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Abstract With the emergence and accumulation of massive data, data governance has become
an important manner to improve data quality and maximize data value. Specifically, data error
detection is a crucial step to improve data quality, which has attracted wide attention from both
industry and academia. At present, various detection methods tailored for a single data source
have been proposed. However, in many real-world scenarios, data are not centrally stored or
managed. Data from different sources but highly correlated can be employed to improve the
accuracy of error detection. Unfortunately, due to privacy/security issues, cross-source data
are often not allowed to be integrated centrally. To this end, this paper proposes FeLeDetect, a
cross-source data error detection method based on federated learning, so as to improve the error
detection accuracy by using cross-source data information on the premise of data privacy. First,
a Graph-based Error Detection Model, namely GEDM, is presented to capture sufficient data
features from each data source. On this basis, the paper then designs a federated co-training
algorithm, namely FCTA, to collaboratively train GEDM by using different cross-source data
without privacy leakage of data. Furthermore, the paper designs a series of optimization methods
to reduce communication costs during federated learning and manual labeling efforts. Finally,
extensive experiments on three real-world datasets demonstrate that (1) GEDM achieves an
average improvement of 10.3% and 25.2% in terms of the F1 score in the local and centralized
scenarios, respectively, outperforming all the five existing state-of-the-art methods for error
detection; (2) the F1 score of the error detection by FeLeDetect is 23.2% on average higher
than that by GEDM in the local scenario.
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As mobile devices, Internet of Things devices spread far and wide, and Internet technologies
develop rapidly, massive data constantly surge and are accumulated. Analyzing and mining
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massive data are essential to reveal potential data value. Error detection is often the first step[1, 2]

of data analysis because data errors will seriously affect data quality[3], mislead downstream
decision analysis, and even cause serious economic loss to enterprises[4]. In recent years, data
error detection has attracted much attention from academic and industrial circles and has been
accordingly studied in depth.

Data errors are attributed to multiple factors, such as typos resulting from manual keying
and inconsistencies caused by integrating data from different sources. Common types of errors
include typos, missing data, format errors, and violation of data consistency. In real-world
scenarios, data errors tend to be heterogeneous and sparse[4], which makes error detection even
more difficult. Error detection methods comprise (1) outlier detection[5–7], which statistically
detects error values that significantly deviate from the overall distribution of data; (2) duplicate
value detection[8, 9], which eliminates duplicate values by identifying tuples pointing to the same
entity; (3) format error detection[10], which detects format errors through predefined patterns
(such as the date format 2000/01/01); (4) rule violation detection[11, 12], which detects data errors
that violate rules through given data rules; and (5) external knowledge violation detection, which
employs external knowledge (such as master data[13] and Knowledge-Based systems (KBs)[14])
to detect data errors. The above methods are tailored for a single data source. However, in
real-world scenarios, even data describing the same set of entities are seldom centrally stored
or managed. Underpinned by cross-source data information, some errors that are difficult to be
identified only by relying on single-source information can be more easily detected.

For better understanding, an example is shown in Figure 1. Two tables from different data
sources (DBLP and ACM) show the information of some conferences and papers in the field
of computer science. Tuples in each table that have the same row describe the information of
the same paper. There are two data cells with substitution errors (SEs), highlighted as ED and
EA. One is in the first tuple in the DBLP table (the paper’s correct publication information is
“SIGMOD Conference” rather than “SIGMOD Record”), and the other is in the first tuple in
the ACM table (the paper’s correct title is “A Compact B-Tree” rather than “Bit-Sliced Index
Arithmetic”). It is difficult to detect the error ED by the DBLP table alone. Likewise, it is
difficult to identify the errorEA only by the ACM table. In other words, the above error detection
methods tailored for single-source data have difficulty in detecting these two errors. (1) Both
“SIGMOD Record” and “Bit-Sliced Index Arithmetic” are valid values in the attribute domain
of their tables and cannot be regarded as outliers; (2) there are no duplicate records in the two
tables, so it is impossible to use duplicate records to detect and identify errors; (3) the values
of the two errors are correct in syntax and semantics, and there is no Format Issue (FI); (4)
the two errors cannot be captured by data rules in a single table; (5) there is no master data or
external knowledge about the two tables, and the building of the master database or external KBs
entails substantial labor costs and computing resources. Therefore, it is difficult to use external
knowledge to conduct error detection.
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Figure 1 Cross-source dataset example

However, if DBLP and ACM are transferred to the same data center and integrated
into a centralized dataset (Figure 2), the difficulty of error detection will be greatly reduced.
Although these two tables come from different data sources (DBLP and ACM), they describe
the information of the same set of entities (academic papers). It is found that for the same
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Figure 2 Centralized dataset

paper, the value of D.Venue (SIGMOD Conference) and the value of A.Venue (International
Conference on Management of Data) frequently co-occur. Therefore, it can be inferred that they
refer to the same academic conference. However, the Venue value of the first tuple in DBLP
and ACM breaks such high-frequency co-occurrence law. Therefore, it is easy to infer that the
value of at least one data cell is erroneous. Since data errors are not randomly distributed[15],
the error distribution in the dataset can be learned to predict which data cell is more likely to
have an error value, so as to make more accurate inferences. For example, in this dataset, there
is a “SIGMOD Conference” that is similar to the valid value of the “SIGMOD Record” in the
attribute domain of the D.Venue. However, in the attribute domain of A.Venue, there is no value
similar to “International Conference on Management of Data”. Therefore, relatively speaking,
“SIGMOD Record” and “SIGMOD Conference” are more likely to be mixed up with each other.
If the data errors in the training set conform to the above distribution law, the model will learn
the knowledge and apply it to the detection set. Based on this, this paper studies the cross-source
data error detection method and aims to answer the following three major questions.

