
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2022, 12(3): 263–284, doi: 10.21655/ijsi.1673-7288.00286
©2022 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

Counterexample-guided Spatial Flow Model
Checking Methods for C Code

Yinbo Yu (于银菠), Jiajia Liu (刘家佳), Dejun Mu (慕德俊)
(School of Cyber security, Northwestern Polytechnial University, Xi’an 710072, China)
Corresponding author: Jiajia Liu, liujiajia@nwpu.edu.cn

Abstract Software verification has always been a popular research topic to ensure the
correctness and security of software. However, due to the complex semantics and syntax
of programming languages, the formal methods for verifying the correctness of programs have
the problems of low accuracy and low efficiency. In particular, the state change in address space
caused by pointer operations makes it difficult to guarantee the verification accuracy of existing
model checking methods. By combining model checking and sparse value-flow analysis, this
paper designs a spatial flow model to effectively describe the state behavior of C code at the
symbolic-variable level and address-space level and proposes a model checking algorithm of
CounterExample-Guided Abstraction refinement and Sparse value-flow strong update (CEGAS),
which enables points-to-sensitive formal verification for C code. This paper establishes a C-code
benchmark containing a variety of pointer operations and conducts comparative experiments on
the basis of this benchmark. These experiments indicate that in the task of analyzing multi-class
C code features, the model checking algorithm CEGAS proposed in this paper can achieve
outstanding results compared with the existing model checking tools. The verification accuracy
of CEGAS is 92.9%, and the average verification time of each line of code is 2.58 ms, both of
which are better than those of existing verification tools.

Keywords software verification; model checking; spare value flow analysis; pointer analysis;
vulnerability detection

Citation Yu YB, Liu JJ, Mu DJ. Counterexample-guided spatial flow model checking methods for C code,
International Journal of Software and Informatics, 2022, 12(3): 263–284. http://www.ijsi.org/1673-7288/
286.htm

Ensuring the correctness of software is the most critical and arduous task in today’s software
systems, which is one of the core factors to ensure the endogenous safety of the software systems.
Manual verification of software, however, is error-prone and costly. For this reason, many
methods including software analysis and testing have been proposed to improve the correctness
and safety of software. In particular, formal verification of software programs has always been
a focus in the field of software safety, which can prove the semantic and logical correctness of
software programs mathematically and thus provide the core guarantee for software safety. At

This is the English version of Chinese article“反例引导的 C代码空间流模型检测方法. 软件学报, 2022, 33(6):
1961–1977. doi: 10.13328/j.cnki.jos.006563”
Funding items: Guangdong Basic and Applied Basic Research Foundation of China (2021A1515110279); Basic
Research Programs of Taicang, 2020 (TC2020JC03); Fundamental Research Funds for the Central Universities of
China (D5000210588)
Received 2021-08-29; Revised 2021-10-16; Accepted 2022-01-10; IJSI published online 2022-09-23

http://www.ijsi.org/1673-7288/286.htm
http://www.ijsi.org/1673-7288/286.htm

264 International Journal of Software and Informatics, 2022, 12(3)

present, software is mainly verified through two methods, i.e., abstract static analysis and model
checking[1], where the former optimizes program analysis space by designing abstract domains,
while the latter verifies safety or liveness properties of systems by structural models. Most of
the existing verification tools combine these two methods to ensure scalability and accuracy of
verification, such as CounterExample-Guided Abstraction Refinement (CEGAR)[2], symbolic
execution[3], and proof by induction[4]. Software verification has been widely used in software
engineering fields, such as for the verification of application software[5], communications and
safety protocols[6, 7], device drivers and firmware, and system kernels, which has become the
main method to ensure software safety.

Generally, the first step of formal verification is to model the program formally and determine
the properties to be checked, and then, the state space of the model is traversed through a specific
strategy to theoretically expose the paths in the program violating the checked properties[4].
However, due to the complex syntactic and semantic expression capacity of program languages,
the accurate modeling of the behavior logic of software to ensure equivalence between models
and program semantics has always been a key challenge in software formalization[1, 8]. To verify
the logical correctness of program codes, the most direct method is to manually translate the code
into a formal model and then conduct formal verification. Such a method requires high labor
costs; moreover, it fails to ensure the accuracy of the manually translated model. Another solution
is to design verification algorithms for high-level programming languages (such as Python and
Java). With a high degree of abstraction, such languages can be easily and automatically
translated into models for formal verification, and thus errors caused by manual translation can
be avoided. By means of specific methods, code written in other languages can be translated into
these languages for formal verification, but some underlying programming languages (such as
C/C++) can hardly be described in high-level ones, due to their more complex semantic features.
It is noted that most of the existing program verification tools (such as CPAChecker[9], SPIN[10],
and Gazer[11]) for languages such as the C language are designed in view of state changes
at the symbolic variable level of programs, which can verify software correctness efficiently
by advanced techniques based on abstraction[12], interpolation[13], and counterexample-guided
model refinement[2]. However, when a program contains memory operations such as pointer
ones or complex data structures, these tools will not be able to or mistakenly perceive state
changes at the symbolic variable level caused by state changes in memory space addresses. As a
result, they will produce false verification results, failing to guarantee the validity of verification.

Taking C programs as the research object of formal verification, this study aims to tackle
the failure by inaccurate verification as a result of state-space changes at the address level
caused by pointer operations. The use of pointers can make code more concise, but in the
dynamic execution of programs, pointers will also complicate the behavior of the programs.
Improper use of pointers has become one of the main reasons for code defects. Therefore,
static analysis of programs requires pointer analysis to identify objects of pointer variables at
different locations. Pointer analysis, however, usually requires high-overhead data flow analysis
and thus is challenged by a difficult trade-off between analysis accuracy and efficiency with the
expansion of program scales. This is the main reason why most of the existing model checking
algorithms do not support pointer operations. To improve the accuracy of model checking,
existing methods usually employ independent pointer-analysis algorithms to obtain points-to
information of program pointers in advance to assist model checking. However, high-accuracy
pointer analysis (sensitive to flow and context, for example) has high computational overhead,
possibly with a lot of unnecessary computational overhead, and the scalability of the analysis
cannot be ensured. For insensitive pointer analysis (insensitive to flow and context, such as
Anderson[14]), its scalability can be ensured, while its accuracy cannot be guaranteed.

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 265

To solve the above problems, with the idea of abstraction before verification and the
combination of abstraction-based model checking and sparse value-flow analysis, this paper
designs a counterexample-guided spatial flow model checking algorithm. Specifically, this
algorithm constructs a formal model for a C program in linear time by adopting the method
of insensitive points-to relations, which combines control flow information and sparse value-
flow information of the program, that we call the spatial flow model in this paper. Then, the
spatial flow model is abstracted by value abstraction, and the abstract model is checked for
counterexamples. If a counterexample exists, and it is not a valid counterexample in the original
model, it will be used to refine the misinformation caused by variable abstraction or insensitive
points-to relations. On this basis, the information of the refined model can be gradually updated
to realize analysis at both the program-symbol and address-space levels. Using counterexamples
to guide model verification can effectively balance checking accuracy and efficiency.

The main contributions of this paper are as follows:
(1) A C-coded model called the sparse spatial flow model and its construction method are

designed on the basis of a Sparse Value-Flow Graph (SVFG). The model can describe state
changes of C programs at both symbol and address-space levels automatically and efficiently.

(2) Combining explicit-state analysis in formal methods and sparse-value analysis in
software analysis, this paper proposes a counterexample-guided sparse spatial flow model
checking algorithm. The algorithm uses spurious counterexamples to guide state-space analysis
at both symbol and address-space levels to ensure accuracy and efficiency of verification.

(3) This paper establishes a C-program benchmark library with multiple complex syntactic
and semantic features. With this library, it is proved that the designed model checking method
has higher verification accuracy and efficiency than the existing methods.

In this paper, Section 1 introduces the related work. Section 2 briefly describes the
motivation of this study and the designed solution. Section 3 elaborates on the counterexample-
guided spatial flow model checking algorithm proposed in this paper. Section 4 compares the
test results of the proposed method and the existing methods in terms of verification accuracy
and efficiency. Finally, the summary is made, and research directions worthy of attention in the
future are preliminarily discussed.

1 Related Work
Software verification is usually composed of state-space traversal and path verification.

At present, the mainstream algorithms of software model checking generally transform formal
verification of paths into the satisfaction of formulas[15] and then use SMT solvers to verify the
feasibility of the paths. According to strategies for state-space traversal, the existing methods
can be divided into three categories, i.e., explicit-state model checking, proof of induction,
and predicate abstraction[15]. Specifically, the explicit-state model checking explicitly records
corresponding states through state reachability graphs and traverses all possible initial paths in
state space as far as possible through depth, breadth, or heuristic algorithms, as done in tools
such as SPIN[10], CMC[16], and Java Path finder[17]. With the expansion of program scales,
however, the state-space explosion has become the most critical challenge for model checking.
For this reason, researchers set bounds on the number of expansions of all paths in a program
(namely, bounded model checking) and encode paths within the bounds as SMT formulas for
verification to reduce state-space explosions, as done by SMACK[18] and CBMC[19]. Bounded
model checking can quickly detect logic defects of programs but cannot guarantee verification
integrity. Proof of induction extends the strategy of bounded model checking by verifying some
states before recursively verifying others, which is generally called k-induction, as implemented
in ESBMC[20]. Predicate abstraction is used to form an over-approximated abstract model

266 International Journal of Software and Informatics, 2022, 12(3)

by setting abstract domains to alleviate state-space explosion, and the most commonly used
strategy is CEGAR[2]. After an abstract model is checked, if a detected counterexample is
invalid in the original model, the abstract domain is refined by interpolation based on the
information that makes this counterexample invalid to remove the false counterexample. Able
to balance checking efficiency and accuracy effectively, CEGAR becomes the most important
model checking strategy in tools such as SLAM[21], CPAChecker[9], and Theta[22]. Considering
the semantic and syntactic complexity of programs and the increase in the code size, the existing
model checking tools usually combine multiple state-space traversal strategies or use heuristic
algorithms and reinforcement learning methods to ensure both the efficiency of verification and
the comprehensiveness of model checking.

