested. Then, test input in normal-point and abnormal-point clusters
obtained by clustering is sampled by MMD-critic-based prototype sampling[19] and adaptive
random selection[20], respectively. Finally, the samples from various clusters are merged to form
the final test subset.

1.1.2 The second kind starts with test input sorting

Methods of this kind aim to sort all test input according to prediction error probabilities
of DNN models to be tested. Compared with the first kind, this kind does not require the
discarding of any test input, and users can find test input that will cause mispredictions of
models earlier. Feng et al.[27] presented a test input sorting method called Deepgini. According
to the confidence of the DNN model to be tested with regard to test input predictions, this method
calculates Gini purity[28] for sorting. Zhang et al.[29] proposed sorting test input by calculating
its noise sensitivity. Their findings indicated that added with the same noise, test input with high
noise sensitivity is more likely to deceive a DNN model than that with low noise sensitivity.
Furthermore, Ma et al.[30] proposed a group of indicators for model confidence on the basis of
specific test input to guide the selection of test input that is more likely to be misclassified, which
is similar to the goal of the test sorting mentioned above.

The method of this paper belongs to the first kind, namely that it attempts to select a new
test subset to replace the original test set for DNN model testing.

1.2 Multi-objective optimization
Multi-objective Optimization Problems (MOPs) can be seen in many scenarios of daily life,

such as job planning[31] and financial portfolio management[32], which involve the simultaneous
optimization of multiple objectives. Due to conflicts among some optimization objectives, a
MOP may not have an optimal solution but a group of compromised solutions (namely, a Pareto
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optimal solution set). Its formal definition is expressed as[33]

opt
x∈S⊂R

f(x) = opt (f1(x), f2(x), · · · , fM (x)) (1)

where x is an S-dimensional decision vector in the search space; fm(x) is the mth objective to
be optimized (m = 1, · · · ,M ), and it may seek maximization (opt = max) or minimization
(opt = min); M is the total number of optimization objectives. In addition, for MOPs, some
related terms[34] are defined as follows.

Definition 1 (Pareto dominance). For two different solutions x1 and x2, if none of the
objectives achieved by x1 is inferior to those achieved by x2, and x1 has at least one objective
achieved superior to objectives achieved by x2, then, x1 dominates x2, or x1 has Pareto
dominance over x2.

Definition 2 (Pareto optimal solution set). The set in which all global Pareto optimal
solutions are included is called the Pareto optimal Solution set (PS).

Definition 3 (Pareto optimal front). In a Pareto optimal solution set, the image
corresponding to each solution in the objective space is called the Pareto optimal Front (PF).

Pareto-based Multi-Objective Evolutionary Algorithms (MOEAs) are generally used to
solve MOPs. These algorithms first select non-dominated solutions with good convergence
through the Pareto-dominance principle and then further select non-dominated solutions
according to density to ensure the quality of the final solution set. In the past 20 years,
researchers have proposed many MOEAs to solve MOPs, including the Non-dominated Sorting
Genetic Algorithm II (NSGA-II)[21], the Strength Pareto Evolutionary Algorithm 2 (SPEA2)[35],
and the decomposition-based MOEA (MOEA/D)[36]. In this paper, an MOEA is used for
solutions in that MOEA aims not only to find a solution close to the PF (i.e., convergence
performance) but also to find a uniformly and widely distributed solution.

2 DMOS
2.1 Research motivation

When measuring the difference in testing capabilities between a selected test subset and the
original test set, existing methods usually only consider the overall accuracy of the test sets, which
will make the selected test subset lose other test properties of the original test set. According to
the test results, although the test subsets selected by the existing methods can accurately estimate
the overall accuracy of original test sets under different numbers of selections, they are likely
to miss some categories of test input in the original test sets and have large errors in accuracy
estimation of the test input of various categories covered. For example, when PACE[17] runs on
the test object constructed by the CIFAR100 test set and the ResNet20 model, in the case of the
sampling quantity accounting for 1.5% of the original test set, the overall accuracy estimation
error is only 3.9%. However, in such a case, the selected test subset omits 28% of the test input
categories in the original test set, and the average error in the accuracy estimation of the test input
of various categories reaches 43%. Therefore, under the only consideration of overall accuracy,
the selected test subsets probably fail to effectively represent the original test sets. Feasible test
set replacement means that selected subsets should have multiple attributes and characteristics
of the original test sets, including similar sample diversity. In recent years, many techniques for
measuring the diversity of test sets have emerged in traditional software testing[37], and these
studies show that the effectiveness of test sets benefits from the diversity of samples to a great
extent. Thus, from the point of view of ensuring sample diversity and model testing effects, we
believe that the selected new test subsets should not only cover test input categories in original



Mu YZ, et al. Deep learning test optimization method using ... 409

test sets as many as possible but also ensure approximate accuracy to original test sets in each
category.

Given the above analysis, we hope that test subsets selected by DMOS can cover as many
test input categories in original test sets as possible and precisely estimate the accuracy of the
test input of various categories. In order to obtain such properties, DMOS first estimates the
distributions of the test input of various categories in original test sets through a clustering
algorithm. Then, with the optimization objective of minimizing the difference between various
clusters in terms of distribution of data in various categories, DMOS uses a multi-objective
optimization algorithm for solutions and finally obtains approximate optimal selection schemes
close to expected objectives.

2.2 Problem modeling
The existing methods generally assess the test capability difference between original test

sets and test subsets on the basis of the overall accuracy of the test sets. DeepReduce proposed by
Zhou et al.[16] attempts to use multiple optimization objectives as the basis for quality assessment
of a selected subset. The research problem is modeled below.

Definition 4 (modeling of DL test input selection based on multi-objective optimization).
For a DNN model M to be tested and an original unlabeled DL test set T , we denote
f1(T,M), f2(T,M), · · · , fs(T,M) as s objective functions to assess the performance of M
over T ; let T ′ be the selected test subset. Then, the DL test input selection aims to make T ′,
with ∥T ′∥ ≪ ∥T∥:

f1(T,M) ≈ f1(T
′,M), f2(T,M) ≈ f2(T

′,M), · · · , fs(T,M) ≈ fs(T
′,M).

During the specific implementation of DMOS, as the original test data are unlabeled, the
labels predicted by the DNN model to be tested are used to distinguish test input categories.
After the clustering of the original test set, iterative problem solving is conducted with the sum
of errors in the proportions of the different categories of data in the corresponding clusters of
both the original test set and the test subset as the optimization objective. This aims to reduce the
distribution difference of the same cluster between the two sets to ensure consistent distributions
of the two sets. If optimization objectives are designed directly according to model-predicted
label categories without the use of the clustering method, the accuracy of the DNN model to
be tested will affect the performance of the method (a low-precision model will have a large
deviation in estimated categories by test input in the original test set). The clustering method
can preliminarily estimate the samples of each category in the original test set without labels.
Thus, the purpose of using such a method is to correct deviations caused by DNN models
of different precision so that subsequent multi-objective optimization can be carried out with
relatively reliable data. The multi-objective optimization through DMOS can be expressed by
the following MOP:

min yk = Ratiodiff(x, clusterk) ∀k ∈ {1, . . . ,m}
s.t. x = (x1, . . . , xn)

xi ∈ [1, 100] ∀i ∈ {1, . . . , n}
(2)

where x is an n-dimensional vector (n is the size of the original test set); it represents a specific
selection scheme for the original test set, and each element of the vector represents the weight
of selecting the test input at the corresponding position, which is a real number between 1 and
100. According to the number of selections specified by users, several elements with the largest
weights are selected by sorting to form a new test subset. clusterk represents the kth cluster
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after the clustering of the original test set:

Ratiodiff(x, clusterk) =

L∑
i=1

|li − l′i| (3)

Suppose that m clusters are formed after the clustering; yk represents the sum of the differences
between the test subset selected by the selection scheme x and the original test set in proportions
of the test input of each category in Cluster k. It can be calculated by Eq. (3), where L is the
total number of different categories in the original test set, predicted by the DNN model to be
tested; li represents the proportion of the samples belonging to Category l to the total samples of
Cluster k in the original test set, while l′i represents that in the test subset. Specifically, assume
that the DNN model to be tested predicts 10 categories in the original test and that there are 100
test input samples in Cluster 1 of the original test set after clustering; the number of samples
belonging to the 10 model-predicted categories in Cluster 1 of the original test set is 65, 5, 3,
1, 5, 1, 5, 5, 5, and 5, with the corresponding proportions being 65%, 5%, 3%, 1%, 5%, 1%,
5%, 5%, 5%, and 5%, respectively. Cluster 1 in the test subset formed according to population
individuals only contains 10 test input samples, and the number of samples belonging to the 10
model-predicted categories in Cluster 1 of the test subset is 0, 0, 1, 9, 0, 0, 0, 0, 0, and 0 (namely
that only two categories of test input samples are selected), with the corresponding proportions
being 0%, 0%, 1%, 9%, 0%, 0%, 0%, 0%, 0%, and 0%, respectively. Thus, the calculated
optimization objective of Cluster 1 is 1.06, i.e., the sum of the absolute values of differences
between the two sets in proportions of data of various categories. Optimization objectives of
other clusters can be calculated similarly.

During the optimization, we hope that the multi-objective optimization algorithm can
effectively coordinate the relationship between corresponding optimization objectives of each
cluster so that the obtained selection scheme can make the data distribution of the generated
test subset as close as possible to that of the original test set in each cluster. Intuitively, DMOS
is to estimate the data distribution of the original test set by clustering and then employ multi-
objective optimization to continuously reduce the distribution difference between the selected
test subset and the original test set, so as to ensure the similarity of their properties.

2.3 Algorithm process
2.3.1 Overall framework: a brief introduction to input and output parameters and the overall

process
The input of DMOS includes a DNN model D to be tested, an original test set T containing

a total of t test input samples, and the number n of test input selections specified by users. First,
DMOS uses the test input features extracted by D from T as the basis for clustering. Then,
it iteratively finds a selection solution with Pareto optimality by using the predicted results of
D as the category labels of the test input and optimizing the difference between the test subset
and the original test set in the proportions of data of various categories in each cluster. Finally,
the method returns a selected test subset X from T according to users’ test requirements. The
specific process of DMOS is shown in Algorithm 1, and the workflow is illustrated in Fig. 1.
2.3.2 Data preprocessing: feature extraction, feature dimension reduction, feature value

standardization, etc.
DMOS first extracts the feature representation of each test input sample (Lines 2–4 in

Algorithm 1) and then executes preprocessing operations such as feature dimension reduction
and feature value standardization (namely, Min-Max normalization) (Line 5). As data in T is not
labeled, to distinguish categories among different test input samples during selection, DMOS
uses predicted results of D as category labels of test input samples in T (Line 6).
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Algorithm 1. Process of DMOS.
Input: a DNN model D to be tested;

an original test set T from which samples are to be selected, with its size denoted as st ;
the number of samples selected from T specified by users, denoted as n.