(1)How to represent the features of datawith different granularity? As mentioned
above, due to the heterogeneity of data errors in real-world scenarios, it is difficult to represent
them in a standard way. An effective way to deal with error heterogeneity is to use machine
learning to treat error detection as a binary classification problem. In other words, through a
given dataset and some training labels, this paper can predict whether the value of each data
cell is erroneous by learning the features of the erroneous data cells and the correct data cells.
So, how to effectively represent the features of data cells with different granularity is critical to
precise error detection.

(2) How to ensure data privacy in cross-source error detection? As shown in
Figure 2, cross-source data can effectively improve the quality of error detection. However,
for the concern of data privacy and security (such as the General Data Protection Regulation
promulgated in Europe[16]), in real-world scenarios, data from different sources are often not
permitted to be transmitted to a public data center for integration. Therefore, it is urgent to
study a cross-source error detection method, which can not only effectively use cross-source
data information to improve the quality of error detection but also guarantee the privacy and
security of data from different sources.

(3) How to reduce the communication costs of cross-source data error detection?
During cross-source error detection, different data sources need to exchange information
frequently to obtain the necessary cross-source information. The incurred communication
costs cannot be ignored. Therefore, how to minimize the communication costs arising in the
cross-source error detection process while ensuring the precision of error detection remains a
big challenge.

To this end, this paper proposes FeLeDetect, a cross-source detection method based on
federated learning. First of all, considering that the graph structure can effectively represent
the features of relational data[17], this paper designs a Graph-based Error Detection Model
(GEDM) to capture the features of different granularity of each data source (including value-level
features, attribute-level features, and tuple-level features), so as to provide precise classification
signals for the classifier. GEDM can effectively capture the data features of the input dataset.
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Nevertheless, when the input dataset is a vertically distributed subset (such as DBLP in Figure 1),
the performance of GEDM is affected due to the inability to access another related dataset (such
as ACM in Figure 1). Given that the federated learning technique[18]can collaboratively train the
machine learning model while guaranteeing data privacy, this paper proposes an information-
lossless federated co-training algorithm based on GEDM, namely FCTA, so as to collaboratively
train GEDM from different data sources. While guaranteeing the privacy and security of cross-
source data, FCTA is able to capture cross-source data features to achieve an effect close to
running GEDM on a joint dataset (Figure 2). Finally, to minimize the communication costs
of federated training, this paper further proposes three optimization strategies: (1) data de-
duplication, which is to ensure that there is no duplicate information in the exchange of data
from different sources; (2) quantization, which is to reduce the number of bytes required for data
coding by quantizing continuous data; (3) frequency-reduced transmission, which is to reduce
the frequency of data exchange by performing filter optimization according to the similarity
threshold.

This paper comes up with the following four major contributions.
(1) This paper proposes FeLeDetect, a cross-source data error detection method based on

federated learning. To the best of our knowledge, it is the first attempt to detect errors
via different data sources on the premise of data privacy preservation.

(2) A Graph-based Error Detection Model (GEDM) is presented, which is capable of
capturing the rich features of data of each source with different granularity for ensuring
high-quality error detection results.

(3) This paper proposes an information-lossless federated co-training algorithm, namely
FCTA, which collaboratively trains GEDM from different data sources to guarantee the
privacy of cross-source data. Furthermore, several optimization methods are presented
to reduce communication costs during federated training.

(4) The results of experiments conducted on three real datasets show that GEDM and
FeLeDetect can effectively improve the effectiveness of error detection, compared with
five existing advanced error detection methods.

1 Related Work
This section outlines related work. Section 1.1 reviews the work on error detection;

Section 1.2 describes the work related to federated learning.

1.1 Error detection
Data error detection is a crucial step to improve data quality. Traditional error detection

methods can be divided into quantitative and qualitative methods[5–7]. The quantitative method
identifies data errors with the expected statistical distribution of data, while the qualitative method
detects data errors through rules[11, 12], patterns[10, 19], or external knowledge[13, 14]. However,
due to the heterogeneity of errors, it is difficult for these methods to detect multiple types of
errors in relational tables, which results in relatively low recall of error detection. In recent
years, the error detection method based on machine learning/deep learning technology[2, 4, 20–23]

has attracted extensive attention, and it aims to capture the features of data errors through
learning. The method uses training labels to guide the classifier to make more precise judgments,
thus addressing the challenge of error heterogeneity. Of all these error detection methods,
HoloDetect[2] and Raha[20] have shown the best error detection effect. HoloDetect[2] detects
erroneous data cells by representing the intrinsic semantic and syntactic features of the data
and following the data consistency rules given by humans. Raha[20] systematically generates a
set of configuration parameters for an error detection algorithm and encodes the output of the
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algorithm into an eigenvector for each data cell to learn the features of data errors. Raha achieves
error detection results equivalent to those of HoloDetect. However, the process of configuring
and running various error detection algorithms by Raha is time-consuming. Compared with
Raha, the GEDM proposed in this paper can fully capture the features of data with different
granularity and is more efficient. This will be verified in the experimental part in Section 5.4.