The software verification methods mentioned above are all based on formalization methods,
most of which can only analyze state changes in symbolic variables, failing to directly support
complex program semantics such as pointers[8]. The existing tools, such as CPAChecker and
SMACK, use algorithms for pointer analysis to calculate pointer information before model
checking. Pointer analysis, one of the challenges in program static analysis, attempts to compute
objects that pointers point to, and correct pointer information is a key factor in detecting software
vulnerabilities (such as null pointer dereferences, memory leaks, and use-after-free). In pointer
analysis, multi-dimensional information including paths, flow, context, and fields will affect
the tradeoff between analysis accuracy and overhead. Usually, static analysis adopts insensitive
pointer analysis, such as that based on implication constraints (also known as Anderson) or
unification constraints (also known as Steensgaard[23]), the two of which can guarantee analysis
scalability but fail to guarantee analysis accuracy. To obtain more accurate points-to relations,
such as flow-sensitive ones, pointer analysis needs to solve data flow problems iteratively,
which results in huge computational overhead. For this reason, a method of sparse value-flow
analysis was proposed[24–26], which transfers data-flow computation previously required at all
control flow nodes to that on pre-computed sparse and approximated def-use chains to effectively
reduce computational overhead. Thus, it is applicable to large-scale program analysis. By sparse
value analysis, a demand-driven pointer analysis was designed for C and C++ code in Ref. [25],
where after an SVFG is computed by Anderson’s algorithm, information about the pointer
at its location can be analyzed. With the framework of sparse value-flow analysis, Ref. [27]
successfully detected use-after-free and null pointer dereference defects in millions of lines of
code by designing simplified local pointer analysis and using SMT for feasibility verification
of global paths. On the basis of Ref. [27], Ref. [28] proposed path-sensitive analysis based on
slicing, which is able to provide null pointer dereference and taint analysis for large-scale code
analysis.

Such methods of calculating points-to information through pointer analysis before model
checking can ensure verification accuracy. However, the premise is that flow-sensitive and
context-sensitive pointer analysis is required, which means the computational overhead will be
huge, and thus the efficiency of model checking is restricted. In addition, pointer analysis may
produce a lot of computational redundancy for model checking, such as analysis of pointer
variables unrelated to counterexamples. Therefore, this paper achieves a more efficient model
checking method for C programs by integrating model checking with sparse value-flow analysis.

2 Overview of Methods
2.1 Research motivation

Most of the existing model checking algorithms are designed in view of state changes at
the symbolic variable level of programs. In the case of programs containing memory operations
such as pointer ones or complex data structures, these algorithms will fail to or mistakenly

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 267

perceive state changes at the symbolic variable level caused by information changes in memory
space addresses. This will cause unnecessary analysis overhead and false analysis results.

To better illustrate this problem, this section takes the C program shown in Fig. 1(a) as an
example to explain defects in the existing model checking algorithms. We assume that the model
of the C code is M, and the program property to be checked is φ ≡ LTL(G!call(error())),
which means that the code will not call the function error() at any time; in other words, the
code executed at Line 22. Model checking requires verifying whether all initial states of M
violate φ, which can be expressed by the formula M |= φ. To solve this problem, as shown in
Fig. 1(b), the existing model checking algorithms first convert the code into a control flow graph,
namely, M, and then the model is transformed into a formal formula composed of multiple
propositions (such as θ1 and θ2). As most of the existing algorithms are at the symbolic level,
they fail to check pointer operations in the C languages and can only analyze symbolic variables
and corresponding assignments (i.e., i = 3 and k = 8), and thus, the propositions θ1, ¬θ2,
¬θ4, and θ5 are true. As a result, the verification procedure concludes that M |=φ does not
hold, namely that there is an execution path violating the property φ (i.e., a counterexample):
θ1 ∧ ¬θ2 ∧ ¬θ4 ∧ θ5. The counterexample indicates that the sample code in Fig. 1(a) will be
executed according to this path and can reach the location (Line 22) where the function error()
is called. In fact, due to pointer operations in the code, the variables i and k will be assigned
indirectly by pointer variables. Therefore, the verification process of model checking does not
perform a comprehensive verification, which cannot ensure the accuracy of results.

indicate

Figure 1 Example of research motivation

For higher verification accuracy, pointer analysis is introduced into model checking
algorithms to obtain points-to relations of pointers in advance or during verification, so as
to correct changes due to variable assignment. Pointer analysis has many characteristics.
For example, (1) if the analysis is sensitive to control flow, it is flow-sensitive; otherwise,
it is flow-insensitive; (2) if the analysis requires differentiation between different function-
calling contexts, it is context-sensitive; otherwise, it is context-insensitive; (3) if the analysis
requires differentiation between different fields in data structures, it is field-sensitive; otherwise,
it is field-insensitive. Accurate points-to relations can be computed by pointer analysis
sensitive to such information. However, with the expansion of the code size, such analysis
is challenged by exponentially increased computational complexity, hardly applicable to large-
scale models. Therefore, the existing algorithms usually employ information-insensitive pointer
analysis to reduce computational resources and improve computational speed for large-scale code

268 International Journal of Software and Informatics, 2022, 12(3)

verification tasks. For example, Andersen’s algorithm is a pointer analysis algorithm insensitive
to both flow and context and has linear computational complexity, which is suitable for large-
scale pointer analysis, but its insensitivity to flow and context results in over-approximation
of computed points-to relations. In Fig. 1(b), the Anderson-based model checking algorithm
computes points-to relations of pointers while verifying the model, and on the second line
of the code, the pointer variable a points to the variable i (namely, a 7→ i). Thus, on the
third line, we have i = 4, and ¬θ1 = true. As points-to relations computed by Anderson’s
algorithm is flow-insensitive, the algorithm can compute the points-to relations on the 8th line
as follows: p 7→ {a} 7→ {i, k}. By analogy, the model checking algorithm finally computes the
counterexample ¬θ1 ∧ ¬θ2 ∧ θ4 ∧ θ5.

By actual analysis of the code example in Fig. 1(a), we can find that neither of the above
two counterexamples holds. Due to the pointer b, the value of the pointer a in the address space
(namely, the address of the variable k) to which it points on Line 11 is 6, and thus the proposition
θ3 is true. It can be learned from this that the variable k is actually 5 on Line 21 of the code,
and the proposition θ5 is false. Thus, the program cannot run to Line 22. As shown in Fig. 1(b),
an accurate model checking algorithm should be able to simultaneously sense and detect state
transition of symbolic variables and pointer-represented memory address space (i.e., a points-
to-sensitive model-checking algorithm). On this basis, the feasible path ¬θ1 ∧ θ2 ∧ θ4 ∧ ¬θ5
can be obtained, which proves that the code will not call the function error().

2.2 Research methods
To solve the above problems, on the basis of CEGAR, this paper designes a points-to-

sensitive model-checking algorithm for C programs, namely, CEGAS (CounterExample-Guided
Abstraction refinement and Strong update). Fig. 2 illustrates the framework of CEGAS. In
terms of modeling and verification, this section briefly explains how CEGAS realizes points-to-
sensitive model checking on the premise of ensuring both checking efficiency and accuracy.

Feasibility
checking

Explicit-value-
based model
abstraction

Model checking

Interpolation-
based abstraction

refinement

Counterexample

Safe property

Invalid

Valid

Path-, context-, and
field-sensitive strong

updates

Yes NoWeak
update?

Safe

Defect

Update values in the
memory area

SFG

C programs

LLVM IR

Figure 2 Framework of CEGAS

(1) Modeling. The existing methods use control flow information of a C program for
model checking, but control flow information lacks direct points-to information of pointers,
which results in inaccurate analysis. In view of this, we propose to use a Spatial Flow Graph
(SFG) to formally describe the logical behavior of a C program. Specifically, we use an SVFG to
describe points-to relations of pointers while retaining control flow information. SFG can make
the formal model of a C program more concise and efficient and provide sufficient information
for systematic model checking. As shown in Fig. 2, the module for establishing SFGs is built

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 269

on the LLVM compiler and is executed by the well-defined LLVM IR language converted from
the C program.

(2) Verification. For higher accuracy of model checking, the existing methods provide
points-to information of pointers for model checking through independent dataflow analysis.
However, it is computationally costly to obtain accurate points-to information by dataflow
analysis[24, 27], while inaccurate points-to analysis (flow-/context-insensitive) fails to guarantee
the accuracy of model checking. For this reason, we design an SFG-oriented model checking
algorithm by combining model checking with sparse value analysis. Specifically, insensitive but
fast (linear) points-to analysis is conducted to obtain over-approximated points-to information,
and a coarse-grained abstract model is obtained through explicit state abstraction[4, 29]. Then,
counterexample-guided model refinement is performed, namely that false counterexamples are
used to guide the refinement of abstraction precision and the computation of definite points-to
relations. By this SFG-based counterexample-guided method, both accuracy and efficiency of
model checking can be guaranteed simultaneously.