Output: a new sample set X formed by selection of size n.
1. X ← ∅
2. foreach ti in T do
3. fi ← extractFeatures(ti, D) //Extract feature vectors of test input
4. end foreach
5. {f ′

1, f
′
2, · · · , f ′

st} ← Preprocess(f1, f2, · · · , fst) //Preprocess feature vectors of test input
6. predictLabels← D.predict(T ) //Obtain predicted labels of all test input samples in T
7. G ← {g1, g2, · · · , gm} ← cluster(f ′

1, f
′
2, · · · , f ′

st) //Classify all test input samples into m
clusters according to their feature vectors

8. totalLabelsProportion ← ∅ //Store the proportions of samples of each category in all clusters to
the total samples of the current cluster

9. foreach gk in G do
10. singleClusterProportion ← ∅ //Store the proportions of samples of each category in a single

cluster to the total samples of the current cluster
11. foreach l in Set(predictLabels) do
12. singleClusterNums← Where(gk == l).size()
13. singleClusterProportion.append (singleClusterNums|gk|)
14. end foreach
15. totalLabelsProportion.append (singleClusterProportion)
16. end foreach
17. Iters ← 50, NIND ← 50, M ← m //Set the number of evolutionary iterations, population size,

and number of optimization objectives
18. Population←Random.round(NIND, st) //Initialize the population matrix randomly
19. NDSet←NSGA-II (Population, Iters, M , @Fitness) //Execute multi-objective optimization and

storing the Pareto solution set into NDSet
20. X .add(Convert(NDSet, n)) //Users determine the selection solution according to their needs and

add selected test input samples into X
21. returnX

m m

Figure 1 Flow of DMOS

2.3.3 HDBSCAN: hierarchical clustering of data for sampling

DMOS employs HDBSCAN[18] to cluster the original test set to evaluate its data distributions
preliminarily, thus preparing for later sampling. The reasons for using HDBSCAN can be
summarized as follows.

(1) As it is difficult to predict the real categories of test input in a test set, clustering algorithms
requiring the known number of clusters in advance are not applicable, such as the K-
means algorithm[38]. HDBSCAN does not require a preset number of clusters, and its
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clustering is not density-based.
(2) The effectiveness of HDBSCAN has been verified[18], and thus better clustering results

can be obtained by this method.
(3) Only few parameters need to be set in HDBSCAN[18].

Given the previously preprocessed feature vectors of test input, DMOS employs HDBSCAN
for soft clustering, dividing T into m clusters of different sizes (Line 7). Then, it calculates
the proportions of data of various categories in these clusters in the original test set to prepare
for later calculation of optimization objectives (Lines 9–16). Specific operations are as follows:
traverse the cluster set G, and every time a new cluster gk is traversed, calculate the proportions
of data of different categories in gk (Lines 10–14); store results in totalLabelsProportion (Line
15).
2.3.4 Multi-objective optimization: operation parameter initialization and solution processing

After the parameters of the original test set are calculated, basic parameters of multi-
objective optimization are set (Line 17), including the number of evolutionary iterations Iters,
the population size NIND, and the numberM of optimization objectives (asm clusters are formed
by HDBSCAN in this method, m optimization objectives are produced). Then, Population (Line
18) is initialized randomly. In DL test input selection, any individual in the Population is an
st-dimensional vector, representing a specific selection solution for the original test set. Any
element in this vector is a real number between 1 and 100, representing the weight of selecting the
test input in this position. Upon the determination of the final selection solution, the individual
vector elements are sorted in descending order, and the test input samples in the first n positions
with the largest weight are taken to construct the new test subset. The classical algorithm
NSGA-II[21] in multi-objective optimization is used to solve the above problems. Similarly
to other multi-objective genetic evolutionary algorithms, NSGA-II first randomly generates an
initial population of a certain size. Then, it obtains the first generation of the child population
through the three basic operators of selection, crossover, and mutation after the non-dominated
sorting of individuals in the population. From the second generation, the parent and child
populations are merged into a new generation for fast non-dominated sorting; meanwhile, the
crowding degree of individuals in each non-dominated layer is calculated, and appropriate
individuals are selected according to the non-dominance relationship and individual crowding
degree to form a new parent population. After that, a new child population is generated by
the basic operators. When the specified number of iterations or other specified conditions are
reached, the iteration will be terminated, and a PS is returned. The reasons for using NSGA-II in
DMOS are summarized as follows: (1) the elitist strategy is introduced to process individuals,
where parent and child populations compete together to produce new individuals. This expands
the sampling space and ensures the quality of individuals; (2) fast non-dominated sorting is
proposed to reduce the time complexity of algorithm running; (3) the crowding degree and
its comparison operator are introduced, which makes up for the defect of requiring manual
designation of shared parameters and enables uniform convergence of population individuals,
effectively ensuring population diversity. Once NSGA-II terminates, the obtained PS is stored
in NDSet (Line 19 in Algorithm 1). In the end, users can determine the final selection solution
according to their test needs, and the selected test subset corresponding to the Pareto optimal
solution is stored in X (Line 20) and then returned (Line 21).
2.3.5 Fitness function design: establishing the function relationship between optimization

objectives and populations
Fitness function design is a key step in solving multi-objective optimization, namely, the

calculation of optimization-objective values corresponding to individuals in a population. In
DL test input selection, the fitness function of DMOS is shown in Algorithm 2, whose input
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Algorithm 2. Fitness (calculation of fitness function).
Input: the total population to be optimized, Population;

the proportion of each category in each cluster to the current cluster after clustering of the
original test set T , totalLabelsProportion;
user-specified number of samples to be selected from the original test set, n;
category of each sample in the original test set T predicted by the model to be tested,
predictLabels.

Output: optimization-objective values Objvalues corresponding to all individuals in a population,
with a size of NIND×M .

1. clusterIndex← 0
2. labelNums← predictLabels.size()
3. Objvalues← ∅
4. foreach Individual in Population do
5. T ′ ←argsort(Individual)[:n] //By sorting, select the samples in the first n positions with the

largest weight to form a new test subset T ′

6. totalProportionErrors← ∅ //Store the optimization-objective value of each individual
7. G′ ← {g1, g2, · · · , gt} ← GetNew{T ′, G} //Obtain clusters corresponding to the selected

subset T ′, where t ≤ m
8. foreach i in range(0, |G|) do
9. if G[i] not in G′ then //If no sample in Cluster G[i] is selected in G′

10. totalProportionErrors.append(sum(totalLabelsProportion[clusterIndex]))
11. clusterIndex+ = 1

12. else
13. s← ∅
14. foreach l in Set(predictLabels) do //Calculate the proportion of samples of each

category in G′[i] to total samples of G′[i]
15. singleClusterNums←where(G′[i] == l).size()
16. s.append(singleClusterNums/|G′[i]|)
17. end foreach
18. //Calculate the errors in proportions of each category in the same cluster of the original

set and the subset
19. e← [abs(totalLabelsProportion[clusterIndex][j]−s[j]) for j in range(0, labeNums)]
20. clusterIndex+ = 1
21. totalProportionErrors.append(sum(e)) //Calculate the sum of errors in proportions of

all categories in the current cluster of the original set and the subset
22. end if
23. end foreach
24. Objvalues.append(totalProportionErrors)
25. end foreach
26. return Objvalues

parameters include the total population Population to be optimized, the original test set T , the
proportion totalLabelsProportion of data of various categories in each cluster after clustering,
the number n of selections specified by users, and the category label set predictLabels predicted
by the DNN model D to be tested. It finally returns the set Objvalues of optimization-objective
values of all individuals in the population. The specific solving process is as follows. The
population is traversed (Line 4), and its elements are sorted according to their values. The
top n test input samples with the largest weight are selected to form a new test subset T ′

(Line 5 in Algorithm 2), where the clustering information of test input in T ′ is denoted as
G′ = {g′1, g′2, · · · , g′t}, with t ≤ m (Line 7). Then, each cluster in G is traversed (Line 8 in
Algorithm 2). If G′ contains no samples of G[i], the optimization-objective value of Cluster
G[i] is directly denoted as the sum of the proportions of the various categories in G[i] in the
original test set (Lines 9–11); otherwise, the proportions of samples of various categories in
Cluster G′[i] are computed (Lines 14–17). After that, the differences between Clusters G′[i]
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and G[i] in the proportions of samples of various categories are calculated, the absolute values
of which are recorded in e (Lines 18–19). Finally, the sum of all elements in e is recorded as
the optimization-objective value corresponding to Cluster G[i] (Line 20). Each optimization-
objective value of an individual after each solving is stored in Objvalues (Line 23), which will
be returned after all individuals have been considered (Line 25).

3 Test Design and Result Analysis
3.1 Introduction to test objects

The test objects studied in this paper includ DL test sets and DNN models to be tested. We
use eight test objects, the combinations of the DL test sets and the DNN models of classification
tasks, as the smallest units of testing and evaluation analysis. Table 1 lists the details of the
models and test sets used. In this table, the last four columns show the size of the DNN models
to be tested, the size of the DL test sets (including the number of test input samples), the
overall accuracy of models over the test sets, and the number of different test-input categories
contained in the test sets. As the actual application of DL is complex, we attempted to construct
a comprehensive test benchmark during our research.

Table 1 DNN models and relevant test sets

ID Test set Model Model
size (KB)

Number of test
input samples

Overall
accuracy (%)

Number of
categories

1
MNIST

LeNet1 113 10,000 94.86 10
2 LeNet4 947 10,000 96.79 10
3 LeNet5 1,093 10,000 98.68 10
4 CIFAR10 VGG16 21 814 10,000 78.71 10
5 ResNet20 3,507 10,000 91.45 10
6 CIFAR100 ResNet20 10,615 10,000 71.42 100
7 ImageNet VGG19 562,176 50,000 64.73 1,000
8 Speech-Commands DeepSpeech 6,734 6,471 94.53 30

Note: The precision of the ImageNet-based model in our study is lower than that in Ref. [41] in that the
preprocessing method used in our study is slightly different from that in Ref. [41]. More specifically,
to obtain the input images with a fixed size of 224×224 from ImageNet, Simonyan et al.[41] randomly
cropped the images from the rescaled ones, while we resized the images according to the method provided
by the official examples of Keras without image cropping.