1.2 Federated learning

Federated learning[24] is a distributed machine learning technique that allows different
data participants to work together to build machine learning models without disclosing their
original data. So far, federated learning has been applied to many fields, such as intelligent
recommendation[25], intelligent medical care[26], and financial crime detection[27]. In this context,
some federated learning frameworks have been proposed, such as FedATT[28], FedProx[29], and
FedKD[30]. These computational frameworks are primarily oriented toward horizontal federated
learning (i.e., horizontal data distribution). This paper is the first one to apply the vertical
federated learning technique to data governance. It uses cross-source data information to
improve the precision of error detection, thereby improving data quality. Since federated
learning entails frequent data exchange among data participants in the process of model training,
how to minimize the high communication cost caused by frequent data exchange during federated
training is a research focus of federated learning[31–33]. After proposing FeLeDetect, this paper
further designs several effective communication optimization schemes to minimize the high
communication traffic in the collaborative training process of the cross-source GEDM at different
levels. These optimization strategies greatly reduce the communication costs of FeLeDetect
while ensuring the effectiveness of error detection.

2 Basic Knowledge
This section introduces the basic knowledge of the work in this paper. Section 2.1 introduces

the fundamental concepts of data error and error detection; Section 2.2 introduces knowledge
relevant to federated learning; Section 2.3 gives the specific definitions of the problem studied
in this paper.

2.1 Data error and error detection
A relational table containing erroneous data, namelyD = {t1, t2, · · · , tn}, and its attribute

set A = {a1, a2, · · · , an} are given. Specifically, each tuple (record) ti ∈ D is a set of data
cells {ti[a1], ti[a1], · · · , ti[am]}. Each tuple describes a real-word entity. The value of a data
cell ti[aj ] in the table D is registered as vij , which is used to describe the features of entity ti
in a certain feature dimension aj . The actual value of the data cell ti[aj ] is denoted as v∗ij . If
vij ̸= v∗ij , then the data cell is called an erroneous data cell, and vij is a data error. For example,
Figure 1 shows two relational tables, DBLP and ACM (abbreviated as D and D′, respectively).
Each relational table contains three tuples. Since the actual values of data cells t1[a4] and t′1[a1]

are “SIGMOD Conference” and “A Compact B-Tree”, both of which are not equal to their values
in D and D′, data cells t1[a4] and t′1[a1] are both erroneous data cells.

The purpose of error detection is to identify all erroneous data in the relational table,
namely t1[a4] and t′1[a1] in Figure 1. In this paper, error detection is considered as a binary
classification problem. In other words, a relational table D containing erroneous data and some
training labels L are given. The error detection aims to assign a classification label ŷ ∈ {0, 1}
to each data cell ti[aj ]. Specifically, ŷ = 1 denotes that the cell is an erroneous data cell, while
ŷ = 0 denotes that the cell is a correct data cell.
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2.2 Federated learning
In the real world, data possessed by different organizations/agencies are often defined and

managed separately. Data from different sources form isolated islands, making it difficult for
data to circulate and be shared. Due to competition among industries, privacy, security, and
complex management mechanisms, even data integration between different departments of the
same company faces strong resistance[34]. Therefore, it becomes more difficult to integrate data
across agencies and organizations. In response to this challenge, Google proposed the concept
of federated learning[18]. It is a distributed machine learning technique, which aims to build
a machine learning model by using data distributed in different sites while guaranteeing the
privacy and security of cross-source data. Therefore, the federated learning technique can be
employed to effectively use cross-source data without violating privacy. According to the feature
space of data participants and the entity space described, federated learning techniques can be
divided into three categories, namely horizontal federated learning, vertical federated learning,
and transfer learning[34]. Horizontal federated learning can be applied to scenarios where
data participants have the same feature space but different entity spaces (the data are divided
horizontally). Vertical federated learning is applicable to the case where data participants have
the same entity space but different feature spaces (the data are divided vertically). Transfer
learning focuses on scenarios where data participants have both different entity spaces and
feature spaces.

The cross-source error detection studied in this paper is highly correlated to the scenario
of vertical federated learning. As Figure 1 shows, (1) DBLP and ACM describe the information
of the same group of entities (conferences and journal papers); (2) the local datasets DBLP and
ACM possessed by each party in Figure 1 can be regarded as those vertically divided from the
joint dataset DBLP-ACM in Figure 2. One of the most straightforward methods to carry out the
cross source data error detection is to first transfer the data D and D′ owned by the data holders
F and F ′ to a public data center and make them integrate as a joint dataset DS = D ∪ D′.
After that, upon the dataset DS , a machine learning model MS is built. However, as mentioned
above, in view of privacy and security, such an integrated modeling pattern usually does not
work in real-world scenarios. In contrast, cross-source error detection based on vertical federated
learning aims to use datasetsD andD′ to jointly build an error modelMF and ensure no privacy
leakage of cross-source data. Therefore, there is no need to transfer and integrate centrally the
original data from different sources, so as to ensure the privacy and security of cross-source
data. In addition, the method based on federated learning requires that the effect of the federated
modelMF should be close to that of the modelMS established in the data’s centralized scenario.