3 Counterexample-guided Spatial-flow Model Checking
Formal verification of a program consists of two parts: formal description and formal

verification of the program. From the two perspectives, this section introduces the
counterexample-guided spatial-flow model checking algorithm proposed in this paper.

3.1 Definition and construction of spatial-flow model
To perceive state transition information of a program at the symbolic level and in memory

space, we design an efficient formal model called SFG to describe code execution in C programs.
Definition 1. An SFG is composed of two sub-graphs, i.e., M = {Gc, Gs}, which

represent Control Flow Automation (CFA) and SVFG, respectively.
• Gc = (L, l0, E), where L is the set of program locations, representing the program

counter. l0 ∈ L is the initial program location, that is, the entry point of the program.
E ⊆ L × S × L is the set of control-flow edges, representing the operations executed
during the transition from one program location to another. S is the set of all operational
statements in the program, and the set of all program variables is V .

• Gs = (N, E), where N ⊆ L × S represents the set of definition (def) or use nodes
of pointer variables; E ⊆ N × V × N represents the set of all possible def-use chains
of pointer variables, which is also called value-flow edge set. For example, the edge
n1

v−→ n2 indicates a def-use chain in which the pointer variable v ∈ V is defined at
the node n1 and used at the node n2, rather than all program points between n1 and n2.

SFG can accurately describe state transitions in a program through CFA. Considering
complex memory-address changes in software (namely, points-to relations of pointer variables;
in this paper, the formula p 7→ o indicates that the pointer variable p points to the memory
address of the object o), SFG further uses SVFG[30] to describe changes in states of memory
addresses. SVFG only pays attention to possible def-use chains of pointer variables, without
propagating points-to relations of pointers to all program points of control-flow paths, and the
sparsity enables SVFG to accurately analyze memory-space information changes of large-scale
programs[27, 28]. SFG, combined with CFA and SVFG, can describe the execution behavior of
large-scale complex codes efficiently and accurately.

To construct the SFG of a C program, this paper first uses the open-source LLVM
compiler[31] to compile the C program into the LLVM intermediate representation, namely,
LLVM IR, which has a concise statement structure and instruction set. Standardizing the source
code into this intermediate representation can simplify model construction. LLVM IR is a

270 International Journal of Software and Informatics, 2022, 12(3)

language of partially Static Single Assignment (SSA), containing two types of variables: top-
level and address-taken variables. The former is explicitly placed in the form of SSA by using
the standard SSA construction algorithm, namely that such variables are assigned only once
in their lifetime. Thus, top-level pointer variables have definite points-to relations (i.e., must
point-to). The latter is not in the form of SSA, which needs to be accessed indirectly by top-level
variables using the two instructions load (i.e., p = ∗q) and store (i.e., ∗p = q). As address-taken
variables are used indirectly through load and are allowed to be defined indirectly by multiple
store instructions, pointer variables of such a kind usually have indefinite points-to relations
(namely, may point-to).

Pointer analysis algorithms for LLVM IR are used to identify points-to relations of address-
taken pointer variables or in related expressions. Conventional pointer analysis needs to
iteratively compute points-to relations satisfying Meet-Over-all Paths (MOP) by means of control
flow and data flow information of a program, and in this way, the computation of correct points-
to relations can be ensured. For large-scale programs, however, it is costly and non-scalable.
By propagating data flow facts (namely, points-to relations of pointers) according to the data
dependency of a program, sparse program analysis (also known as strong-update analysis[25])
avoids propagation at all program points in the control flow graph of the program, which ensures
the scalability of the analysis. Sparse program analysis usually works in stages: first, it pre-
analyzes a program and defines all def-use chains of pointer variables through weak updates, and
weak updates conservatively assume that old contents at locations with may points-to relations
are retained. As a result, def-use chains obtained by the pre-analysis are over-approximated.
Then, sparse program analysis computes must points-to relations on the approximated def-use
chains obtained by pre-analysis rather than on the whole control flow. In other words, strong
updates are carried out, covering previous contents of pointer variables with new values. This
is an important factor to ensure the accuracy of pointer analysis.

For SFG construction, we obtain points-to information by Andersen’s pointer analysis
algorithm on the basis of the LLVM compiler. Moreover, we depict may points-to relations
through two weak-update functions (µ(a) and a = χ(a)) and describe def-use chains containing
all top-level and address-taken pointer variables in the form of inter-procedural memory SSA.
In this way, SFG can be constructed considering control flow information. Fig. 3 shows an
example of SFG construction. The function µ(a) indicates the use of the variable a, and for the
instruction load p, µ(a) indicates that each variable a (such as i and j) pointed to by the pointer
p may be accessed indirectly in this instruction. The function a = χ(a) indicates def & use of
the variable a, and for the instruction store ∗p = &i, a = χ(a) represents that each variable a

pointed to by the pointer p may be redefined and reused. As shown in Fig. 3(c), LLVM IR of the
C program is converted into SFG for description, which provides a formal model for back-end
model checking.

3.2 Spatial flow model checking
We now propose the counterexample-guided model-checking algorithm CEGAS for a

spatial flow model. The algorithm uses detected false counterexamples to simultaneously
guide the refinement of model abstraction precision and the strong update of the value-flow
relationship. This can not only avoid unnecessary computational overhead (such as path-
constraint solving and irrelevant-pointer analysis) but also ensure accurate analysis of state
changes at the variable-symbol level and the memory-address level during model checking.

As shown in Fig. 2, CEGAS is an extension of CEGAR. CEGAS first abstracts the state
transition process in the control flow information of the SFG, and then it finds out whether there
is a counterexample through explicit-value analysis. If a counterexample exists, the algorithm
will check in the SFG whether a weak update exists on the counterexample path that can further

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 271

define i32 @main(){
...
p = alloca_o
q = p
store *p = &i
store *q = &j
t= *q
ret t

}

[𝜇(𝑜3)]

[𝑜2 = 𝜒(𝑜1)]
[𝑜3 = 𝜒(𝑜2)]

(b) Inter-procedural memory SSA

int main(){
…

1 int **p=&o,**q;
2 q=p;
3 *p=&i;
4 *q=&j;
5 int *t=*q;
6 return *t;
}

(a) C program

µ()=may use
𝜒()=may def & use

(c) SFG

Must def-use
May def-use

Control flow

[q]

p=&o

q=p

*p=&i

*q=&j

t=*q

[q]

[p]

[o]

1

2

3

4

5
[o]

Figure 3 An example of SFG construction from a C program

lead to a may points-to relation, and this points-to relation may cause a false counterexample.
Therefore, if there is a weak update in the counterexample, strong-update computation will be
executed along this path to feed back the must points-to relation to the abstract model, and then
the model will be further verified. This section first explains the strong-update method of SFG
under a given counterexample path and then introduces CEGAS as a whole. The details are as
follows.

3.2.1 Counterexample-guided path-sensitive strong update

On a valid counterexample path detected by value analysis, a possible weak update may
cause an incorrect flow computation, which indicates that the path may be spurious. For this
reason, a counterexample-guided strong update method of spatial flow models is designed. The
core idea of the method is as follows: according to the counterexample path detected by value
analysis, the possibility of a weak update on this path is judged. If a weak update exists, the
path-sensitive strong update is executed to refine changes in memory information of the model
for further analysis of the validity of this path.

Path-sensitive. Path-sensitive pointer analysis is more accurate than flow-sensitive pointer
analysis. For example, for the code example in Fig. 1(a), with flow-sensitive pointer analysis,
the points-to relation a 7→ i is strongly updated to a 7→ j on Line 6 (l6) of the code. Due to
the lack of control flow information in sparse analysis, the algorithm will strongly update the
points-to relation to a 7→ k on Line 8 (l8). However, in the case of θ1 = true, the execution
path cannot reach l8, and thus, the points-to relation a 7→ k is wrong. In contrast, path-sensitive
analysis first records the path information ρ, which is usually composed of a series of predicates,
such as ρ1 = θ1 ∧ θ2 ∧ · · · and ρ2 = ¬θ1 ∧ θ2 ∧ · · · . As l6 ∈ ρ1, and l8 ∈ ρ2, the points-to
relation of the pointer variable a can be expressed as a 7→ ϕ(j[ρ1], k[ρ2]) at Line 9, where ϕ

refers to a conditional selection function. In other words, when the current path is ρ1, we have
a 7→ j; otherwise, we have a 7→ k.

Field-sensitive. Field-insensitive pointer analysis treats different fields in a structure
variable as a singleton object, but different fields may point to different objects. Therefore,
field-insensitive pointer analysis will not be able to perform effective strong updates on structure
and array variables, thus failing to ensure the correctness of the points-to analysis results. For
this reason, a simple but effective way is employed to achieve field sensitivity: the multi-
level index of the instruction GetElementPtr in LLVM IR is used as the index of the fields
to distinguish different fields in the same structure variable. GetElementPtr is an instruction
to obtain structure or array elements in LLVM IR. For example, %tmp = getelementptr

inbounds %struct.struct_a* %S, i32 2, i32 1means to fetch the second subfield (S2 ·
e1) of the third element of the variable S of the structure array struct_a. To realize this, first,
we construct an object S for the whole structure or array variables, and then we use index

272 International Journal of Software and Informatics, 2022, 12(3)

information in GetElementPtr to build a field-sensitive object to update points-to relations.
Constraint rules. The strong update is a kind of backward reachability analysis on SVFG.