3.1.1 DL test sets

DNN models used in the testing were trained by five popular datasets (namely, MNIST,
CIFAR10, CIFAR100, ImageNet, and Speech-Commands). These datasets have widely been
used in existing studies[11, 27, 39] and have also been used to generate adversarial data[40] to test
DNN models in some studies. Specifically, MNIST (http://yann.lecun.com/exdb/mnist/) is a
dataset on the identification of handwritten digits (numbers 0–9, with a total of 10 categories).
CIFAR10 (http://www.cs.toronto.edu/~kriz/CIFAR.html) is a dataset containing 10 categories
of universal objects (airplanes, cars, birds, etc.) in the real world. CIFAR100 is similar to
CIFAR10, but it contains more real objects than CIFAR10, with 100 categories of real objects
in total. ImageNet (http://www.image-net.org) is an image dataset organized according to the
WordNet hierarchy (containing 1,000 different categories of images). Speech-Commands[39] is
a dataset of speech recognition, which contains a set of WAV-formatted audio files with a length
of about 1 s collected by crowd-sourcing; each file contains only one spoken English word.

3.1.2 DNN models to be tested

As for the types of DNN models to be tested, this paper first considers two types of
DNN models with different precision, namely, high-precision and low-precision models. Here,

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/CIFAR.html
http://www.image-net.org


Mu YZ, et al. Deep learning test optimization method using ... 415

models with overall accuracy of more than 80% are called high-precision models; otherwise,
they are called low-precision models. We use two low-precision models of the real world,
namely, the CIFAR100-based ResNet20 model and the ImageNet-based VGG19 model. In
addition, this paper mainly focuse on DNN models that are based on classification tasks.
For example, DeepSpeech is a multi-label classification model (its predicted results are not
definite category labels but a sequence of phonemes), while others are single-label classification
models (their predicted results are determined category labels). Most of the DNN models
used in the testing are CNN models, and only DeepSpeech (https://github.com/bjtommychen/
Keras_DeepSpeech2_SpeechRecognition) is an RNN model.

3.2 Introduction to evaluation indicators and contrast methods
3.2.1 Evaluation indicators

• Accuracy estimation error (overall accuracy and accuracy of test input of each category)
Accuracy refers to the proportion of samples correctly classified by a model to be tested

to total samples in the test set. In the previous methods for DL test input selection, researchers
usually focus on whether the overall accuracy between test subsets and original test sets is similar
to measure the similarity between their test capabilities. In this paper, the focus is also given
to category information, namely, the accuracy of the test input of various categories. Thus,
absolute values of the differences between original test sets and test subsets in overall accuracy
and accuracy of the test input of various categories are taken as the criteria to measure the
similarity between the test properties of the two sets.

• Coverage estimation error
In recent years, researchers have proposed many test coverage indicators to measure the

test adequacy of DNN models[25, 26, 42]. In this study, we use five neuron-coverage indicators to
measure that. The first indicator is DeepXplore’s NC (DNC) proposed by Pei et al.[26], which
can be calculated by the ratio of activated neurons (if the output value of a neuron is greater
than a preset threshold after test input execution, the neuron is considered to be activated) to
total neurons in a DNN model to be tested. The remaining four indicators are multi-granularity
NC metrics proposed by Ma et al.[25], i.e., top-K NC (TKNC), K-multisection NC (KMNC),
neuron boundary coverage (NBC), and strong neuron activation coverage (SNAC). Specifically,
TKNC is a metric of layer-level NC, which can be calculated by the proportion of the first k
neurons in each layer arranged in descending order of output values after execution of test input
to the total neurons. KMNC first divides the output range of each neuron into k sections from
the training data. If the output value of a neuron (the output range of the neuron n is denoted as
[a, b]) falls into a specific section after execution of the next test input, this section is considered
to be covered. Thus, this metric calculates the proportions of covered sections by all neurons.
Unlike KMNC, NBC considers the coverage of the outer regions of neuron output (i.e., (−∞, a)
and (b,+∞)) after the execution of test input. SNAC only considers the coverage of the outer
region (i.e., (b,+∞)) of upper bounds after the execution of test input. In this paper, we take
the absolute values of the differences between original test sets and selected test subsets in these
five test coverage indicators as criteria to measure the similarity of their test properties.

• Inverted generational distance (IGD)
Accuracy and coverage mainly assess performance under the scenario of DL test input

selection. For an effective assessment of Pareto solutions returned from DMOS, IGD[36] is used
as an evaluation indicator. It calculates the average Euclidean distance between all solutions
in the theoretical PF and those in the Pareto front obtained by the multi-objective optimization
algorithm to be evaluated (namely that the difference between solutions from the method to be
evaluated and theoretically optimal ones). A smaller IGD indicates that the PS obtained by the

https://github.com/bjtommychen/Keras_DeepSpeech2_SpeechRecognition
https://github.com/bjtommychen/Keras_DeepSpeech2_SpeechRecognition
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algorithm to be evaluated is closer to the theoretically optimal solution, with a more uniform
distribution. It also indicates that this algorithm has better convergence and diversity.

• Statistical test method
To verify whether there is a statistically significant difference in test results of various

selection methods, we use the Wilcoxon signed-rank test method[43] to analyze the test results. It
is a nonparametric hypothesis test method for testing whether median deviations of paired data
satisfy the null hypothesis. In this paper, given the confidence of 0.05, the null hypothesis is
rejected when the calculated p is less than 0.05, which means a statistically significant difference
between the two groups of test results, and the null hypothesis is accepted when it is greater than
0.05, which implies that the difference between the two groups of test results can be ignored. On
this basis, we also use the “Win/Tie/Loss” test method to compare the performance of different
selection methods. This test method has been widely used in many traditional studies[44–46],
where “Win” means that our method is significantly better than PACE under the confidence of
95%; “Tie” means that there is no statistically significant difference between our method and
PACE, and “Loss” refers to other cases. In addition, the Scott-Knott ESD test[47] is also employed,
which is widely used to analyze the superiority of some methods over others and can rank these
methods globally. It ensures that there is no statistically significant performance difference
between methods of the same group but a statistically significant performance difference between
methods of different groups. Results of the Scott-Knott ESD test are plotted as box plots (shown
in Figs. 2–7). In these figures, method groups with a statistically significant difference are
separated from others by a dotted line, and methods in groups on the same side of the dotted
line have no statistically significant difference.

Figure 2 Scott-Knott ESD test results of overall accuracy estimation error

Figure 3 Scott-Knott ESD test results of NC estimation error
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Figure 4 Scott-Knott ESD test results of NBC estimation error

Figure 5 Scott-Knott ESD test results of SNAC estimation error

Figure 6 Scott-Knott ESD test results of TKNC estimation error

3.2.2 Comparison methods

PACE[17] is a newly proposed method for DL test input selection. As it has been
comprehensively compared with the existing methods (CES, etc.) in previous studies, this
study use it as a contrast method. The input of PACE includes a DNN model to be tested, a
test set to be labeled, and the user-specified number of selections. For the whole test set, some
test input samples have similar test capabilities, while others have different ones. Therefore, the
test subset selected by PACE should cover various types of test capabilities of the original test
set, so as to better represent the original test set. First, PACE converts each test input sample
into a feature vector through feature extraction and pre-processes the vector through feature
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Figure 7 Scott-Knott ESD test results of KMNC estimation error

value normalization or feature dimension reduction. Then, these test input samples are divided
into several normal-point and abnormal-point clusters by clustering. After that, PACE defines a
threshold to determine the proportions of sampling from these clusters and then determines the
number of samples. On this basis, prototype selection based on MMD-Critic[19] and adaptive
random selection[20] is used for sampling in normal-point clusters and outlier space, respectively.
Finally, a new test subset is constructed, which is the output of PACE. Developers can just label
this set of data to complete model testing, thus greatly saving testing costs.

To comprehensively evaluate the performance of DMOS from multiple perspectives, we
also design several variants of DMOS for research.

(1) DMOS-Nocluster. Without clustering, this method directly takes the difference between
the original test and the selected test subset in the proportions of the test input of different
categories as the optimization object for solutions. In the obtained PS, the solution with
the minimum average error in the accuracy estimation of test input of various categories
is taken as the final selection solution. Similarly, we also evaluated the performance of
the final selection solution through indicators such as overall accuracy and test coverage
to analyze the contribution of clustering to DMOS.

(2) DMOS-Median. In this method, the median of errors in the accuracy estimation of the
test input of various categories in the PS obtained by DMOS is selected as the result.

(3) DMOS-Best. In this method, the solution with the minimum average error in accuracy
estimation of the test input of various categories in the PS obtained by DMOS is selected
as the result.

(4) RandomSearch. In this method, a random search strategy is adopted for the evaluation
and selection functions to make decisions (which means its random search directions of
optimization). Then, the final selection solution is obtained after a specified number of
evolutions. This method is mainly designed to evaluate the performance of DMOS from
the view of multi-objective optimization, and hence, IGD is mainly employed to evaluate
the optimization effect and solution-set quality of this method and DMOS. On this basis,
the contribution of multi-objective optimization to DMOS is analyzed.

(5) EA-Best. This method directly takes the accuracy estimation errors of test input in each
real category of the original test set and the selected test subset as optimization objectives,
which tries several groups of parameters and uses NSGA-II for solutions. EA-Best is
designed to explore the limit cases of the accurate coverage of test input in various
categories under multi-objective optimization, and thus, the solution with the minimum
average error in accuracy estimation of the test input of various categories is selected every
time as the result. Although solutions obtained by EA-Best are not theoretically optimal,
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results reveal that there is little performance difference under different test parameters.
Therefore, we can believe that solutions obtained by EA-Best are close to theoretically
optimal ones and can be used as benchmarks for the comparison with DMOS.