2.3 Problem definition
This paper focuses on the error detection problem for relational data. On the one hand,

cross-source data can improve the quality of error detection. As shown in Figure 1, it is difficult
for an existing error detection method tailored for single-source data to effectively detect the SEs
in Figure 1. However, with cross-source data information, the precision of error detection can be
improved. Therefore, in line with the general assumptions made by relevant research work[35, 36],
this paper assumes that different data holders are willing to participate in cross-source error
detection to improve the quality of their own data. On the other hand, data privacy is a global
urgent issue to be addressed. Therefore, this paper studies cross-source data error detection
considering privacy protection.

Definition 1 (cross-source data error detection under privacy protection). Two relational
tablesD andD′ containing erroneous data are given. They are held by different data participants
F and F ′ separately. (Although the definition only involves two data holders, the method
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proposed in this paper can extend to multiple data holders. However, in real-world vertical
federated scenarios, owing to complicated management and benefit distribution mechanisms,
it is rare that data are held by multiple parties[35]). For the sake of data privacy and security,
both parties do not accept privacy leakage of original data. A cross-source data error detection
method considering privacy protection aims to integrate information of cross-source data D and
D′ and detect all errors in data D and D′ while ensuring the data privacy and security of both
parties.

Since cross-source data are not allowed to be integrated centrally, this paper uses the
federated learning technique to carry out cross-source data error detection. As mentioned
above, the data held by both parties are vertically divided by the joint dataset DS . Therefore, it
is a problem of vertical federated learning. A typical vertical federated learning system mainly
consists of two parts, namely encrypted entity alignment and federated learning[34]. Encrypted
entity alignment aims to use existing techniques to identify records in two data sources that point
to the same entity[35]. This paper follows the general assumption of vertical federated learning
research that the records of the two datasets have been completely aligned, or in other words,
the encrypted entity alignment has been completed, and only the federated learning phase[36, 37]

is to be considered. For example, the relational tables DBLP and ACM in Figure 1 have been
completely aligned, and the tuples with the same ID describe the information of the same paper.

3 Graph-based Error Detection Model (GEDM)
This section describes GEDM. Section 3.1 introduces the construction of a Multi-Relational

Graph (MRG) model; Section 3.2 proposes GEDM, which can capture rich features of different
granularity in each data source.

3.1 Multi-relational graph construction
Recent studies have shown[17] that representing relational data as a graph structure is

conducive to capturing the intrinsic features of data. In view of this, this paper first transforms
relational data into a graph and then models it. The EMBDI model proposed by Cappuzzo
et al.[17] models each tuple (row), each attribute (column), and the value of each data cell in a
relational table as three types of nodes in the graph. These nodes are connected according to
the logical relationship described by the relational table. Figure 3(a) shows an EMBDI model
based on the ACM dataset in Figure 1. Nodes denoted by rectangles (e.g., “Ivan T. Bowman,
Peter Bumbulis”) correspond to a value of a data cell in the table ACM, and the circular node
(e.g., t1) corresponds to the first tuple in the table ACM, and the diamond-shaped node (e.g.,
“Title”) corresponds to the Title attribute in the table ACM. However, this graph-based model
is subjected to two problems.

• First, using this model to transform and model relational tables will produce large-scale
graphs with complex structures, which contain a large number of nodes and edges. Storing
large graphs requires a lot of storage resources, and it is a great challenge for graph-based
training in the follow-up process.

• Second, the graph-based model does not consider the semantic information of edges.
For example, an edge connecting a tuple node to an attribute node is not semantically
identical to an edge connecting an attribute node to a value node, but the graph-based
model does not distinguish these different semantic edges.

In order to overcome these two deficiencies, this paper uses the MRG model[38] to transform
a relational table into a graph. The MRG model is a bipartite graph, and there are two types of
nodes, namely tuple-level nodes (denoted by t) and value-level nodes (denoted by v). These two
types of nodes are the same as the tuple node and the value node defined in the tripartite graph
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model. In contrast, the MRG model introduces the concept of an attribute-level edge (denoted as
a) to connect the t node and the v node. Specifically, in the original relational table, if the value
of the tuple t on the attribute a is v, then the node t and the node v are connected by an attribute-
level edge a in the corresponding MRG. Figure 3(b) depicts an example of the transformation
of the ACM dataset in Figure 1 in accordance with the MRG model. For example, the edge
represented by the attribute “year” connects the tuple-level node t1 and the value node “2002”,
and its corresponding semantics is as follows: the publication year of the paper described by the
first tuple in the ACM dataset is 2002. Through the comparison with Figure 3(a) and Figure 3(b),
it can be seen that for the same relational table, the number of edges and nodes of the graph
constructed by MRG is reduced compared with the EMBDI model. In particular, the number
of edges is reduced from 2mn to mn, where m denotes the number of attributes (columns) in
the original relational table, and n denotes the number of tuples (rows) in the original relational
table. Moreover, each edge in the MRG model has its semantic information (attribute name),
which helps represent the semantic relationship between different nodes.

(b) MRG

t2

(a) EMBDI

Title

Authors

Venue

Year

Keywords

Ivan T. Bowman,

Peter Bumbulis

International 

Conference on 

Management of Data

2002

Bit-Sliced Index

Arithmetic

Elizabeth J. O’Neil,

Denis Rinfret, et al.