In this paper, ρ represents the path of the current analysis, and in terms of ρ, a series of constraint
rules for backward reachability analysis in this path are designed. This paper does not consider
context-sensitive analysis but maps a called function to the main function by the inline method.
Thus, an operational statement upon analysis contains information on ρ and n; for example, ρ,
n : p = &o means that the current node n ∈ N is in the path ρ. Considering weak updates,
a pointer may have multiple points-to addresses and one points-to set, and thus this paper uses
p ⊇ q to represent the addition of the points-to set of q into that of p.

Constraint rules of strong updates are designed in this paper, as shown in Table 1.

Table 1 Constraint rules in counterexample-guided path- and field-sensitive strong updates
Rule Operational statement Constraint Role

ADDR ρ, n : p = &o n′ o→ n p[ρ, n] 7→ o[ρ, n′] Under the condition of ρ, p points to
the memory address of o at n

COPY ρ, n : p = q n′ q→ n p[ρ, n] ⊇ q[ρ, n′] Under the condition of ρ, the
points-to set of p contains that of q

PHI
ρ, n : p = ϕ(q, r)

n′ q→ n n′′ r→ n

p[ρ, n] ⊇n′∈ρ=T q[ρ, n′]
p[ρ, n] ⊇n′′∈ρ=T r[ρ, n′′]

If n′ is in ρ, the points-to set of p
contains that of q; otherwise, it
contains that of r.

GEP
ρ, n : p = &(qi → ej)

qi 7→ o n′ o·ej−→ n
p[ρ, n] 7→ o · ej [ρ, n′] Under the condition of ρ, p points to

the memory address of o · ej , where
o · ej is the jth field in the ith
element of the array q

STORE
ρ, n : ∗p = q n′ p→ n

n′′′ q→ n n′′ r→ n
p[ρ, n′] 7→ r[ρ, n′′]

r[ρ, n′′] ⊇ q[ρ, n′′′] Under the condition of ρ, the
points-to set r of the object pointed
to by p is obtained to make the
points-to set of r contain that of q

LOAD
ρ, n : p = ∗q

n′ q→ n n′′ r→ n
q[ρ, n′] 7→ r[ρ, n′′]

p[ρ, n] ⊇ r[ρ, n′′] Under the condition of ρ, the
points-to set of the object r pointed
to by p is obtained to make the
points-to set of q contain that of r

SU/WU ρ, n : ∗p = _ n′ o→ n
o ∈ O\kill(p[ρ, n])

o[ρ, n] ⊇ o[ρ, n′] kill(p[ρ, n]) =
o′[ρ] if p[ρ, n] 7→ o′[ρ] ∧ o′[ρ]

∈ pcSingletons

O if p[ρ, n] 7→ ∅
∅ otherwise

COMPO n
o−→ n′ n′ o−→ n′′ n

o→ n′′ Transtivity of def-use chains

• ADDR is used to define the points-to relation of p by using def-use chains of o to inversely
obtain the memory address of o[ρ, n′] declared at the node n′. The symbol [] denotes
valid sensitive information.

• COPY and PHI are two instructions for top-level variables in LLVM IR, which can yield
points-to sets through must def-use chains[7], and as PHI is path-condition dependent, it
is necessary to judge whether n′ and n′′ belong to ρ. In the case of n′ belonging to ρ

(denoted by n′ ∈ ρ = True), we have p[ρ, n] ⊇ q[ρ, n′], and thus path sensitivity is
achieved.

• GEP is used to implement field-sensitive analysis in field access. According to the index
of GetElementPtr, GEP constructs an object for the field, which serves as the object to

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 273

which the field pointer points.
• STORE may introduce multiple indirect def-use chains to address-taken variables. It is

necessary to compute and remove current false def-use chains in an update process to
ensure the correctness of points-to relations.

• LOAD is used to assign values to top-level variables indirectly from points-to relation
sets of address-taken variables. Due to the existence of multiple STORE operations,
points-to relations obtained by top-level variables will contain false def-use chains.

• SU/WU represents strong and weak updates in STORE ρ, n :∗ p = _. Strong updates
kill(p[ρ, n]) will be executed in three cases: (1) when the pointer p points to the object
o ∈ O of a path-correlated singleton (pcSingletons), n′ o−→ n should be cut off, and the
content at the original n′ in o should be removed; the content at n should be updated. (2)
When the points-to set of p is empty, n′ o−→ n should be cut off to avoid null pointers.
(3) Weak updates will be executed in other cases. By SU/WU, we can obtain points-to
information that is used to process address-taken variables in LOAD and STORE.

• COMPO represents the transitivity of def-use chains.
Given a counterexample path, CEGAS first traverses the value flow information in SFG

backward along this path to determine whether a weak update exists in the path. The existence
of a weak update indicates that the current points-to information contains may relations. On
the basis of the above constraint rules, CEGAS analyzes the SFG and performs strong updates
to remove false def-use chains caused by the weak update in the path, which provides sensitive
points-to information of this counterexample for the following model checking.

3.2.2 Counterexample-guided spatial flow model checking

Model checking can be formally described as M |= φ, where M is a Kripke-structured
model, and φ is a property to be checked. This paper mainly focuses on the safety property
of a program, namely that the program will never reach an unexpected state state. This can
be expressed as φ ≡ LTL(G!state) through linear temporal logic. Given a Kripke-structured
model, we can use many advanced model checking algorithms to check the correctness of
the model[4], such as predicate analysis, explicit-value analysis, symbolic analysis, IC3, and
abstraction. In this paper, explicit-value analysis based on abstraction refinement (also known
as explicit-state analysis)[29] is used as the main model checking algorithm; combined with
model abstraction, this analysis method can remove program variables unrelated to verification
properties and only track variables necessary to refute invalid counterexample paths. In this
way, the state-space explosion caused by excessive program variables and their values can be
reduced to make verification more concise and efficient. Using the abstraction-refinement-based
model checking strategy, CEGAS starts with null abstraction precision to iteratively refine the
precision of symbolic variables and points-to information from invalid paths. The details are as
follows.

Given the spatial flow model of a program, CEGAS first needs to abstract the model; the
following two states are involved.

• One is the representational state s. It refers to a variable assignment s := cs@l, where
cs: V → Z indicates that an integer value is assigned to a program variable, and l ∈ L

is a program location. Similar to the existing model checking algorithms, the model
checking method in this paper mainly focuses on integer variables.

• The other is the abstract state ŝ. It is expressed as: ŝ = as@l, where as: V → Z∪{>,⊥}
is an abstract variable assignment. Specifically, > is an unknown value; for example, it
is assigned by an uninitialized variable or called by an external function; ⊥ represents no
value, namely, a contradicting variable assignment.

274 International Journal of Software and Informatics, 2022, 12(3)

The abstract state is abstracted from the representational state according to precision. In this
paper, a lazy explicit-value abstraction[12] method is adopted, which uses different precision for
different abstract states in different program paths. For a specific program, precision is defined
by a function Π: L → 2v , which provides a precision π for each location of the program for
the abstraction of variable assignment statements. As to a variable assignment statement, the
precision π defines a group of program variables to be analyzed and tracked for the abstraction
of the variable assignment statement. At a given precision π, for the explicit-value abstraction
of a variable assignment statement, its variable is determined by π. For example, π = ∅
indicates that no program variables will be tracked, and corresponding abstract states are null;
π = V means that all program variables are tracked, and corresponding abstract states are equal
to representational ones; π ={i} means that the explicit-value abstraction state of the variable
assignment set v = {i 7→ 1, j 7→ 2} is vπ = {i 7→ 1}. Generally speaking, at a program
location l ∈ L, the explicit-value abstraction of a variable assignment extracts precision through
the precision function Π(l), and then, the abstract state is computed according to precision-
tracked variables. At the beginning of the verification, the precision of CEGAS is Πinit(l) = ∅.
In other words, for each l ∈ L, no variable is tracked.

We define a path as a sequence ρ := 〈(op1@l1), · · · , (opn@ln)〉 consisting of a series of
operational-statement and program-location pairs, where γρ = 〈op1, · · · , opn〉 is the constraint
sequence of this path. Program locations in this paper take BasicBlock of LLVM IR as the basic
block, and op usually contains multiple operational statements. When CEGAS detects a path
ρ that can reach an error location lφ that violates the property φ, namely, a counterexample
CEX, the algorithm first analyzes the feasibility of the counterexample path ρ by SM Tunder
full precision (Π(l) = V) (namely that the function isFeasible(ρ) is used to judge whether
the constraint sequence γρ can be satisfied). If it is not satisfied, the un-satisfaction may be
due to low precision or the erroneous points-to information caused by weak updates, and thus,
the precision should be refined. In this paper, Craig interpolation is used to generate new
interpolants. It is defined as follows.