3.3 Experimental setup
DMOS was implemented in Python 3.7.4, and features were extracted from DL test

sets in test objects by Keras 2.3.1[48] and TensorFlow 1.15.0[49]. In addition, algorithms for
feature dimension reduction, clustering, and multi-objective optimization were used during the
implementation, which are provided by Python’s mature frameworks Scikit-learn 0.23.1[50],
HDBSCAN 0.8.26[51], and Geatpy 2.6.0[52], respectively. Parameters involved in DMOS mainly
include those of clustering, dimension reduction, feature types, and multi-objective optimization.
The first three groups of parameters jointly affect the clustering effect, while the last group
of parameters directly affects the quality of the final Pareto solutions. It is expected that
clustering can effectively distinguish different categories of test input samples and that each
cluster should have as few different categories as possible. For different test objects, both
clustering and dimension-reduction parameters were set according to recommendations in PACE.
The optimal setting of feature-type parameters was –1, which means they are the last output-layer
parameters of the model. Parameters of multi-objective optimization mainly include the number
of evolutionary iterations and the total number of populations, in which the former determines
the timing of convergence, and the latter determines the scope of search space, and both were
set to 50. For the implementation and parameter setting of other selection methods, we followed
the recommendations of the existing work[17].

To present obvious errors in accuracy estimation of the test input of various categories in
different test objects under different numbers of selections, we made the following settings. For
all test objects with 10 categories, the number of selections varied from 55 to 205, with an
iteration step size of 10. For test objects with 100 categories, the number of selections varied
from 350 to 2,050, with an iteration step size of 100. For test objects with 1,000 categories, the
number of selections varied from 500 to 20,500, with an iteration step size of 1,000. For the
Speech-Commndstest set, the number of selections varied from 22 to 1,590, with a step size of 64.

All the tests were carried out on an Intel Xeon E5-2640 server Ubuntu 18.04.2 as operating
system and 128 GB of memory.

3.4 Research questions
Starting with the following research questions, we carried out corresponding analytical tests

to verify the effectiveness of DMOS.
• RQ1: Can DMOS ensure that the selected test subsets are similar to the original test sets

regarding the accuracy estimation of the test input of various categories?
A selected test subset should not only cover as many categories of its original test set as

possible but also ensure the similarity with the original test set in terms of the accuracy of the test
input of various covered categories, which is of great significance for the subset to maintain test
properties of the original test set. The existing methods give priority to the difference between
test subsets and original test sets in overall accuracy during selection. As a result, they are very
likely to ignore the accuracy of the selected test subset on the test input of various categories.
Thus, this research question is expected to analyze whether DMOS, compared with the existing
methods, can effectively ensure that the selected test subsets can estimate the accuracy of the
test input of various categories more precisely.

• RQ2: Can the test subsets selected by DMOS have test capabilities similar to those of
the original test sets in terms of overall accuracy and test coverage?
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Apart from the accuracy estimation of the test input of various categories, in previous
studies, overall accuracy and some test coverage indicators[16] were often used to measure the
difference between selected test subsets and original test sets in test properties. Therefore, a
high-performance selection method should not only ensure that selected test subsets are close
to original test sets in terms of the accuracy estimation of the test input of various categories
but also produce small estimation errors of the overall accuracy and test-coverage indicators.
Regarding this research question, we want to analyze whether DMOS can maintain the test
capabilities of the selected test subsets closer to those of the original test sets more effectively
than other methods from the perspective of other evaluation indicators.

• RQ3: How much do clustering and multi-objective optimization contribute to DMOS?
The two most critical steps of DMOS are clustering and multi-objective optimization.

The former aims to estimate the distribution proportions of various data in the original test
sets preliminarily when no real labels are available, thereby laying a good foundation for later
optimization sampling. The latter endeavors to continuously make the data distribution of the
selected test subsets closer to that of the original test sets on the basis of clustering. Therefore,
this research question is expected to analyze the contribution degree of the two critical parts to
the final performance of DMOS.

• RQ4: How much is the runtime overhead of DMOS?
The existing DL test input selection methods are developed to reduce the original unlabeled

datasets and thus cut the costs of labeling and testing by researchers. Compared with the time
overhead required for these tasks, execution costs of the existing selection methods are negligible.
To fully study the performance of DMOS, however, we propose this question to test this method
in terms of runtime overhead and compare it with the existing methods.

3.5 Result analysis
• RQ1: Can DMOS ensure that the selected test subsets are similar to the original test sets

regarding the accuracy estimation of the test input of various categories?
(1) Design
To evaluate whether the selected test subsets could contain as many categories in the original

test sets as possible and whether various categories of the test subsets and original test sets have
similar accuracy for the DNN models to be tested, we mainly analyze the test results of DMOS-
Best, DMOS-Median, EA-Best, and PACE from the following two aspects. Firstly, we observe
the variations of average errors in the accuracy estimation of the test input of various categories
in test objects under different selection methods as the number of selections increased. On
this basis, we analyze whether these methods could make average errors converge to a smaller
range as early as possible, as well as their performance stability in terms of standard deviations.
Secondly, we use Wilcoxon signed-rank test and Win/Tie/Loss analysis to evaluate whether each
selection method could significantly reduce the errors in accuracy estimation of any category for
the same test object under different numbers of selections and then compare the performance of
the various methods.

(2) Results
Tables 2–9 list the variations of average errors in accuracy estimation of the test input of

various categories with the number of selections under the eight test objects. In each table, the
first column refers to the number of selections, and the elements in parentheses for the second to
sixth column are the mean and the standard deviation of errors in the accuracy estimation of the
test input of various categories by the selection methods under different numbers of selections.
The elements with a dark gray background indicate that the performance of the corresponding
method is the best under the same number of selections, while those with a light gray background
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Table 2 Variations of average errors in accuracy estimation of test input of various categories for test
object CIFAR10-ResNet20

Number of
selections DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median

55 (0.058, 0.029) (0.191, 0.272) (0.056, 0.024) (0.054, 0.022) (0.096, 0.049)
65 (0.050, 0.022) (0.131, 0.126) (0.040, 0.025) (0.048, 0.021) (0.084, 0.036)
75 (0.051, 0.028) (0.121, 0.116) (0.049, 0.032) (0.044, 0.020) (0.083, 0.023)
85 (0.047, 0.017) (0.110, 0.121) (0.044, 0.026) (0.040, 0.023) (0.078, 0.021)
95 (0.048, 0.023) (0.116, 0.117) (0.046, 0.034) (0.041, 0.020) (0.076, 0.022)
105 (0.038, 0.027) (0.108, 0.068) (0.045, 0.036) (0.028, 0.021) (0.078, 0.033)
115 (0.039, 0.034) (0.120, 0.115) (0.034, 0.021) (0.033, 0.023) (0.063, 0.014)
125 (0.039, 0.031) (0.107, 0.115) (0.039, 0.022) (0.026, 0.024) (0.063, 0.017)
135 (0.032, 0.026) (0.085, 0.066) (0.027, 0.024) (0.032, 0.027) (0.060, 0.021)
145 (0.042, 0.031) (0.076, 0.054) (0.037, 0.032) (0.029, 0.024) (0.062, 0.014)
155 (0.043, 0.036) (0.072, 0.057) (0.037, 0.037) (0.024, 0.021) (0.061, 0.017)
165 (0.036, 0.025) (0.065, 0.049) (0.025, 0.019) (0.021, 0.019) (0.052, 0.019)
175 (0.030, 0.022) (0.051, 0.044) (0.028, 0.033) (0.023, 0.022) (0.053, 0.015)
185 (0.027, 0.030) (0.047, 0.046) (0.027, 0.020) (0.021, 0.018) (0.045, 0.019)
195 (0.037, 0.043) (0.047, 0.041) (0.031, 0.019) (0.023, 0.017) (0.055, 0.017)
205 (0.037, 0.027) (0.044, 0.042) (0.019, 0.022) (0.017, 0.016) (0.046, 0.010)

Table 3 Variations of average errors in accuracy estimation of test input of various categories for test
object MNIST-LENET1

Number of
selections DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median

55 (0.039, 0.024) (0.078, 0.058) (0.037, 0.018) (0.035, 0.018) (0.076, 0.033)
65 (0.038, 0.029) (0.071, 0.054) (0.038, 0.023) (0.037, 0.021) (0.057, 0.033)
75 (0.041, 0.021) (0.076, 0.082) (0.037, 0.018) (0.033, 0.021) (0.061, 0.033)
85 (0.029, 0.020) (0.075, 0.087) (0.035, 0.017) (0.036, 0.018) (0.064, 0.033)
95 (0.036, 0.019) (0.073, 0.088) (0.038, 0.025) (0.030, 0.023) (0.053, 0.024)
105 (0.033, 0.023) (0.070, 0.089) (0.031, 0.017) (0.029, 0.019) (0.061, 0.033)
115 (0.035, 0.027) (0.067, 0.090) (0.030, 0.018) (0.030, 0.013) (0.050, 0.020)
125 (0.034, 0.022) (0.074, 0.089) (0.031, 0.024) (0.022, 0.016) (0.049, 0.021)
135 (0.031, 0.024) (0.076, 0.088) (0.027, 0.021) (0.022, 0.015) (0.046, 0.020)
145 (0.030, 0.024) (0.082, 0.105) (0.028, 0.026) (0.022, 0.027) (0.041, 0.020)
155 (0.028, 0.023) (0.079, 0.106) (0.025, 0.017) (0.019, 0.013) (0.045, 0.021)
165 (0.023, 0.026) (0.069, 0.085) (0.029, 0.025) (0.016, 0.013) (0.045, 0.022)
175 (0.027, 0.022) (0.065, 0.076) (0.024, 0.019) (0.012, 0.008) (0.039, 0.016)
185 (0.021, 0.017) (0.064, 0.061) (0.014, 0.010) (0.014, 0.012) (0.039, 0.023)
195 (0.020, 0.018) (0.064, 0.060) (0.019, 0.012) (0.016, 0.016) (0.043, 0.015)
205 (0.020, 0.023) (0.063, 0.072) (0.025, 0.024) (0.013, 0.016) (0.041, 0.019)

indicate that the performance of the corresponding method is the second best. In terms of the
average errors in the accuracy estimation of the test input of each category, for test objects with
10 categories (see Tables 3, 4, and 6), as too few test-input categories are in the test sets, the
average estimation errors of the selected test subsets have begun to converge to a small range
when the samples of DMOS-Best and DMOS-Median account for 0.7% of the original test sets.
Although PACE has also begun to converge, it has a significantly higher average estimation error
than other methods. As shown in Tables 2–5, DMOS-Median converges to a small error range
earlier than PACE regarding test objects No. 3 and No. 5, but its advantages are no longer obvious
with the increase in the number of selections. For the test object with 100 categories (the test
object No. 6), as shown in Table 7, the test subsets selected by DMOS-Best and DMOS-Median
before convergence can always maintain lower average estimation errors than that by PACE, and
DMOS-Best and DMOS-Median reach convergence ranges earlier (when the number of samples
is about 8% of the original test set). Although the estimation error range of DMOS-Median after
convergence is of little difference from that of PACE, DMOS-Median is still superior to PACE
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Table 4 Variations of average errors in accuracy estimation of test input of various categories for test
object MNIST-LENET4