Updating XML

2001

Daniel S. Weld, et al.

t1

t3

B-Tree

Bit-Sliced

XML

t1

t2

t3

Authors
Year

Keywords

Venue

Title

Venue

Authors

Keywords

Title

Title

Authors

Ivan T. Bowman,

Peter Bumbulis

International 

Conference on 

Management of Data

2002

Bit-Sliced Index

Arithmetic

Elizabeth J. O'Neil,

Denis Rinfret, etc.

Updating XML

2001

Daniel S. Weld, et al.

B-Tree

Bit-Sliced

XML

Year

Venue

Year

Keywords

Figure 3 Example of comparison of EMBDI and MRG model construction

3.2 Model design
Figure 4 shows the GEDM framework. GEDM consists of three parts: (1) graph

construction; (2) graph-based feature extraction; (3) binary classifier. Specifically, in the
model training (or error detection) phase, GEDM first transforms the training dataset T (or
the complete dataset D) into an MRG. Then, the Graph Neural Network (GNN) is used to
extract data features of three different dimensions, namely tuple-level features, attribute-level
features, and value-level features. Finally, a binary classifier is used to judge whether the value
of each data cell is erroneous. Since the process of constructing MRG has been introduced in
Section 3.1, only the graph-based feature extraction and binary classifier are introduced below.

3.2.1 Graph-based feature learning

After the data table is transformed into a graph, each node and each edge in the graph
need to be represented by features to capture the rich data features in the original data table. In
recent years, GNNs[39] have received much attention. Because of their powerful feature capture
ability, GNNs have received extensive attention in many fields[40–42]. To this end, GEDM uses
GNNs to capture features to support high-precision error detection. Given an MRG G, GEDM
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Figure 4 Overview of GEDM

first randomly initializes the initial embeddings of tuple-level nodes, value-level nodes, and
attribute-level edges in the graph, and marks them as h0

t , h0
v , and h0

a, respectively. Then, the
proposed Multi-Granularity Graph Convolutional Neural network (MGGCN) is used to pdate the
embeddings to learn the final representation of the vectors containing data features of different
granularity. Each convolution layer of the MGGCN is designed with convolution operations for
tuple-level nodes, value-level nodes, and attribute-level edges, so as to aggregate the features of
neighbor nodes on the graph and fully capture the graph structure information. Similar to that
in Ref. [43], MGGCN adopts inductive learning. In the training process, it uses the training set
T instead of the complete dataset D to achieve higher efficiency. Specifically, the purpose of
model training is to obtain the optimal model parameters through learning rather than obtain
the feature representation of each node and edge on the graph[43]. Once the model training is
completed, the final features of each data cell in the entire dataset D can be quickly represented
by the trained model in the error detection phase. Next, the convolution operation of each layer
in the proposed MGGCN is introduced in detail.

(1) Tuple-level node convolution operation: At the k-th (k ≥ 1) layer of the MGGCN, the
embedding of the tuple-level node t is calculated by the following formula:

hk
N(t) = AGG(a,v)∈N(t)

(
W k

tah
k−1
a ⊙W k

tvh
k−1
v

)
(1)

hk
t = σ

(
W k

t

(
hk−1

t ∥hk
N(t)

))
(2)

where W k
ta, W k

tv , and W k
t denote the weight matrices to be learned; hk−1

t , hk−1
v , and hk−1

a

denote the embeddings calculated by the (k − 1)-th layer network; (a, v) ∈ N(t) denotes the
set of attribute-level edges and value-level nodes directly connected to the tuple-level node t;
AGG(·) denotes an aggregate function, where the mean function is used in this paper; ⊙ denotes
the Hadamard product; σ(·) denotes the activation function which is presented by using the tanh
function in this paper; and ∥ denotes the assembly operator.

(2) Value-level node convolution operation: At the k-th (k ≥ 1) layer of the MGGCN, the
embedding of the value-level node v is calculated by the following formula:

hk
N(v) = AGG(a,t)∈N(v)

(
W k

vah
k−1
a ⊙W k

vth
k−1
t

)
(3)
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hk
v = σ

(
W k

v

(
hk−1

v ∥hk
N(v)

))
(4)

where W k
va, W k

vt, and W k
v denote the weight matrices to be learned; hk−1

t , hk−1
v , and hk−1

a

denote the embeddings calculated by the (k − 1)-th layer network; and (a, t) ∈ N(v) denotes
the set of attribute-level edges and tuple-level nodes directly connected to the value-level node v.

(3) Attribute-level edge convolution operation: At the k-th (k ≥ 1) layer of the MGGCN,
the embedding of the attribute-level node a is calculated by the following formula:

hk
a = W k

a h
k−1
a (5)

where W k
a denotes the weight matrix to be learned and hk−1

a denotes the embedding calculated
by the (k − 1)-th layer network.

3.2.2 Binary classifiers

After the stacking of several layers of the MGGCN, the final feature representation of each
tuple/value-level node and attribute-level edge is obtained. For a certain data cell v = t[a] in the
original relational data table, the final embeddings, namely ht, ha, and hv of the corresponding
nodes and edges are concatenated to obtain a new vector c = ht∥ha∥hv , which is used as the
input of the binary classifier C. The binary classifier outputs a class label ŷ to indicate whether
the value of the data cell is correct or not. The binary classifier C consists of a two-layer fully
connected neural network and a Softmax layer. The binary classifier uses the ReLU activation
function and selects the cross-entropy loss (denoted as L) as the objective function, which is
defined as follows.