For the given formulasφ− andφ+, withφ−∧φ+ being unsatisfiable, their Craig interpolant
ι refers to a formula that satisfies the following constraints: (1) φ− ⇒ ι is valid, namely that
φ− ∧ ¬ι is unsatisfiable; (2) ι ∧ φ+ ⇒ false, namely that ι ∧ φ+ is unsatisfiable; (3) ι

only contains common symbols of formulas φ− and φ+, as well as the symbols of the theory
itself. The definition can be extended to an ordered formula sequence ρ = φ0, · · · , φn, with∧

0≤i≤n φi ⇒ false. The above interpolation method can produce a series of interpolants
ι0, · · · , ιn: (1)

∧
0≤k≤i φk ⇒ ιi is valid; (2) ιi ∧

∧
i≤k≤n φk ⇒ false; (3) ∀1 ≤ i ≤

n, φi−1 ∧ ιi ⇒ ιi+1; (4) ιi only contains common symbols of formulas
∧

0≤k≤i φk and∧
i≤k≤n φk, as well as symbols of the theory itself.

The above-mentioned sequential interpolants (expressed by the function SeqInterpolant)
can be effectively calculated by SMT techniques (such as Z3[32]). The above method can only
use information in the value space to generate interpolants, lacking information in address
space, which results in incomplete precision refinement. For this reason, this paper takes
the sequential interpolants as the basis and proposes a points-to-sensitive precision refinement
algorithm (Refine); its pseudo-code is shown as Algorithm 1. Given an infeasible error path
ρ, this algorithm first computes the first node that makes the constraint sequence unsatisfiable
on the path ρ (Lines 2–4). For the part in which path constraints are satisfiable, we use the
path-sensitive strong update rules (represented by the function PStrongUpdate) from Table 1 to
analyze the existence of a weak update in the path, and if a weak update exists, we will strongly
update this part to avoid erroneous points-to information (Lines 5–6). Then, the algorithm uses
the function SeqInterpolant to obtain the sequence I of interpolants (Lines 7–10), and upon

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 275

Algorithm 1. Points-to information sensitive abstraction-precision refinement algorithm
(Refine(ρ,M))
Input: the infeasible error path ρ : 〈(op1@l1), · · · , (opn@ln)〉 and spatial flow model M
Output: precision Π
Variable: interpolant sequence I
1. Assume the precision of each program locations l is Π(l) := ∅; I :=<>
2. // Findout the first node that makes constraints on the path ρ unsatisfied;
3. for i := n− 1 to 0 do
4. if

∧
0≤k≤i opk ⇒ true then

5. ρI :=〉(op0@l0), · · · , (opi@li)〈
6. end if
7. if hasWeakUpdatePath(ρI ,M) := true then
8. M := PStrongUpdate(ρI); //The path is satisfied, but a weak update exists. The path-

sensitive strong update is performed on the model M.
9. end if
10. for j := i− 1 to 0 do
11. ιj := SeqInterpolant(

∧
0≤k≤j opk,

∧
j≤k≤i opk);

12. if ιj is empty then
13. break;
14. end if
15. end for
16. I := {I ∪ ιj};
17. for k := j to i− 1 do
18. Π(l0≤t≤k) := {v|v ∈ ιk, ιk ∈ I}; //The variables used by interpolants are added to the

precision of all program locations including lk backward on the path ρ
19. Π(l0≤r≤k) := {vp|vp ∈ BackReachability(M, l0≤r≤k, ιk)}; //As above, the pointer

variables pointing to interpolation variables are added
20. end for
21. end for

that, the program variable used by the interpolant ιk at the corresponding program location lk
is refined to the precision of all locations backward along the path ρ with lk as the starting
point. Moreover, the function BackReachability finds out def-use chains of the variable used
by the interpolant ιk backward from the program location lk in the spatial flow model M, and
then it adds the pointer variable that points to the variable used by ιk into the precision of the
corresponding location. This algorithm is applicable to model abstraction for iterative precision
refinement from the two aspects of value space and address space.

On the basis of the above refinement method, CEGAS records analyzed states and their
reachability in a tree-like form by means of abstract reachability graphs. Specifically, two
intermediate variables are used to record information in the analysis: the set reached ⊆ E ×Π

is used to record all reachable abstract states under the current precision, and the set waitlist ⊆
E × Π is used to record all unanalyzed abstract states under the current precision. E refers to
the set of abstract states. The pseudo-code of the CEGAS algorithm is shown as Algorithm 2,
and the specific steps are as follows.

• Step 1: Set the current precision π to the null precision π0 (namely that no variables are
recorded) and initialize reached and waitlist (Lines 1–2).

• Step 2: Execute the model checking algorithm based on explicit-value analysis and
extract an unanalyzed state b from waitlist. Under precision π, a reachable successor of
b is found (namely that branch conditions can be satisfied after abstraction under π), and
the successor is abstracted: if the new state is not analyzed, it is merged into reached and
waitlist; if the new state violates the property φ, this means that a counterexample path
is found, and in this case, the current loop (Lines 4–17) is ended.

276 International Journal of Software and Informatics, 2022, 12(3)

Algorithm 2. CEGAS
Input: sparse spatial flow model M and the property φ
Output: whether results are Safe or Unsafe (counterexample path)
Variables: precision π0, as well as sets reached ⊆ E ×Π and waitlist ⊆ E ×Π
1. π := π0 := ∅;
2. reached := {(b0, π0)}; waitlist := {(b0, π0)};
3. while true do
4. while waitlist 6= ∅ do
5. Choose and remove (b, π) from waitlist
6. for each b′ with b → E(b′, π) do
7. //Traverse the successor branch of b; b → E(b′, π) denotes that the conditions b and

b′ are satiable under the precision π.
8. b̂ := abstraction(b′, π); //Compute the abstraction state of b′ by precision π

9. if isCovered(reached, b̂) 6= true then
10. waitlist := (waitlist ∪{(b̂, π)}); //Add a new abstract state
11. reached := (reached ∪{(b̂, π)}); //Add a new abstract state in the abstract

reachability graph and record the path of the previous state
12. end if
13. if isTargetState(b′, φ) := true then //Judge whether there is a target state in the

current Basicblock
14. break while //Exit the current while loop
15. end if
16. end for
17. end while
18. if waitlist 6= ∅ then
19. ρa :=extractErrorPath(reached); //Extract abstract paths from the abstract reachability

graph, namely, abstract counterexamples
20. if isFeasible(ρa) := false then //Use Z3 to prove satisfiability of the path ρa
21. π := π ∪ Refine(ρa,M); //If not satisfied, it is possible the path is a false

counterexample, and interpolation is performed on the current precision
22. else if hasWeakUpdatePath(ρa,M) := true then
23. M := PStrongUpdate(ρa); //The path is satisfied, but a weak update exists. The

path-sensitive strong update is performed on the model M
24. π := π ∪ Update(ρa,M); //Use strong-update information to remove pointer

variables caused by weak-update points-to information in precision
25. else
26. return unsafe; //The current counterexample path is feasible, violating the

checked property φ
27. reached := {(b0, π)}; waitlist := {(b0, π)}; //Update reached and waitlist to

redo abstraction analysis
28. end if
29. end if
30. else
31. return safe;
32. end if
33. end while

• Step 3: Judge whether there is any remaining unanalyzed state in waitlist. If there is no
unanalyzed state, the program is correct for the property, and therefore, the verification
procedure stops (Line 31).

• Step 4: If waitlist is not empty, an abstract counterexample path ρa is constructed from
the abstract reachability graph. On this basis, the function isFeasible is employed to
judge whether the path is valid in the original model (Lines 18–20).

• Step 5: If ρa is invalid, the current path is infeasible. The precision π is updated by
the points-to-information-sensitive constrained-differential-based precision-refinement

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 277

algorithm (Refine) (Line 21).
• Step 6: If ρa is valid, the model M is traversed backward along this path to judge the

existence of a weak update on ρa. If there is a weak update, the path-sensitive strong
update of M is executed using the constraint rules in Table 1 to remove the points-to
information caused by weak updates. Then, the tracking variables caused by points-to
relations in the precision are updated to remove the abstract states of variable assignments
caused by erroneous points-to information (Lines 22–24).

• Step 7: If ρa is valid, with no weak updates, the path is valid in both the value space and
the address space. This indicates that there is a counterexample violating the propertyφ in
the program. Thus, the model checking procedure is interrupted, and the counterexample
is reported (Line 26).

• Step 8: Update π in reached and waitlist to the refined one and jump to Step 2 for model
checking again (Line 27).

CEGAS uses null precision in the first model checking iteration mainly due to two
considerations: firstly, the simplest abstract model can quickly detect states with violations
of the property in the program to avoid invalid computation and analysis. For example, there
is no pointer operation on a counterexample path. Secondly, as the initial SFG uses insensitive
pointer analysis, there is a lot of false points-to information, which will introduce misjudgment in
the model checking procedure. After that, if weak updates exist on detected paths, strong updates
are carried out to provide model checking with correct path-sensitive points-to information; if
no weak updates exist, points-to information on corresponding paths is correct, which means
the detected paths are considered as valid.