Number of
selections DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median

55 (0.032, 0.028) (0.052, 0.048) (0.025, 0.012) (0.026, 0.015) (0.046, 0.028)
65 (0.023, 0.015) (0.050, 0.045) (0.022, 0.016) (0.046, 0.055) (0.041, 0.028)
75 (0.022, 0.016) (0.042, 0.038) (0.022, 0.016) (0.023, 0.016) (0.049, 0.028)
85 (0.023, 0.014) (0.048, 0.053) (0.019 0.011) (0.022, 0.014) (0.040, 0.028)
95 (0.022, 0.016) (0.043, 0.043) (0.022, 0.016) (0.024, 0.014) (0.042, 0.023)
105 (0.025, 0.014) (0.041, 0.042) (0.024, 0.013) (0.020, 0.009) (0.037, 0.027)
115 (0.027, 0.015) (0.038, 0.038) (0.022, 0.016) (0.018, 0.011) (0.037, 0.015)
125 (0.023, 0.018) (0.044, 0.034) (0.018, 0.008) (0.020, 0.007) (0.034, 0.016)
135 (0.019, 0.008) (0.041, 0.031) (0.022, 0.010) (0.017, 0.007) (0.035, 0.017)
145 (0.024, 0.013) (0.045, 0.035) (0.019, 0.010) (0.018, 0.011) (0.035, 0.015)
155 (0.017, 0.009) (0.043, 0.032) (0.020, 0.009) (0.018, 0.013) (0.034, 0.017)
165 (0.020, 0.012) (0.045, 0.040) (0.018, 0.009) (0.018, 0.008) (0.027, 0.015)
175 (0.021, 0.011) (0.048, 0.051) (0.020, 0.011) (0.015, 0.009) (0.032, 0.017)
185 (0.021, 0.011) (0.045, 0.047) (0.016, 0.009) (0.013, 0.009) (0.027, 0.016)
195 (0.018, 0.013) (0.045, 0.046) (0.014, 0.007) (0.014, 0.008) (0.031, 0.016)
205 (0.019, 0.012) (0.050, 0.046) (0.017, 0.012) (0.016, 0.008) (0.030, 0.015)

Table 5 Variations of average errors in accuracy estimation of test input of various categories for test
object MNIST-LENET5

Number of
selections DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median

55 (0.013, 0.007) (0.025, 0.038) (0.013, 0.007) (0.013, 0.007) (0.020, 0.007)
65 (0.013, 0.007) (0.023, 0.032) (0.013, 0.007) (0.013, 0.007) (0.013, 0.007)
75 (0.013, 0.007) (0.023, 0.032) (0.013, 0.007) (0.013, 0.007) (0.016, 0.007)
85 (0.013, 0.007) (0.022, 0.028) (0.013, 0.007) (0.013, 0.007) (0.020, 0.007)
95 (0.013, 0.007) (0.021, 0.025) (0.013, 0.007) (0.013, 0.007) (0.025, 0.007)
105 (0.013, 0.007) (0.021, 0.025) (0.013, 0.007) (0.013, 0.007) (0.018, 0.007)
115 (0.013, 0.006) (0.019, 0.020) (0.013, 0.007) (0.013, 0.007) (0.020, 0.007)
125 (0.013, 0.007) (0.019, 0.018) (0.013, 0.007) (0.013, 0.007) (0.019, 0.007)
135 (0.013, 0.007) (0.018, 0.015) (0.013, 0.007) (0.020, 0.016) (0.015, 0.007)
145 (0.013, 0.007) (0.017, 0.014) (0.013, 0.007) (0.013, 0.007) (0.017, 0.007)
155 (0.012, 0.005) (0.019, 0.016) (0.013, 0.007) (0.014, 0.008) (0.018, 0.007)
165 (0.013, 0.007) (0.018, 0.014) (0.013, 0.006) (0.013, 0.006) (0.019, 0.007)
175 (0.012, 0.005) (0.018, 0.013) (0.013, 0.006) (0.012, 0.005) (0.022, 0.008)
185 (0.016, 0.011) (0.017, 0.012) (0.012, 0.005) (0.012, 0.005) (0.019, 0.007)
195 (0.013, 0.006) (0.016, 0.011) (0.012, 0.005) (0.012, 0.005) (0.015, 0.007)
205 (0.012, 0.005) (0.016, 0.010) (0.011, 0.004) (0.012, 0.005) (0.019, 0.007)

after the sampling quantity reaches 16%, and its average estimation error range (6.9%–12.4%)
after convergence is still superior to that (7.5%–13%) of PACE. DMOS-Best can always maintain
its advantages over PACE, with its convergence range (5.9%–10%) of estimation errors being
much lower than that (7.5%–13%) of PACE. For the test object No. 8 (see Table 8), although
DMOS-Best outperforms PACE, DMOS-Median always falls behind PACE with the increase
in the number of selections in terms of the performance of selected test subsets. The reason
is as follows: clustering features of DMOS in the testing are the output of the last layer of
the DNN model to be tested, while the output of the last layer of the model used by the test
object No. 8 is the prediction probabilities of individual letters. These probabilities should be
further transformed to produce final prediction categories, namely, words composed of letters
with maximum probabilities. In other words, unlike other test objects, the test object No. 8
lacks a direct mapping relationship between its final test-input categories and clustering features,
which makes the clustering method fail to effectively estimate the distribution of the test input.
As a result, each test subset obtained by DMOS for the test object No. 8 performs unstably. In
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Table 6 Variations of average errors in accuracy estimation of test input of various categories for test
object CIFAR10-VGG16

Number of
selections DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median

55 (0.075, 0.081) (0.159, 0.105) (0.079, 0.055) (0.075, 0.076) (0.151, 0.046)
65 (0.070, 0.041) (0.160, 0.123) (0.060, 0.042) (0.052, 0.051) (0.131, 0.040)
75 (0.079, 0.056) (0.145, 0.112) (0.061, 0.062) (0.046, 0.034) (0.121, 0.025)
85 (0.066, 0.064) (0.155, 0.101) (0.066, 0.057) (0.051, 0.035) (0.123, 0.037)
95 (0.061, 0.031) (0.140, 0.085) (0.066, 0.041) (0.051, 0.048) (0.109, 0.027)
105 (0.056, 0.069) (0.147, 0.090) (0.060, 0.055) (0.042, 0.026) (0.097, 0.027)
115 (0.052, 0.039) (0.152, 0.109) (0.053, 0.071) (0.048, 0.039) (0.100, 0.026)
125 (0.059, 0.045) (0.130, 0.100) (0.042, 0.020) (0.041, 0.041) (0.086, 0.022)
135 (0.067, 0.057) (0.118, 0.092) (0.056, 0.047) (0.043, 0.039) (0.096, 0.036)
145 (0.053, 0.044) (0.103, 0.090) (0.031, 0.012) (0.035, 0.025) (0.086, 0.018)
155 (0.047, 0.045) (0.108, 0.097) (0.045, 0.029) (0.037, 0.026) (0.085, 0.029)
165 (0.047, 0.028) (0.091, 0.093) (0.048, 0.041) (0.030, 0.032) (0.080, 0.018)
175 (0.057, 0.061) (0.093, 0.083) (0.042, 0.044) (0.032, 0.028) (0.081, 0.021)
185 (0.039, 0.035) (0.095, 0.069) (0.028, 0.024) (0.041, 0.029) (0.070, 0.018)
195 (0.053, 0.055) (0.085, 0.065) (0.032, 0.021) (0.027, 0.021) (0.071, 0.020)
205 (0.043, 0.033) (0.080, 0.050) (0.029, 0.018) (0.028, 0.023) (0.072, 0.015)

Table 7 Variations of average errors in accuracy estimation of test input of various categories for test
object CIFAR100-ResNet20

Number of
selections DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median

350 (0.208, 0.163) (0.256, 0.202) (0.190, 0.162) (0.184, 0.145) (0.220, 0.063)
450 (0.165, 0.137) (0.214, 0.158) (0.154, 0.131) (0.157, 0.135) (0.185, 0.051)
550 (0.143, 0.122) (0.182, 0.147) (0.131, 0.110) (0.130, 0.097) (0.164, 0.041)
650 (0.127, 0.099) (0.160, 0.100) (0.117, 0.090) (0.116, 0.096) (0.146, 0.037)
750 (0.121, 0.088) (0.140, 0.098) (0.106, 0.074) (0.104, 0.083) (0.129, 0.034)
850 (0.114, 0.089) (0.130, 0.095) (0.099, 0.094) (0.092, 0.076) (0.124, 0.030)
950 (0.095, 0.073) (0.111, 0.090) (0.097, 0.079) (0.088, 0.073) (0.111, 0.027)

1,050 (0.097, 0.084) (0.105, 0.082) (0.087, 0.076) (0.086, 0.080) (0.109, 0.026)
1,150 (0.086, 0.070) (0.097, 0.081) (0.079, 0.067) (0.081, 0.063) (0.101, 0.023)
1,250 (0.090, 0.068) (0.091, 0.074) (0.083, 0.064) (0.074, 0.064) (0.094, 0.022)
1,350 (0.084, 0.070) (0.084, 0.076) (0.079, 0.065) (0.071, 0.062) (0.091, 0.019)
1,450 (0.075, 0.063) (0.084, 0.068) (0.075, 0.059) (0.070, 0.064) (0.087, 0.021)
1,550 (0.073, 0.057) (0.081, 0.065) (0.072, 0.058) (0.067, 0.062) (0.083, 0.021)
1,650 (0.077, 0.062) (0.085, 0.063) (0.069, 0.066) (0.061, 0.053) (0.079, 0.016)
1,750 (0.070, 0.059) (0.083, 0.061) (0.062, 0.052) (0.058, 0.048) (0.079, 0.022)
1,850 (0.064, 0.053) (0.077, 0.060) (0.065, 0.045) (0.062, 0.049) (0.076, 0.018)
1,950 (0.061, 0.052) (0.076, 0.060) (0.059, 0.048) (0.058, 0.052) (0.071, 0.014)
2,050 (0.058, 0.046) (0.075, 0.059) (0.059, 0.047) (0.058, 0.047) (0.069, 0.019)

future research, we will pay more attention to feature analysis of speech datasets and explore
the relationship between categories and features in such datasets to improve the performance
of DMOS. Noteworthily, in Tables 2–9, the average estimation errors of DMOS-Best change
almost the same as those of EA-Best, which indicates that there is a solution highly close to the
theoretically optimal one in the PS obtained by DMOS. Moreover, DMOS-Median outperforms
the latest selection method PACE on most of the test objects (except that it has no significant
advantage over PACE with regard to test objects No. 3 and No. 5 and is inferior to PACE on
the test object No. 8), which fully proves that DMOS can effectively ensure that its selected
test subsets can estimate the accuracy of the test input of various categories precisely. For each
selection method, without real label information, increasing the number of categories will raise
the difficulty in accurate estimation of each category. As a result, all selection methods produce
higher errors in the accuracy estimation of the test input of various categories in the case of 100
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Table 8 Variations of average errors in accuracy estimation of test input of various categories for test
object Speech-Commands-DeepSpeech