L =
1

M

M∑
i=1

Li = − 1

M

M∑
i=1

yi log pi + (1− yi) log(1− pi) (6)

where M denotes the number of samples in the training set; yi denotes the true label value of
the i-th training sample (yi = 1 indicates the erroneous data cell; yi = 0 indicates the correct
data cell); and pi denotes the probability that the training sample is predicted to be an erroneous
data. It should be pointed out that the MGGCN described above is trained along with the binary
classifier C.

4 Federated Error Detection
This section describes FeLeDetect. First, the framework of FeLeDetect is described. Then,

the technical details of FeLeDetect are described. Finally, several optimization methods are
proposed to reduce communication costs and manual labeling costs of federated training.

4.1 FeLeDetect framework
Based on the GEDM proposed in Section 3, this section proposes FeLeDetect. Here, it

is assumed that two data participants F and F ′ hold data D and D′, respectively. The tuples
contained by training sets T ⊂ D and T ′ ⊂ D′ have been aligned. As mentioned above, F
and F ′ do not allow privacy leakage of original data. FeLeDetect uses FCTA to collaboratively
train GEDM on datasets T and T ′. The process involves no exchange of any original data,
which guarantees the privacy and security of both parties’ data. For convenience, only two data
participants are described below, but FeLeDetect can still be extended to scenarios with multiple
data participants.

FeLeDetect deploys GEDM locally for data holders F and F ′, and carries out collaborative
training in accordance with FCTA. As described in Section 3.2, the training of GEDM involves
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Figure 5 Cross-source error detection method FeLeDetect

three steps, namely MRG construction, graph-based feature extraction, and binary classification.
The framework of FeLeDetect is shown in Figure 5. First, the data participants transform the
relational data into graphs G and G′, respectively, by using the MRG model. Then, in the feature
learning stage, the two parties follow the FCTA to exchange data and capture the data features
of cross-source data so that the features of the nodes and the edges on the graphs G and G′ are
collaboratively represented. It is worth noting that there is no need for any data/label exchange
between the two parties in the binary classification phase. This is because the input of the binary
classifier is the feature embeddings that are collaboratively learned. Since the vector has fully
captured the features of the dataset of both parties, there is no need to further exchange data.

With the data participant F as an example, Algorithm 1 describes the basic flow in the
FeLeDetect training phase.

Algorithm 1. FeLeDetect algorithm (with data participant F as an example).
Input: Training set T , training set label L, depth K of MGGCN, training algebra (Epoch) Nep, the

number of iterations per generation Nit, label i of data participants responsible for producing
the seed.

Output: Parameter of the trained model, namely ΘF .
1. Use the MRG model to transform the dataset T into a graph GF

2. if F.index = i then
3. Produce a seed and sends it to F ′

4. else
5. Receive the seed sent by F ′

6. end if
7. Initialize ΘF of the local GEDM
8. h0

t , h0
a, and h0

v ← random (∀a, v, t ∈ GF ) /* randomly initialize the features of nodes and edges
in GF */

9. for epoch = 1 to Nep do
10. for iter = 1 to Nit do
11. for k = 1 to K do
12. Execute the forward propagation of FCTA to obtain the features of the nodes and

edges in GF , namely hk
t , hk

a, and hk
v

13. end for
14. The classifier CF takes hk

t ∥hk
a∥hk

v (∀(t, a, v) ∈ GF ) as input and outputs predicted
label ŷ

15. Use the label set L to calculate the loss function and update ΘF with back propagation /*
update the parameter according to the objective function of Eq. (6) */

16. end for
17. end for
18. return ΘF

The inputs of Algorithm 1 include training dataset T , training label L, depth K of the
MGGCN network, maximum training algebra Nep, the number of iterations per generation Nit

(using the mini-batch training method), and the label i of participants responsible for producing
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the seed. The algorithm first transforms the dataset T into the corresponding graph GF (Line 1)
and then generates the seed or waits to receive the seed generated by the other party (Lines 2–6),
which ensures that both sides use the same seed to initialize the parameter ΘF of their respective
local GEDM so that the initialized parameters of both models are the same (Line 7). This is the
common setting in federated learning[42]. ΘF includes MGGCN and parameters to be learned
of the binary classifier CF . Next, the algorithm randomly initializes h0

a and h0
v , and it randomly

initializes h0
t by using the seed (Line 8). It should be noted that different data participants use

the same seed to initialize h0
t to ensure that the initial features of the corresponding tuple nodes

in each data participant are consistent. This is because the corresponding tuple-level nodes from
different data sources represent the same entity (the datasets are aligned). Then, the algorithm
performs the training for Nep epochs. The mini-batch training method is used here. In other
words, each epoch is composed of Nit iterations. Each iteration performs forward propagation
calculation on the K-th layer of the MGGCN by using the FCTA to obtain the output of the
network (Lines 11–13). Next,hk

t ∥hk
a∥hk

v is input into the binary classifierCF , and the predicted
label ŷ is output (Line 14). The loss function is calculated and back-propagated to update the
model parameters of MGGCN and CF (Line 15). Finally, the algorithm outputs the trained
model parameters (Line 18).

It should be pointed out that collaborative error detection should be carried out after
collaborative training is completed. Specifically, both parties transform their respective datasets
D and D′ into the corresponding graphs and use the trained model to perform forward
propagation calculation of the MGGCN and the binary classifier by following the FCTA. The
outputs of their classifiers CF and C′

F are the results of error detection.