The CEGAS model verification is further illustrated by verifying the code shown in Fig. 1(a),
and the result is shown in Fig. 4. CEGAS first traverses the control flow graph of the code with
null abstract precision; according to the property φ, it detects the counterexample path CEX1:
θ1 ∧ θ2 ∧ θ3 ∧ θ5, but CEX1 is invalid in the original model. In view of this, CEGAS employs
the algorithm Refine and finds that θ1 is the constraint that causes the invalidity of CEX1, and
then, it detects the interpolant variable i, as well as pointer variables a and p, to increase the
current abstraction precision. In the second round of model checking, CEGAS also detects the
invalid counterexample path CEX2: ¬θ1 ∧ θ2 ∧ θ3 ∧ θ5. By analysis, it is found that the reason
for the invalidity of CEX2 is the constraint θ5, namely, the lack of precision of the variable k;
thus CEGAS computes new interpolant variables, including the variable k and pointer variables
b, p, and a. It should be noted that pointers p and a are also calculated here to increase the
related precision of p and a backward from the constraint θ5 on the path CEX2, while the p

and a calculated in the previous step are used to record related states before the constraint θ1.
In the original insensitive spatial flow model, the object a pointed to by p is considered to be
pointed to by three variables, i.e., i, j, and k, simultaneously before Line 9, but a weak update is

CEX1:!!⋀!"⋀!#⋀!$

CEX2:¬!!⋀!"⋀!#⋀!$

Figure 4 An example of CEGAS processing the C program presented in Fig. 1

278 International Journal of Software and Informatics, 2022, 12(3)

detected by the algorithm Refine. As a result, a strong update is carried out according to the path
information; in other words, after Line 9, the original points-to relations a 7→ i obtained on Line
2 and a 7→ j on Line 6 are removed, while the points-to relation a 7→ k is retained. During the
third verification, CEGAS detects no path able to reach the location to call the function error().
Thus, it is proved that the code shown in Fig. 1(a) is safe for the property φ.

4 Experimental Analysis
4.1 Experimental design

On the basis of the LLVM (6.0.0) framework and the Z3 SMT solver, we implement the tool
CEGAS to verify assertions in an input program. Specifically, we use Andersen’s algorithm to
establish the insensitive value flow of the program to ensure that CEGAS could build a spatial
flow model of the program within linear time. As path-sensitive strong updates designed in this
paper are not context-sensitive, and CEGAS maps the called function code in LLVM IR to the
main function by the inline method, CEGAS only needs to analyze the spatial flow model of
the main function. In addition, CEGAS as implemented in this paper mainly focuses on integer
variables, not supporting floating-point ones for the moment.

To verify the effectiveness of the designed CEGAS, we establish a series of new benchmark
codes considering the existing C-program verification benchmarks. SV-COMP[33] provides the
benchmark library sv-benchmark (https://github.com/sosy-lab/sv-benchmarks) for verification
of programs (C and Java programs), but most of the benchmark codes are mainly used for
logical verification at the symbolic level. For this reason, this paper combines sv-benchmarks
with Test-Suite, a benchmark library for evaluating capabilities to analyze point-to relationship
of pointers in C/C++ programs (https://github.com/SVF-tools/Test-Suite), and obtains a series
of C-program benchmark codes including multiple pointer operations to evaluate the verification
accuracy and efficiency of model checking algorithms (open sources of the benchmark library
can be found in the link: https://github.com/SFChecker/Benchmark). We design the benchmark
codes by combining pointer operations with other different syntactic and semantic features of
the C language, and according to the included features, these benchmark codes are divided into
six groups: array, function calling (callsite), global variable (global), loop, path, and structure
(struct). Specifically, variables of array codes are mainly arrays, and each code contains at
least one complex variable, such as array pointers, pointer arrays, structure array pointers, and
pointer structure fields, together with related instructions. The main semantic feature contained
in callsite codes is the address passing of local or global pointer variables in function calls, and
part of the code uses recursive functions and function pointers. Global codes are mainly used to
analyze the logical correctness of global variables (such as integer variables, pointer variables,
and structure pointers) during intra-procedural and inter-procedural passing. Loop codes mainly
use loop instructions (such as for and while) to evaluate the capability of software verification
tools to check the correctness of program state changes during loops, especially the semantics
of pointer operations with loops. Similar to the code example in Fig. 1(a), path codes contain
multiple nested path-condition branches, and each branch contains various pointer-operation
instructions. Variables of struct codes are mainly structures, and fields of the structures include
integer variables, pointer variables, substructures, and arrays to evaluate the capabilities of field-
sensitive analysis. On the basis of these features, we design these benchmark library codes to
verify that the reachability of SV-COMP is the main verification property. In other words, with
the function calling of __VERIFIER_error() set at a specific location of the code, the benchmark
library aims to verify whether the function __VERIFIER_error() is reachable from the entry
point of the main function in the target code. The benchmark library can provide analysis cases
at both symbol and address-space levels for evaluating the verification capabilities of model

https://github.com/sosy-lab/sv-benchmarks
https://github.com/SVF-tools/Test-Suite
https://github.com/SFChecker/Benchmark

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 279

checking algorithms.
On the basis of the above benchmark library, we compare several mainstream software-

verification tools with CEGAS, including CPAChecker[9], Gazer[11], and SMACK[18]. All of
these tools have achieved excellent results in SV-COMP, and similar to CEGAS, they all support
model checking for the C-program LLVM IR code. CPAChecker is a C-program verifier which
supports parallel checking of multiple verification algorithms and is implemented in Java. As
CEGAS mainly employs explicit-value analysis, we configured CPAChecker as three different
models with different modes, i.e., single explicit-value analysis (CPA-V), the combination of
explicit-value and predicate analysis (CPA-VP), and the combination of k-induction, explicit-
value analysis, and predicate analysis (the default configuration of CPA-KVP and CPAChecker
in SV-COMP). Gazer consists of an LLVM-based front-end Gazer which is able to transform C
programs into CFA (implemented in C++) and a model checking framework Theta (implemented
in Java). It employs CEGAR based on the combination of explicit-value and predicate analysis
for model checking C programs. SMACK (implemented in the C language) is a modular
tool chain for software verification. With the help of DSA[34], it computes all pointer alias
relations in LLVM IR before hand, and then it carries out model checking by a Boogie verifier
after converting LLVM IR and points-to information into the intermediate verification language
Boogie[35]. All comparative analysis was conducted on a Linux host with a 3.7 GHz Intel
i9-10900K CPU and 64 GB memory.

4.2 Analysis of experimental results
During the C-program verification by the above checking tools including CEGAS, if a valid

counterexample path is detected, the tools will report Unsafe, and if no counterexample path
is detected, they will report Safe; if these tools fail to proceed with the anaysis due to their
failure to confirm the validity of a current counterexample path, they will report Unknown.
Meanwhile, taking account of the small size of the benchmark library used in this paper, we set
a failure time of 1 min. In other words, if the verification tools yield no results within 1 min,
the analysis will be interrupted, with the verification time named Timeout and the verification
result set to Unknown. In addition, some verification tools do not support some C statements
(for example, Gazer does not support CallInst), directly throwing exceptions. In this case, we
call the verification time Failed and the verification result Unknown. Limited by space, we
only listed partial verification results and time in Table 2. For complete results, please see
https://github.com/SFChecker/Benchmark.

In Table 2, GT refers to the ground truth, i.e., the real existence of counterexamples in the
benchmark library. It can be seen that the verification result and time of the different tools change
with respect to different benchmark codes, and due to the existence of many pointer operations
in these benchmark codes, the existing tools could provide inaccurate or infeasible results. For
example, different tools handle function calls differently. Specifically, Gazer supports function-
calling analysis poorly, with the lowest accuracy in analyzing callsite codes. CEGAS manages the
calls context by the inline method, and experimental analysis reveals that this method is effective
in most cases, but when there is a recursive function, such as callsite 10.c, CEGAS will produce
erroneous results. With limited support for recursive functions, SMACK fails to verify properties
in callsite 10.c correctly. Path codes generally contain many conditional branch statements, and
these branch statements contain many pointer reference and dereference instructions. CEGAS
can effectively update points-to relations of pointers through counterexample-guided sparse
value-flow strong updates and obtain more accurate checking results. Moreover, the sensitivity
of each tool to fields of structures varies, which results in different analysis accuracy. For
example, CPA-V has low verification accuracy for array 6.c, array 9.c (including structure
array pointers), and struct codes. Using field-sensitive analysis, CEGAS can accurately analyze

https://github.com/SFChecker/Benchmark

280 International Journal of Software and Informatics, 2022, 12(3)

Table 2 Verification results and time (in milliseconds) of benchmark codes

Benchmark Tool
GT CPA-V CPA-VP CPA-KVP SMACK Gazer CEGAS

array/array0.c Unsafe Unsafe/460 Unsafe/132 Unsafe/589 Unsafe/1165.1 Unsafe/24.9 Unsafe/10.7
array/array4.c Safe Unknown/351 Safe/141 Safe/328 Safe/1426.8 Safe/16.8 Safe/17.1
array/array6.c Safe Unsafe/424 Unsafe/156 Unsafe/352 Unsafe/1158.3 Unsafe/77.6 Safe/19.0
array/array9.c Safe Unknown/504 Unsafe/250 Unsafe/367 Unsafe/1583.8 Safe/19.9 Safe/38.5

callsite/callsite0.c Safe Unknown/205 Safe/95 Safe/206 Safe/1387.3 Unknown/Failed Safe/31.9
callsite/callsite7.c Unsafe Unknown/196 Unsafe/95 Unsafe262 Unsafe/1582.7 Unsafe/60.5 Unsafe/24.5
callsite/callsite10.c Unsafe Unsafe/209 Unsafe/79 Unsafe/586 Safe/938.2 Unknown/Failed Safe/71.9
callsite/callsite15.c Unsafe Unsafe/244 Unsafe/129 Unsafe/334 Unsafe/1203.9 Unsafe/42.7 Unsafe/32.2