Number of
selections DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median

22 (0.420, 0.448) (0.472, 0.454) (0.324, 0.418) (0.361, 0.433) (0.535, 0.403)
86 (0.097, 0.175) (0.077, 0.084) (0.053, 0.026) (0.058, 0.041) (0.150, 0.035)
150 (0.058, 0.043) (0.061, 0.048) (0.056, 0.028) (0.050, 0.025) (0.086, 0.031)
214 (0.060, 0.032) (0.050, 0.031) (0.050, 0.031) (0.045, 0.030) (0.065, 0.026)
278 (0.046, 0.029) (0.047, 0.030) (0.044, 0.026) (0.041, 0.025) (0.061, 0.027)
342 (0.040, 0.028) (0.045, 0.030) (0.037, 0.027) (0.036, 0.030) (0.057, 0.025)
406 (0.037, 0.029) (0.039, 0.025) (0.035, 0.032) (0.027, 0.020) (0.052, 0.022)
470 (0.031, 0.028) (0.039, 0.024) (0.034, 0.026) (0.030, 0.026) (0.044, 0.021)
534 (0.029, 0.023) (0.034, 0.021) (0.025, 0.021) (0.027, 0.020) (0.040, 0.013)
598 (0.029, 0.022) (0.035, 0.028) (0.028, 0.022) (0.024, 0.018) (0.037, 0.015)
662 (0.024, 0.020) (0.032, 0.024) (0.023, 0.014) (0.023, 0.016) (0.035, 0.011)
726 (0.027, 0.020) (0.031, 0.025) (0.024, 0.020) (0.021, 0.013) (0.034, 0.010)
790 (0.023, 0.014) (0.032, 0.025) (0.022, 0.018) (0.020, 0.014) (0.031, 0.012)
854 (0.027, 0.022) (0.030, 0.026) (0.023, 0.018) (0.020, 0.016) (0.031, 0.012)
918 (0.022, 0.019) (0.029, 0.025) (0.019, 0.021) (0.019, 0.015) (0.028, 0.008)
982 (0.022, 0.016) (0.028, 0.026) (0.022, 0.016) (0.019, 0.015) (0.027, 0.010)

1,046 (0.022, 0.019) (0.027, 0.024) (0.022, 0.016) (0.018, 0.012) (0.026, 0.008)
1,110 (0.018, 0.013) (0.026, 0.023) (0.020, 0.017) (0.016, 0.013) (0.026, 0.009)
1,174 (0.017, 0.013) (0.027, 0.027) (0.019, 0.018) (0.018, 0.012) (0.027, 0.009)
1,238 (0.019, 0.017) (0.027, 0.027) (0.018, 0.012) (0.014, 0.014) (0.026, 0.008)
1,302 (0.016, 0.013) (0.023, 0.023) (0.019, 0.014) (0.016, 0.012) (0.024, 0.008)
1,366 (0.017, 0.010) (0.023, 0.022) (0.018, 0.015) (0.017, 0.014) (0.022, 0.006)
1,430 (0.017, 0.012) (0.022, 0.021) (0.018, 0.015) (0.011, 0.011) (0.022, 0.007)
1,494 (0.016, 0.015) (0.021, 0.019) (0.016, 0.010) (0.013, 0.009) (0.020, 0.006)
1,558 (0.016, 0.013) (0.020, 0.019) (0.018, 0.013) (0.014, 0.011) (0.021, 0.005)

Table 9 Variations of average errors in accuracy estimation of test input of various categories for test
ImageNet-VGG19

Number of
selections DMOS-Nocluster PACE DMOS-Best EA-Best DMOS-Median

500 (0.525, 0.241) (0.526, 0.241) (0.517, 0.241) (0.515, 0.242) (0.531, 0.216)
1,050 (0.360, 0.237) (0.376, 0.248) (0.356, 0.245) (0.361, 0.235) (0.372, 0.177)
2,050 (0.272, 0.204) (0.283, 0.215) (0.266, 0.202) (0.267, 0.207) (0.278, 0.124)
3,050 (0.212, 0.171) (0.228, 0.183) (0.209, 0.173) (0.208, 0.167) (0.220, 0.077)
4,050 (0.177, 0.148) (0.183, 0.156) (0.173, 0.141) (0.170, 0.136) (0.182, 0.063)
5,050 (0.150, 0.122) (0.159, 0.133) (0.151, 0.124) (0.149, 0.127) (0.157, 0.057)
6,050 (0.137, 0.111) (0.138, 0.114) (0.133, 0.111) (0.135, 0.113) (0.143, 0.044)
7,050 (0.119, 0.096) (0.126, 0.109) (0.117, 0.095) (0.121, 0.099) (0.127, 0.037)
8,050 (0.112, 0.092) (0.118, 0.098) (0.108, 0.088) (0.111, 0.091) (0.116, 0.034)
9,050 (0.103, 0.085) (0.111, 0.092) (0.101, 0.082) (0.101, 0.083) (0.108, 0.030)
10,500 (0.098, 0.079) (0.104, 0.086) (0.095, 0.078) (0.095, 0.080) (0.100, 0.030)
11,500 (0.092, 0.075) (0.097, 0.078) (0.090, 0.074) (0.090, 0.073) (0.094, 0.030)
12,500 (0.083, 0.069) (0.091, 0.075) (0.084, 0.068) (0.086, 0.069) (0.089, 0.025)
13,500 (0.081, 0.066) (0.087, 0.070) (0.081, 0.066) (0.080, 0.064) (0.085, 0.022)
14,500 (0.077, 0.063) (0.083, 0.067) (0.076, 0.060) (0.075, 0.061) (0.080, 0.021)
15,500 (0.074, 0.060) (0.079, 0.064) (0.072, 0.058) (0.070, 0.057) (0.076, 0.021)
16,500 (0.067, 0.055) (0.075, 0.062) (0.070, 0.057) (0.070, 0.056) (0.073, 0.020)
17,500 (0.066, 0.053) (0.072, 0.060) (0.066, 0.053) (0.066, 0.054) (0.069, 0.020)
18,500 (0.064, 0.052) (0.069, 0.058) (0.062, 0.049) (0.062, 0.052) (0.066, 0.019)
19,500 (0.061, 0.050) (0.068, 0.057) (0.060, 0.048) (0.059, 0.048) (0.063, 0.018)
20,500 (0.059, 0.048) (0.065, 0.056) (0.056, 0.044) (0.060, 0.048) (0.061, 0.018)

categories (the test object No. 6) and 1,000 categories (the test object No. 7) than in the case of 10
categories (namely that the variation ranges of the average estimation errors of various methods



Mu YZ, et al. Deep learning test optimization method using ... 425

in Tables 7–9 are higher than those in Tables 2–6), although they have much more selections in the
former case than in the latter one. In addition, each selection method covers very few categories
and quantities when no real label is available. With such an insufficient selection, all methods
have high errors in accuracy estimation of the test input of various categories (in Tables 7–9,
EA-Best that can produce solutions closest to theoretically optimal ones still performs poorly
under a small number of selections), and their performance is barely different. Nevertheless,
Table 9 shows that DMOS-Best and DMOS-Median still outperform PACE by a narrow margin,
and under the same number of selections, the test subsets selected by the two can still have
smaller average errors in the accuracy estimation of various test-input categories than those
selected by PACE. Lastly, in terms of the standard deviations of errors in accuracy estimation of
the test input of various categories, with the rise in the number of samples, the estimation errors
of all selection methods tend to be gentle, and the standard deviations are gradually decreased.
Moreover, the ranges of the standard deviations and their variations of both DMOS-Best and
DMOS-Median are smaller than those of PACE. As indicated above, test subsets selected by
DMOS can precisely estimate the accuracy of the test input of various categories more evenly
and comprehensively than those selected by PACE, with more stable performance.

Table 10 presents the results of the Wilcoxon signed-rank test combined with Win/Tie/Loss
analysis for each selection method. Specifically, Table 10 demonstrates the comparison results
of DMOS-Nocluster, DMOS-Best, EA-Best, and DMOS-Median with PACE in terms of the
accuracy estimation of the test input of various categories for the eight test objects (for each test
object, it compares the number of categories in which the four methods are significantly better
than PACE in accuracy estimation). Similar to Tables 2–9, a dark-gray shaded result in Table 10
indicates the method with the best performance on the current test object, while a light-gray
shaded one indicates the method with the second-best performance. According to Table 10,
DMOS-Best outperforms PACE in the accuracy estimation of about 50% of the categories on
all the 10-category test objects, and DMOS-Median can accurately estimate more categories
than PACE. In addition, for the 10-category test objects except No. 1 and No. 5, DMOS-Best
and DMOS-Median are not significantly inferior to PACE in terms of accuracy estimation. For
the test object No. 8 using speech data, however, DMOS-Median performs worse than PACE: it
outperforms PACE only in estimating seven categories, and its estimation performance is poorer
than that of PACE in the other 10 categories. By contrast, DMOS-Best keeps its advantages
over PACE, capable of accurately estimating more categories. This also indicates that we should
attach more importance to speech datasets in future work to improve the overall quality of the
final Pareto solution set. For test objects with 100 and 1,000 categories, as mentioned in the
previous section, the increase in categories reduces the performance difference between various
selection methods on the test objects No. 6 and No. 7. As DMOS-Median uses medians of all
solutions in the Pareto solution set, it performs more stably than DMOS-Best under different

Table 10 Win/Tie/Loss analysis of four multi-objective optimization methods versus PACE as to various
categories of eight test objects

ID DMOS-Nocluster
VS PACE DMOS-Best VS PACE EA-Best VS PACE DMOS-Median

VS PACE
1 6/3/1 8/1/1 8/1/1 4/5/1
2 3/7/0 5/5/0 6/4/0 4/6/0
3 4/6/0 4/6/0 4/6/0 3/7/0
4 7/3/0 7/3/0 7/3/0 3/7/0
5 5/4/1 4/6/0 6/4/0 2/6/2
6 23/65/12 23/64/13 23/67/10 31/42/27
7 195/655/150 208/642/150 199/653/148 277/493/230
8 7/16/7 11/12/7 11/14/5 7/13/10
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numbers of selections. Therefore, DMOS-Median can outstandingly outperform PACE in more
categories than DMOS-Best. Lastly, the performance of DMOS-Best is of little difference from
that of EA-Best, which also illustrates the effectiveness of DMOS.