4.2 FCTA
In FeLeDetect, data exchange occurs during the feature learning phase. For example, to

obtain the embedding output by the k-th layer of the MGGCN, the data holder F first needs
to exchange the embeddings of some nodes and edges obtained at the (k − 1)-th layer with the
data participant F ′. After completing the data exchange with F ′, participant F updates the
embedding of the tuple-level nodes at the k-th layer of the MGGCN in line with the following
formula:

hk
N (t)∪N ′(t) = AGG(a,v)∈N (t)∪N ′(t)

(
W k

tah
k−1
a ⊙W k

tvh
k−1
v

)
(7)

hk
t = σ

(
W k

t

(
hk−1

t ∥hk
N (t)∪N ′(t)

))
(8)

where W k
ta, W k

tv , and W k
t denote the weight matrices to be learned; hk−1

t , hk−1
v , and hk−1

a

denote the embeddings calculated by the (k−1)-th layer network; N (t) denotes the set of edges
and nodes that are directly connected to the node t in the graph G; and N ′(t) denotes the set of
edges and nodes that are directly connected to the node t in the graph G′.

The update method of the embeddings of value-level nodes and attribute-level edges at the
k-th layer of MGGCN is the same as that of GEDM in Section 3. Details are listed in Eqs. (3)–
(5). Since the training process of both parties is highly symmetrical, the training process is
described by taking data participant F as an example. Algorithm 2 gives the flow of the FCTA
for F .

Algorithm 2 uses the embeddings hk−1
a , hk−1

t , and hk−1
v at the (k − 1)-th layer of the

MGGCN as the input and outputs the updated embeddings corresponding to the k-th layer.
FCTA first exchanges the embeddings hk−1

a and hk−1
v that correspond to the attribute-level

edges and value-level nodes output by the MGGCN network of the previous layer with F ′ (Lines
1–2) and then updates the embeddings of the tuple-level nodes according to Eqs. (7)–(8) in turn.
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Algorithm 2. FCTA (taking data participant F as an example).
Input: embeddings of attribute-level edges, tuple-level nodes, and value-level nodes at the (k−1)-th

(k ≥ 1) layer of the MGGCN, namely hk−1
a , hk−1

t , and hk−1
v .

Output: embeddings of attribute-level edges, tuple-level nodes, and value-level nodes at the k-th
layer of the MGGCN, namely hk

a, hk
t , and hk

v

1. Send hk−1
a and hk−1

v to participant F ′ (∀(a, v) ∈ GF )
2. Receive h′k−1

a and h′k−1
v from participant F ′ (∀(a, v) ∈ GF )

3. Calculatehk
t (∀t ∈ GF ) /* update the embedding corresponding to node t according to Eqs. (7)–(8)

*/
4. Calculatehk

v (∀t ∈ GF ) /* update the embeddingcorresponding to node v according to Eqs. (3)–(4)
*/

5. Calculate hk
a (∀t ∈ GF ) /* update the embedding corresponding to the edge a according to Eq. (5)

*/
6. return hk

t , hk
v , and hk

a

Furthermore, it updates the embeddings of the value-level nodes according to Eqs. (3)–(4) and
those of the attribute-level edges according to Eq. (5) (Lines 3–5). Finally, FCTA returns the
embeddings of each node and edge at the k-th layer of the MGGCN.

It should be pointed out that, collaborative training can be understood by the fact that both
data participants construct a virtual graph Gv = G∪G′, respectively, and collaborative features
are represented based on the virtual graph. Therefore, the collaborative training mechanism
ensures that the embeddings obtained by both parties are in the same embedded space. So, there
is no need to realign the embedded space of both data participants as described in Ref. [17].
In addition, in the process of collaborative training and error detection, both data participants
only need to exchange the embeddings of the attribute-level edges and value-level nodes, and
they do not have to exchange the embeddings of the tuple-level nodes. The specific reasons are
described below from the perspective of data information analysis.

4.2.1 Data information analysis

First, the definition of data information is given.
Definition 2 (Data information). The graph-based error detection method aims to learn

the embeddings of nodes and edges to capture complex structural relationships. For the tuple-
level node t, the data information required in the feature learning process is the embeddings of
the attribute-level edge and value-level node (a, v) ∈ N (t) directly connected with the tuple-
level node t. For the value-level node v, the data information required in the feature learning
process is the embedding of the attribute-level edge and tuple-level node (a, t) ∈ N (v) directly
connected with the value-level node v. For the attribute-level edge a, it only needs its own
embedding in the process of feature learning.

In order to facilitate the analysis of data information captured by the FCTA, three error
detection scenarios are introduced here:

(1) Local scenario (L), where both data participants only use local data for error detection.
(2) Federated scenario (F ), where both data participants use FeLeDetect for federated error

detection, and this process does not involve the exchange of original data.
(3) Centralized scenario (C), where both data participants first transmit their data to a data

center and then perform error detection on the integrated data.
Definition 3 (Information loss). For a given MRG G in a centralized scenario, we have

(ti, aj , vk) ∈ G ∧ (ti, am, vn) ∈ G, with aj ̸= am, vk ̸= vn. In the local scenario,
data participants F and F ′ construct local MRGs GF and GF ′ , respectively. Due to the
longitudinal data splitting, in GF , we have (ti, aj , vk) ∈ GF ∧ (ti, am, vn) /∈ GF ; in
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GF ′ , wehave(ti, am, vn) ∈ GF ′ ∧ (ti, aj , vk) /∈ GF ′ . Therefore, in the local scenario,
the information loss of the data participant F in updating the embedding of ti is the embedding
of (am, vn), and it is the symmetrical case with the information loss of the data participant F ′.