global/global1.c Unsafe Unsafe/208 Unsafe/92 Unsafe/230 Unsafe/1116.4 Unknown/21.3 Unsafe/15.1
global/global3.c Unsafe Unknown/201 Unsafe/95 Unsafe/224 Unsafe/1126.2 Unsafe/35.4 Unsafe/17
global/global4.c Unsafe Unsafe/194 Unsafe/96 Unsafe/223 Unsafe/1162 Unknown/49.2 Unsafe/20
global/global7.c Unsafe Unsafe/200 Unsafe/93 Unsafe/238 Unsafe/1158.8 Unsafe/57.8 Unsafe/19.3

loop/loop1.c Unsafe Unknown/233 Unknown/Failed Unsafe/446 Safe/1476.8 Unsafe/179.8 Unsafe/68.1
loop/loop3.c Safe Unknown/490 Unknown/Failed Safe/5832 Safe/1518.1 Unknown/159 Safe/335.1
loop/loop11.c Unsafe Unknown/245 Safe/370 Safe/2344 Safe/1542.9 Unsafe/27.3 Unsafe/92.2
loop/loop15c Safe Unknown/266 Unknown/Failed Unknown/Timeout Safe/1919.5 Unsafe/404.2 Safe/506.5
path/path1.c Safe Unsafe/518 Unsafe/271 Unsafe/519 Unsafe/1156.7 Unknown/54.3 Safe/30.9
path/path6.c Safe Unknown/507 Unsafe/229 Unknown/Failed Unsafe/1193.2 Unsafe/70.6 Safe/29.6
path/path13.c Safe Unknown/599 Unsafe/304 Unsafe/858 Unsafe/1938.3 Safe/17.7 Unsafe/18.6
path/path25.c Safe Unknown/570 Safe/269 Safe/524 Safe/1770.6 Unsafe/79.6 Safe/29.5
struct/struct1.c Unsafe Unsafe/220 Unsafe/97 Unsafe/229 Unsafe/1160.4 Unsafe/65.1 Unsafe/29.9
struct/struct5.c Safe Unsafe/230 Unsafe/110 Unsafe/230 Unsafe/1182.5 Unsafe/78.3 Safe/22.1
struct/strcut7.c Safe Unknown/192 Unsafe/83 Safe/184 Unsafe/1179.1 Unsafe/73.3 Safe/17.9
struct/struct14.c Safe Unknown/189 Safe/74 Safe/189 Safe/1375.8 Safe/19.1 Unsafe/15

most structure-related benchmark codes, but it may produce misjudgments when structures are
combined with static variables or function calls. Among the six groups of benchmark codes,
loop codes have high verification-time overhead, and CEGAS limits the number of times of
loop unrolling. Due to the small number of loops in loop codes, CEGAS can yield correct
verification results. In addition, for the experimental benchmark library, explicit-value analysis
of CPAChecker is not available for effective model checking in most cases due to the lack of
correct points-to information.

Figures 5 and 6 illustrate the overall effect of each tool on the benchmark library used in
the experiment. Specifically, Fig. 5 shows the verification accuracy of each tool with respect to
each type of benchmark code, and it can be seen that CEGAS achieves high accuracy in the six
types of benchmark codes. Among the three verification strategies of CPAChecker, i.e., CPA-V,
CPA-VP, and CPA-KVP, CPA-KVP combining explicit-value analysis, predicate analysis, and
k-induction can obtain more accurate verification results; however, CPAChecker only supports
Anderson and Steensgaard to obtain pointer relations. As shown in Fig. 5, CPA-V has low

array callsite global loop path struct
0

0.2

0.4

0.6

0.8

1
CPA-V CPA-VP CPA-KVP SMACK Gazer CEGAS

Figure 5 Verification accuracy of existing tools and CEGAS

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 281

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1

C
D

F

CPA-V
CPA-VP
CPA-KVP
SMACK
Gazer
CEGAS

Checking efficiency (ms/line)
Figure 6 Verification efficiency of existing tools and CEGAS. CDF: cumulative distribution function

verification accuracy with respect to the benchmark library used in the experiment. By adding
predicate path constraints, CPA-VP can improve the accuracy of CPA-V (single explicit-value
analysis) to some extent. With the external pointer-analysis tool DSA, SMACK computes the
points-to information in advance to provide effective information for model checking, which
makes SMACK obtain higher accuracy. Similar to CPA-VP, Gazer improves the accuracy of
the analysis by combining explicit-value analysis with predicate path constraints. However, we
can see that the accuracy of these tools varies greatly in these six types of benchmark codes.
By combining explicit-value analysis with pointer analysis, CEGAS can achieve the highest
accuracy in the benchmark codes except for callsite. CEGAS uses the inline method to solve
function calling, but when there is a recursive function in callsite codes, this method cannot
remove function calls, which might result in invalid results of CEGAS.

Figure 6 illustrates the cumulative distribution of the verification efficiency of the different
tools. We evaluated the verification efficiency by dividing the verification time (measured
inmilliseconds) by the number of lines of the checked code, and a higher value indicates lower
efficiency. For verification results of Timeout, we set the efficiency to 250, while for those
of Failed, we set the efficiency to –10. It can be seen that SMACK demonstrates the lowest
verification efficiency, followed by the three strategies of CPAChecker, while CEGAS and Gazer
have similar efficiency. Different from other tools, SMACK transforms optimized LLVM IR
into Boogie and then directly calls the Boogie verifier for verification, which leads to inefficient
verification. Other tools all adopt abstraction-based verification strategies, with SMT solvers
as constraint solvers, and thus the verification efficiency is promoted. By combining explicit-
value analysis with predicate analysis, both CPA-VP and Gazer achieve excellent verification
efficiency. By adding the additional checking of k-induction to CPA-VP, CPA-KVP improves
its verification accuracy but reduces its verification efficiency. Multiple cases with timeouts or
unsupported verification exsit in all CPAChecker’s three verification strategies and Gazer, with
Gazer having the highest failure rate (20%) and CPA-KVP having the most timeouts (four times).
Both SMACK and CEGAS, on the other hand, are able to produce verification results within
a certain time. With the combination of explicit value analysis and sparse value-flow analysis,
CEGAS can provide accurate state changes at both symbolic-variable and address-space levels
during model checking, which reduces the analysis overhead caused by erroneous points-to
information and improves the verification efficiency of CEGAS.

Finally, we calculated the overall verification accuracy and average verification efficiency
of each tool with respect to the benchmark library after removing structures with the verification
time of Timeout and Failed, as shown in Table 3. The table indicates that CEGAS yields overall

282 International Journal of Software and Informatics, 2022, 12(3)

Table 3 Overall accuracy and average efficiency of benchmark codes
Index CPA-V CPA-VP CPA-KVP SMACK Gazer CEGAS

Accuracy (%) 31.6 69.4 79.6 80.6 61.2 92.9
Average efficiency (ms/line) 16.6 9.0 25.52 72.3 2.64 2.58

verification accuracy of 92.9% and average verification efficiency of 2.58 ms/line on the used
benchmark library, superior to other compared tools. In conclusion, compared with the existing
C-code model checking algorithms, the counterexample-guided spatial-flow model checking
method CEGAS designed through the combination of explicit-value analysis and sparse value-
flow analysis can realize more accurate and efficient verification for C code containing various
pointer operations.

5 Conclusions
The existing C-code model checking algorithms fail to effectively analyze state changes

at the address-space level, which causes low verification accuracy. In view of this problem,
this paper designs a counterexample-guided spatial flow model checking algorithm. First, a
spatial flow model is designed, which can effectively describe state changes of programs at the
symbolic-variable and address-space levels by combining control flow and sparse value flow.
Moreover, a CEGAS algorithm is proposed. Specifically, a spatial flow model is constructed
rapidly by insensitive pointer analysis, and the model is abstracted by variable abstraction. Then,
detected invalid counterexamples are used to guide the refinement of model abstraction precision
and the strong update of insensitive points-to relations. In this way, an effective tradeoff between
verification efficiency and accuracy is achieved. Finally, by designing a C-code benchmark
library, this paper compares the proposed method with the existing cutting-edge verification
tools. In multiple C-language benchmark codes, the proposed method achieves outstanding
results in terms of verification accuracy and efficiency.

Admittedly, the proposed method still has many shortcomings and requires the following
improvements in future work: (1) the proposed method solves the context problem by the
inline method, but it has some defects. In future work, path-sensitive strong updates should be
improved to support context sensitivity. (2) it is found in the experiments that CPAChecker and
Gazer with the combination of explicit-value and predicate analysis can obtain more accurate
results than methods with pure explicit-value analysis. In the future, CEGAS can be improved
to support predicate analysis. (3) CEGAS needs to call the SMT solver in many cases, including
state abstraction, path feasibility analysis, and branch-condition judgment, which results in
high overhead. Some constraints (such as branch-condition judgment) can be solved by local
calculation to improve efficiency, such as the method adopted in Ref. [27].

References
[1] D’silva V, Kroening D, Weissenbacher G. A survey of automated techniques for formal software

verification. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2008, 27(7):
1165–1178. [doi: 10.1109/TCAD.2008.923410]

[2] Clarke EM, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-guided abstraction refinement for
symbolic model checking. Journal of the ACM (JACM), 2003, 50(5): 752–794. [doi: 10.1145/876638.
876643]

[3] Baldoni R, Coppa E, D’Elia DC, Demetrescu C, Finocchi I. A survey of symbolic execution techniques.
ACM Computing Surveys (CSUR), 2018, 51(3): 1–39. [doi: 10.1145/3182657]

[4] Clarke EM, Henzinger TA, Veith H, Bloem R. Handbook of Model Checking. Cham: Springer, 2018.