Table 11 lists the average errors of various methods under different evaluation indicators.
The average errors in the accuracy estimation of test input of various categories listed in the first
row show that such errors of DMOS-Nocluster, DMOS-Best, DMOE-Median, and PACE in a
total of 144 tests of the eight test objects are 5.954%, 5.547%, 7.589%, and 8.473%, respectively.
Compared with PACE, the three methods have respective average errors reduced by 2.519%,
2.926%, and 0.884%, with a respective improvement (calculated by (PACE-DMOS-X)/PACE)
of 29.73%, 34.53%, and 10.43%. This also shows the performance superiority of DMOS to the
classical method PACE in the current field.

Table 11 Average errors of various methods under seven evaluation indicators (%)
Indicator DMOS-Nocluster DMOS-Best DMOS-Median PACE
AvgAcc 5.954 5.547 7.589 8.473
TotalAcc 1.238 1.081 1.211 1.926
KMNC 10.520 10.516 10.517 11.721
NBC 6.412 6.412 6.435 11.527
NC 3.157 3.149 3.143 11.471

SNAC 9.258 9.223 9.285 18.938
TKNC 14.526 14.394 14.438 26.676

Summary. (1) The optimal solutions in the PS obtained by DMOS are close to the theoretically
optimal ones and outperform the ones obtained by PACE on both speech and image test sets.
(2) In the PS obtained by DMOS, solutions with ordinary performance still outperform the ones
obtained by PACE on image test sets but perform poorly on speech test sets. (3) When more
categories are included in the original test sets, it is more difficult for selection methods to
effectively estimate the accuracy of the test input of various categories. However, on these test
sets, solutions with ordinary performance from the PS obtained by DMOS can still maintain
advantages over the ones obtained by PACE.

• RQ2: Can test subsets selected by DMOS have test capabilities similar to those of original
test sets in terms of overall accuracy and test coverage?

(1) Design
For this research question, we conduct the Scott-Knott ESD test analysis on the results of

DMOS-Best, DMOS-Medium, DMOS-Nocluster, and PACE on the eight test objects (a total of
144 groups of data, including 25 tests on the test object No. 8, 16 tests on each of the test objects
No. 1–No. 5, 18 tests on the test object No. 6, and 21 tests on the test object No. 7). The analysis
is carried out from six aspects, i.e., errors in overall accuracy estimation and estimation errors
of the five test-coverage indicators of NC, NBC, SNAC, TKNC, and KMNC, to explore whether
the test subsets selected by DMOS have more test properties similar to those of the original test
sets in terms of other evaluation indicators than those selected by other methods.

(2) Results
As shown in Figs. 2–7, the errors of the various selection methods in estimating overall

accuracy and test coverage should be as small as possible. Therefore, when a method stays
more to the right in the ranking, it has better performance. The results reveal that the errors
of DMOS-Best and DMOS-Median in estimating four test-coverage indicators are significantly
smaller than those of PACE (in terms of KMNC, although DMOS-Best and DMOS-Median do
not outperform PACE significantly, they still maintain a slight advantage), and both methods
outperform PACE significantly in overall accuracy estimation. From the aspect of the upper
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bounds of the various methods in the boxplots, DMOS-Best and DMOS-Median are tied with
and sometimes outperform PACE; however, the medians and lower bounds of the boxplots show
that DMOS has lower estimation errors and more stable performance under the six indicators
than PACE. According to Lines 3–7 in Table 11, the average overall-accuracy estimation errors
of DMOS-Nocluster, DMOS-Best, DMOE-Median, and PACE in 144 tests on eight test objects
are 1.238%, 1.081%, 1.211%, and 1.926% respectively. Compared with PACE, the other three
methods have their respective errors reduced by 0.688%, 0.845%, and 0.715% on average, an
average improvement of 35.72%. 43.87%, and 37.12%, respectively. The average estimation
errors of DMOS-Nocluster, DMOS-Best, DMOE-Median, and PACE in terms of the five test-
coverage indicators in 144 tests on the eight test objects are 8.775%, 8.739%, 8.763%, and
16.067%, respectively. Compared with PACE, the other three methods have their respective
errors reduced by 7.292%, 7.328%, and 7.304% on average, an average improvement of 45.39%,
45.61%, and 45.46% respectively. This also indicates the performance superiority of DMOS.

Summary. (1) The test subsets selected by DMOS can be closer to the original test sets than
those selected by PACE in terms of other test evaluation indicators. (2) Ensuring the precise
accuracy estimation of the test input of various categories by test subsets is of great significance
for ensuring the similarity of other properties between test subsets and original test sets.

• RQ3: How much do clustering and multi-objective optimization contribute to DMOS?
(1) Design
To investigate the contribution of clustering and multi-objective optimization to DMOS,

we first evaluate the performance difference between DMOS-Nocluster and DMOS-Best that
employs clustering in the accuracy of the test input of various categories, overall accuracy,
and test coverage. Here, as DMOS-Nocluster also takes the solution with the smallest average
error in the accuracy estimation of the test input of various categories in a PS as the result, we
only compare DMOS-Nocluster with DMOS-Best for this RQ to explore the contribution of
clustering to DMOS. Then, we compare the Pareto solution set obtained by DMOS with that
obtained by RandomSearch in IGD to evaluate the convergence and diversity of the obtained
solution sets from the perspective of multi-objective optimization.

(2) Results
Regarding the comparison with DMOS-Nocluster, we select the solution with the smallest

average error in the accuracy estimation of the test input of various categories in the solution
set obtained by DMOS-Nocluster as the final solution representing the performance of DMOS-
Nocluster. Tables 2–6 indicate that DMOS-Nocluster also enjoys much better performance than
PACE and is able to reach an estimation level of a smaller error earlier under fewer selections,
but it is still slightly inferior to DMOS-Best. Considering the overall accuracy and test-coverage
indicators, DMOS-Nocluster and DMOS-Best have no significant performance difference, but
DMOS-Best still has slight advantages. The underlying logic behind clustering is that DMOS
does not blindly trust final labels predicted by the DNN model to be tested but retains more
properties by extracting the middle-level output of the model as the feature representation of the
original test set. Thus, on this basis, when clustering is used to evaluate the data distribution
of the original test set (proportions of test input of different categories), reference information
of sampling for multi-objective optimization will be more accurate. Therefore, we suggest that
clustering should be applied to estimate the distribution of each category of the original test sets
before sampling in practical use.

Regarding the comparison with RandomSearch, as shown in Fig. 8, RandomSearch has
unstable performance in IGD, and DMOS outperforms RandomSearch significantly. This shows
that the search direction of RandomSearch fluctuates greatly during the optimization, with no
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obvious downward trend of the overall fluctuation, and it fails to find a suitable optimization
direction. The comparison with RandomSearch demonstrates that multi-objective optimization
of DMOS has better convergence, and the accordingly obtained solution set has better diversity.
Moreover, it is necessary to design appropriate optimization objectives to solve DL test input
selection, and it is impossible to find suitable solutions under random search directions.
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Figure 8 Evaluation results of IGD

Summary. (1) Clustering can effectively correct deviations caused by category labels
predicted by DMOS using DNN models to be tested for better estimation of the data distribution
of the original test sets. This can lay a good foundation for multi-objective optimization and
ensure the performance of DMOS. (2) Designing an appropriate optimization objective is highly
conducive to obtaining desired Pareto optimal selection solutions. The desired performance of
DL test input selection cannot be easily achieved just through random search decisions.

• RQ4: How much is the runtime overhead of DMOS?
(1) Design
The runtime overhead of DMOS is mainly concentrated in the extraction of test-input

features, dimension reduction, clustering, and multi-objective optimization. For the eight test
objects, both DMOS and PACE select test subsets containing 1,000 test input samples from
original test sets, and time is counted from model and data reading to completion of test subset
selection. Finally, the runtime overhead of DMOS is compared with that of PACE.

(2) Results
Table 12 lists the test results. Test-object IDs in the first column correspond to relevant

information in Table 1. The numbers in the second column represent the time overhead of DMOS
in selecting a test subset of 1,000 test input samples under the current test object, while those in
the third column stand for the time overhead of PACE in doing so. The bold elements indicate
that the corresponding method has lower time overhead and better performance. It should be
noted that the results also indicate that the time overhead (in seconds) of the existing test input
selection methods is much less than that of manual labeling. The time overhead of DMOS on
six test objects is less than that of PACE, which clearly suggests the high efficiency of DMOS.
Meanwhile, DMOS is only slightly better than PACE on the test object No. 5; on the test object
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Table 12 Time overhead analysis of DMOS and PACE (s)
ID DMOS PACE
1 85 203
2 86 113
3 86 48
4 93 202
5 106 120
6 146 233
7 4,683 3,591
8 132 1,967

No. 7, excessive categories (1,000 categories) increase the time overhead of each evolutionary
iteration in multi-objective optimization, and hence, the performance of DMOS is poorer than
that of PACE. For the test object No. 8, high complexity of the model middle-layer representation
extracted by PACE according to recommended optimal parameters greatly increases the time
overhead of MMD-critic-based prototype sampling, which results in a poorer performance of
PACE than that of DMOS. The time overhead analysis of DMOS and PACE in selecting 1,000
test input samples from the eight test objects is shown in Table 12.

Summary. (1) The time overhead of existing DL test input selection methods is much less
than that of manual labeling. Therefore, it is of high practical significance to design an effective
DL test input selection method. (2) DMOS with multi-objective optimization is highly superior
to the latest selection method PACE in terms of runtime overhead.

4 Discussions
4.1 Research on quality of Pareto solution sets obtained by DMOS

Test results of the previous section sufficiently show that selection solutions obtained by
DMOS can effectively construct test subsets with test capabilities close to those of original
test sets, but the quality of selection solutions obtained under the same number of selections
is different (in terms of average errors in accuracy estimation of the test input of variable
categories). From the perspective of medians, solutions obtained by DMOS are still better than
those obtained by the existing selection methods. To further improve the quality of the solution
sets obtained by DMOS in future research, we further analyzed the test results and drew the
following conclusions.

(1) Increasing the number of selections will reduce performance fluctuations of solutions.
With very few selections, all solutions perform poorly, with little difference in
performance, but when the number grows, the performance difference increases
accordingly. When the number reaches a certain value, repeated samples selected
among selection solutions corresponding to various solutions increase, and thus, the
performance difference between various solutions starts to decrease. For example, the
test results show that for an original test set, a 10-category or 100-category dataset
containing 10,000 samples, the performance of the obtained PS tends to stabilize when
the number of selections is about 800.

(2) More categories contained in original test sets result in smaller performance fluctuations
of solutions. More categories contained in original test sets produce higher difficulty in
accurate estimation of all the categories, thus resulting in smaller performance differences
between solutions. Thus, in the case of test sets with richer test-input categories, although
the performance variations of solutions under different numbers of selections follow the
laws described above, relevant fluctuation ranges are much smaller than those in the case
of test sets with fewer categories.
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(3) DMOS can produce Pareto solution sets of higher quality on test sets without any
mutation. According to the test results, DMOS performs poorly for test sets containing
adversarial test input samples that slightly disturb features to make models erroneous.
The reason is as follows: although features of the adversarial test input samples are
oflittle difference from those of the original test input samples, model-predicted results
differ greatly. This makes it impossible for clustering to accurately estimate the data
distribution of test sets, thus worsening the performance of multi-objective optimization.

4.2 Effectiveness threats
4.2.1 Internal effectiveness threat

Internal effectiveness threats mainly come from DMOS implementation, implementation of
selection methods used in contrast tests, and script implementation for analyzing and evaluating
all test results. To effectively reduce these threats, we relied on encapsulation algorithms in
some existing mature frameworks in Python to implement DMOS. For other contrast methods,
we used the latest versions from open-source links shared by these methods and adopted optimal
parameters recommended in the original texts for testing. As to all the scripts for analyzing and
evaluating test results, by coding, we realized multiple ways of mutual script checking to ensure
the correctness of results. In addition, during the implementation, we examined all the code
involved carefully.

4.2.2 External effectiveness threats

External effectiveness threats mainly come from the test objects studied, namely, DL test
sets and DNN models to be tested. DNN models used are those trained by popular datasets
(including MNIST, CIFAR-10, CIFAR-100, ImageNet, and Speech-Commands). In view of
optimization objectives, we only considered the classification models. To reduce relevant
threats, we considered different types of DNN models to be tested from the aspects of high-
precision and low-precision models, as well as CNN and RNN models (i.e., DeepSpeech). For
the DL test sets, we diversified their types to reduce external effectiveness threats, starting from
different types of test input samples including image and speech ones. At present, no tests have
been carried out on text data and related models in that the number of categories of data in
some common text classification tasks (usually two categories, for example, spam recognition)
is far less than that of image data (up to hundreds or even thousands of categories). As a result,
the effects of various selection methods cannot be demonstrated fully. In addition, simple text
classification tasks are similar to classification tasks of image data. Specifically, the middle-
layer output of DNN models to be tested in learning text data are used as features for clustering;
after data labeling, DMOS could carry out multi-objective optimization. It can also design
optimization objectives for iterative solutions given the proportions of the test input of different
categories in various clusters formed by clustering. Thus, we did not consider this kind of text
data and related models temporarily. In future research, we will continue to collect test objects
with more complex tasks and conduct more extensive research.

4.2.3 Structural effectiveness threats

Structural effectiveness threats mainly lie in specified parameters during method running in
tests. In this study, these parameters mainly include clustering parameters, dimension-reduction
parameters, feature type parameters (parameters to find out the output of what layer of the DNN
model to be tested are selected as clustering features), multi-objective optimization parameters
(population size and the number of evolutionary iterations). As to clustering and dimension-
reduction parameters, we used the optimal parameters recommended by Chen et al.[17]. As to
feature type parameters, we tried four parameters (−1, −2, 0, and 1) and finally selected a robust
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one as the recommended optimal parameter, which was introduced in Section 3.3. In addition,
multi-objective optimization parameters mainly determine the scope of search space and the
time of evolutionary iterations. According to parameter recommendations in other related work,
we tried four groups of combinations (20–50, 50–100, 100–200, and 200–400) and selected
the group of parameters with the best comprehensive performance in terms of both time cost
and results. In future work, we will continue to study the influence of these parameters on the
performance of the method.

5 Related Work
5.1 DL testing

Credibility problems in DNN models urge researchers to develop various technologies for
effective and complete testing. In addition to the high efficiency of DL testing, test adequacy of
DNN models to be tested is also a research focus in DL testing. Extensive studies have proposed
many test-adequacy metrics to evaluate test methods, and test-input augmentation has become
the major way to improve test adequacy.

In recent years, the most deeply studied metric of DL test adequacy is NC[25, 26, 54]. For
example, DeepXplore[26] introduced NC to measure ratios of neurons with activation values
higher than preset thresholds. Similarly, DeepGauge[25] introduced a series of test-adequacy
criteria based on activation values of neurons. Recent studies have also proposed test standards
and techniques driven by symbolic execution[55], coverage-guided fuzzing[56], and deformation
and transformation[13]. Gerasimou et al.[58] proposed a test-adequacy criterion based on coverage
of important neurons, i.e., Importance-Driven Coverage (IDC), of DNN models. Important
neurons refer to those with core contributions to decision-making, namely, neurons with the
greatest effect on results in the case of test input passing through neural networks. Related tests
have proved that this criterion can comprehensively evaluate the adequacy of test sets effectively
from the perspective of neuron activation.

Test-input augmentation aims to generate new test data on the basis of original test sets,
so as to expose errors that cannot be exposed originally and then improve test adequacy. The
research on test-input augmentation for DL systems can be divided into the following two types.

• Guided by test coverage, the first type uses specific mutation operators to augment test
sets by transforming random seeds, so as to make the augmented test sets with higher
test coverage. For example, Guo et al.[59] proposed using NC[26] as the final objective of
DLFuzz to guide the mutation to generate new test inputs. During an iteration, DLFuzz
introduces a small disturbance to test input samples and retains those able to increase NC
as mutated test input samples of the next iteration.

• Focusing on the characteristics of DNNs, the second type produces adversarial samples.
In other words, the features of the original test input samples are slightly disturbed and
transformed so that the new test input samples are close to the original ones but able
to trigger defects that the original ones fail to do so. For example, Szegedy et al.[60]

used loss functions between adversarial samples and test results as objective functions to
guide the generation of adversarial samples. Xiao et al.[61] proposed a method for pixel
transformation in high-dimensional space and proved that adversarial samples produced
by this method are of higher smoothness, smaller variations, and higher authenticity.

In contrast, our work endeavors to help developers reduce labeling costs by selecting small
test subsets that can maintain the properties of the original test sets. Li et al.[15] first proposed
CSS, which divides model-predicted confidence into intervals and then conducts sampling in
each interval according to a certain proportion to form the final test subsets. Later, they proposed
CES, which uses cross entropy to measure the difference between test subsets and original test
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sets and reduces the difference by multiple rounds of iterative sampling to form the final test
subsets. Zhou et al.[16] proposed a two-stage sampling method, DeepReduce. The method
first selects a small test subset according to NC and then adds more test data to the subset by
using heuristic rules until the number of samples specified by users is reached. Chen et al.[17]

proposed PACE for selective sampling. This method first conducts hierarchical clustering of data
in original test sets and then samples data in normal and abnormal clusters through MMD-critic-
based sampling[19] and adaptive random selection[20], respectively, so as to form test subsets
through data merging. Test subsets generated by the existing methods are very close to original
test sets in overall accuracy. However, given a small number of selections, they fail to cover the
test input of all categories in the original test sets, and the accuracy estimation of such test input
has large errors. Innovatively starting from multi-objective optimization, by clustering, this
paper estimates the data distribution of the original test sets and designs optimization objectives
to constantly reduce the distribution difference between test subsets and original test sets. This
ensures that test subsets can fully cover and accurately estimate test input of different categories
in the original test sets.

5.2 Test input selection
Traditional software testing faces increasing test costs due to redundant test input. Thus,

it is necessary to screen original test sets to improve test efficiency, namely, to satisfy the
same test functions of the original test sets under a minimized number. In traditional software
testing, common algorithms for test-input reduction include greedy algorithms and heuristic
algorithms[62–67], which mainly aim to remove redundant test input related to some test-capability
metrics in the original test sets. Harrold et al.[68] proposed a method, Harrold-Gupta-Soffa
(HGS), that combines the greedy strategy with heuristic search, which iteratively selects test
input samples in the original test sets by referring to designed test requirements. Hua et al.[69]

first used a genetic algorithm for evolutionary iterations of an original test set to obtain the
optimal solution set of test input samples. Then, they employed an ant colony algorithm to
further reduce the result to obtain an optimal test subset after minimization. Nie et al.[70] first
analyzed the relationship between test-capability metrics and divided an original test set, and
then, they sampled data in the divided small sets on the basis of a heuristic algorithm and a greedy
algorithm separately to obtain a screened small-scale test subset. However, as DL systems are
developed on the basis of data-driven programming paradigms, DL test input selection aims to
test DL systems by selecting small-scale test subsets that can represent the test capabilities of the
original test sets, which is distinctly different from test reduction in traditional software testing.
Thus, it is impossible to directly use evaluation criteria and algorithms in traditional software
test reduction for DL test input selection.

6 Conclusion
This paper modeled DL test input selection as a multi-objective optimization problem and

innovatively proposed DMOS. It designed optimization objectives considering the accuracy of
the test input of various categories and solved the problem by using a multi-objective genetic
evolutionary algorithm to obtain an efficient small-scale test subset. We tested the performance
of the method on eight test objects composed of DNN models and test sets. According to the
results, DMOS can not only ensure the precise accuracy estimation of the test input of various
categories in test sets but also make sure that the newly generated test subsets and the original
test sets have other similar test properties (such as overall accuracy and test adequacy). Thus, it
is significantly superior to the latest selection method PACE. In future research, we will attempt
to measure the quality of test subsets from more evaluation aspects and extend DMOS to DNN
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models and test sets of regression tasks.
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