[5] Kalra S, Goel S, Dhawan M, Sharma S. Zeus: Analyzing safety of smart contracts. Proc. of the Symp.
on Network and Distributed Systems Security (NDSS). 2018. 1–12. [doi: 10.14722/ndss.2018.23082]

10.1109/TCAD.2008.923410
10.1145/876638.876643
10.1145/876638.876643
10.1145/3182657
10.14722/ndss.2018.23082

Yu YB, et al. Counterexample-guided spatial flow model checking methods for C code 283

[6] Yu Y, Li Y, Hou K, Chen Y, Zhou H, Yang J. CellScope: Automatically specifying and verifying
cellular network protocols. Proc. of the ACM SIGCOMM 2019 Conf. on Posters and Demos. 2019.
21–23. [doi: 10.1145/3342280.3342294]

[7] Chaki S, Datta A. ASPIER: An automated framework for verifying security protocol implementations.
Proc. of the 22nd IEEE Computer Security Foundations Symp. IEEE, 2009. 172–185. [doi: 10.1109/
CSF.2009.20]

[8] Zhang XL, Zhu YF, Gu CX, Chen X. C2P: Formal abstraction method and tool for C protocol code
based on Pi calculus. Ruan Jian Xue Bao/Journal of Software, 2021, 32(6): 1581–1596 ((in Chinese
with English abstract). http://www.jos.org.cn/1000-9825/6238. htm [doi: 10.13328/j.cnki.jos.006238]

[9] Beyer D, Keremoglu ME. CPAchecker: A tool for configurable software verification. Proc. of the Int’l
Conf. on Computer Aided Verification (CAV). Berlin, Heidelberg: Springer, 2011. 184–190. [doi:
10.1007/978-3-642-22110-1_16]

[10] Holzmann GJ. Software model checking with SPIN. Advances in Computers, 2005, 65: 77–108. [doi:
10.1016/S0065-2458(05)65002-4]

[11] Ádám Z, Sallai G, Hajdu Á. Gazer-Theta: LLVM-based verifier portfolio with BMC/CEGAR. Proc.
of the Int’l Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
2021. 433–437.

[12] Henzinger TA, Jhala R, Majumdar R, Sutre G. Lazy abstraction. Proc. of the 29th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages (POPL). 2022. 58–70. [doi: 10.1145/
565816.503279]

[13] Henzinger TA, Jhala R, Majumdar R, McMillan KL. Abstractions from proofs. Proc. of the 31st ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL). 2004. 232–244. [doi:
10.1145/982962.964021]

[14] Andersen LO. Program analysis and specialization for the C programming language [Ph.D. Thesis].
DIKU: University of Copenhagen, 1994.

[15] Beyer D, Dangl M, Wendler P. A unifying view on SMT-based software verification. Journal of
Automated Reasoning, 2018, 60(3): 299–335. [doi: 10.1007/s10817-017-9432-6]

[16] Musuvathi M, Park DYW, Chou A, Engler DR, Dill DL. CMC: A pragmatic approach to model
checking real code. Proc. of the Operating Systems Design and Implementation (OSDI). 2002. 75–88.
[doi: 10.1145/844128.844136]

[17] Havelund VK, Brat G, Park S, Lerda F. Model checking programs. Automated Software Engineering
(ASE), 2003, 10(2): 203–232. [doi: 10.1023/A:1022920129859]

[18] Rakamarić Z, Emmi M. SMACK: Decoupling source language details from verifier implementations.
Proc. of the Int’l Conf. on Computer Aided Verification (CAV). Cham: Springer, 2014. 106–113. [doi:
10.1007/978-3-319-08867-9_7]

[19] Clarke EM, Kroening D, Lerda F. A tool for checking ANSI-C programs. Proc. of the Int’l Conf. on
Tools and Algorithms for the Construction and Analysis of Systems. LNCS 2988, Springer, 2004.
168–176. [doi: 10.1007/978-3-540-24730-2_15]

[20] Gadelha MR, Monteiro F, Cordeiro L, et al. ESBMC v6.0: Verifying C programs using k-induction
and invariant inference. Proc. of the Int’l Conf. on Tools and Algorithms for the Construction and
Analysis of Systems. Cham: Springer, 2019. 209-213.

[21] Ball T, Levin V, Rajamani SK. A decade of software model checking with SLAM. Communication of
ACM, 2011, 54(7): 68–76.

[22] Tóth T, Hajdu Á, Vörös A, et al. Theta: A framework for abstraction refinement-based model checking.
Proc. of the 2017 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2017. 176–179. [doi:
10.23919/FMCAD.2017.8102257]

[23] Steensgaard B. Points-to analysis in almost linear time. Proc. of the Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL). 1996. 32–41. [doi: 10.1145/237721.237727]

[24] Oh H, Heo K, Lee W, Lee W, Yi K. Design and implementation of sparse global analyses for C-
like languages. Proc. of the 33rd ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI). 2012. 229–238. [doi: 10.1145/1273442.1250789]

10.1145/3342280.3342294
10.1109/CSF.2009.20
10.1109/CSF.2009.20
10.13328/j.cnki.jos.006238
10.1007/978-3-642-22110-1_16
10.1016/S0065-2458(05)65002-4
10.1145/565816.503279
10.1145/565816.503279
10.1145/982962.964021
10.1007/s10817-017-9432-6
10.1145/844128.844136
10.1023/A: 1022920129859
10.1007/978-3-319-08867-9_7
10.1007/978-3-540-24730-2_15
10.23919/FMCAD.2017.8102257
10.1145/237721.237727
10.1145/1273442.1250789

284 International Journal of Software and Informatics, 2022, 12(3)

[25] Sui Y, Xue J. Value-flow-based demand-driven pointer analysis for C and C++. IEEE Trans. on
Software Engineering, 2018, 46(8): 812-835. [doi: 10.1109/TSE.2018.2869336]

[26] Cherem S, Princehouse L, Rugina R. Practical memory leak detection using guarded value-
flow analysis. Proc. of the 28th ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI). ACM, 2007. 480–491.

[27] Shi Q, Xiao X, Wu R, et al. Pinpoint: Fast and precise sparse value flow analysis for million lines of
code. Proc. of the 39th ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI). 2018. 693–706. [doi: 10.1145/3192366.3192418]

[28] Shi Q, Yao P, Wu R, et al. Path-sensitive sparse analysis without path conditions. Proc. of the 42nd
ACM SIGPLAN Int’l Conf. on Programming Language Design and Implementation (PLDI). 2021.
930–943. [doi: 10.1145/3453483.3454086]

[29] Beyer D, Löwe S. Explicit-state software model checking based on CEGAR and interpolation. Proc.
of the Int’l Conf. on Fundamental Approaches to Software Engineering (FASE). Berlin, Heidelberg:
Springer, 2013. 146–162. [doi: 10.1007/978-3-642-37057-1_11]

[30] Sui Y, Xue J. SVF: Interprocedural static value-flow analysis in LLVM. Proc. of the 25th ACM Int’l
Conf. on Compiler Construction (CC). 2016. 265–266. [doi: 10.1145/2892208.2892235]

[31] Lattner C, Adve V. LLVM: A compilation framework for lifelong program analysis & transformation.
Proc. of the Int’l Symp. on Code Generation and Optimization (CGO). 2004. 75–86. [doi: 10.1109/
CGO.2004.1281665]

[32] de Moura LM,Bjørner N. Z3: An efficient SMT solver. Proc. of the Int’l Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). 2008. 337–340. [doi: 10.1007/978-3-540-
78800-3_24]

[33] Int’l competition on software verification (SV-COMP).http://sv-comp.sosy-lab.org

[34] Lattner C, Lenharth A, Adve V. Making context-sensitive points-to analysis with heap cloning practical
for the real world. Proc. of the ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI). 2007, 42(6): 278–289. [doi: 10.1145/1273442.1250766]

[35] De Line R, Leino KRM. BoogiePL: A typed procedural language for checking object-oriented
programs [Technical Report], MSR-TR-2005-70, Microsoft Research, 2005.

Yinbo Yu, Ph.D., associate
professor. His research interests
include software and system
security, Internet of Things secu-
rity, and deep-learning security.

Dejun Mu, Ph.D., professor,
doctoral supervisor. His research
interests include hardware secu-
rity, machine learning, and data
mining.

Jiajia Liu, Ph.D., professor,
doctoral supervisor. His research
interests include network secu-
rity and intelligent communica-
tions.

10.1109/TSE.2018.2869336
10.1145/3192366.3192418
10.1145/3453483.3454086
10.1007/978-3-642-37057-1_11
10.1145/2892208.2892235
10.1109/CGO.2004.1281665
10.1109/CGO.2004.1281665
10.1007/978-3-540-78800-3_24
10.1007/978-3-540-78800-3_24
http://sv-comp.sosy-lab.org
10.1145/1273442.1250766

	1 Related Work
	2 Overview of Methods
	2.1 Research motivation
	2.2 Research methods

	3 Counterexample-guided Spatial-flow Model Checking
	3.1 Definition and construction of spatial-flow model
	3.2 Spatial flow model checking
	3.2.1 Counterexample-guided path-sensitive strong update
	3.2.2 Counterexample-guided spatial flow model checking

	4 Experimental Analysis
	4.1 Experimental design
	4.2 Analysis of experimental results

	5 Conclusions
	Yinbo Yu
	Dejun Mu
	Jiajia Liu