Theorem 1. Compared with GEDM in the centralized scenario which directly uses cross-
source data information, the FeLeDetect method in the federated scenario indirectly uses cross-
source data through FCTA, so as to guarantee no loss of cross-source information.

Proof: First, we need to prove that FCTA triggers no information loss when updating the
eigenvectors of tuple-level nodes. In the centralized scenario, based on the integrated dataset
TS = T∪T ′, GEDM uses Eq. (1) to obtain the eigenvectors of tuple-level nodes. In the federated
scenario, data participants F and F ′ use Eq. (7) to obtain the eigenvectors of tuple-level nodes
on the datasets T and T ′, respectively. Since N(t) = N (t) ∪N ′(t), (a, v) ∈ N (t) ∪N ′(t) in
Eq. (7) is equal to (a, v) ∈ N(t) in Eq. (1). Before FCTA updates the eigenvectors of tuple-level
nodes, both parties exchange the eigenvectors of attribute-level edges and value-level nodes.
Therefore, the update is based on the data information of both parties, which solves the problem
of information loss caused by updating tuple-level nodes with only single-source data in the
local scenario. Compared with that in the centralized scenario, the update of the tuple-level
node eigenvectors in accordance with FCTA ensures lossless cross-source data information.

Then, we need to prove that FCTA guarantees no information loss when updating the
eigenvectors of attribute-level nodes. As described above, the attribute-level edges are updated
by Eq. (5). Each update depends only on the result of its last update. Therefore, data exchange
is not required in the federated scenario to ensure that the information is lossless.

Finally, we prove that FCTA triggers no information loss when updating the eigenvectors
of value-level nodes. In the centralized scenario, based on the integrated dataset TS = T ∪ T ′,
GEDM uses Eq. (3) to obtain the eigenvectors of tuple-level nodes. In the federated scenario,
based on the local dataset T or T ′, FCTA uses Eq. (3) to obtain the eigenvectors of tuple-level
nodes. It can be easily found that (a, t) ∈ N (v) = (a, t) ∈ N(v) and (a, t) ∈ N ′(v) =

(a, t) ∈ N(v). For the attribute-level edge, its update only depends on the result of its last
update; for tuple-level nodes, the initial embedding of each data participant is generated by
the same seed. It has been proved that the updated embedding contains lossless cross-source
data information, so no exchange is required. Therefore, (a, t) ∈ N (v) in the local data of
the data participant F is the same as (a, t) ∈ N(v) in the integrated data in the centralized
scenario, and the information is complete. Therefore, the data participants in FCTA do not need
to exchange the embeddings of the tuple-level nodes, and the update of the value-level nodes
can be completed according to Eqs. (3)–(4) by using only local data.

4.2.2 Privacy analysis

Since privacy protection is a major challenge to cross-source data error detection, it is
critical to ensure that FCTA is subjected to no privacy leakage risk during the data exchange
through FCTA. Specifically, FCTA involves two types of data exchange. One is the exchange
of the initial eigenvectors between the two parties. Because the initial eigenvectors of the
nodes and edges of each party are randomly initialized, they do not contain any information
related to the original data. Therefore, it is impossible to infer the original data from the initial
embedding. This guarantees that the exchange of the initial embedding suffers from no risk of
privacy leakage. The other is the exchange of the embedding updated by the k-th layer network.
There is no privacy leakage risk in the exchange of the intermediate layer result of the neural
network. Although some studies have shown that the original input can be inferred from the
intermediate layer results of the neural network[44], the original input of both data participants
is a randomly initialized embedding, or in other words, the original input does not contain any
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privacy information. To sum up, the data exchange mechanism of FCTA ensures the privacy
and security of cross-source data.

4.3 Optimization methods
When FeLeDetect collaboratively trains GEDM, the intermediate layer results of different

data participants need to be exchanged frequently, which places great pressure on network
communication. In this paper, different optimization techniques are proposed to reduce
communication costs in three aspects. At the same time, with regard to the manual labeling
cost in monitored learning, this paper also proposes an automatic labeling strategy to reduce the
manual labeling cost in the training set.

4.3.1 Data de-duplication

In an MRG, some different tuple-level nodes are connected to the same value-level nodes,
which will cause some of the same data to be exchanged multiple times. Figure 3(b) shows
that tuple-level nodes t1, t2, and t3 are associated with the same value-level node v, namely
“International Conference on Management of Data”. Therefore, when the node information is
transmitted to another data participant, the contents to be transmitted are {1 : hk

v}, {2 : hk
v}, and

{3 : hk
v}, which makes the embedding hk

v of the value-level node “International Conference on
Management of Data” transmitted three times. Moreover, many tuple-level nodes and value-level
nodes are connected by the same type of attribute-level edges, which will make a large number
of eigenvectors hk

a corresponding to the same type of edges to be transmitted multiple times. In
fact, the number of different attribute-level edges in the graph depends on the number of attributes
in the dataset. In order to avoid the unnecessary exchange of duplicated data, the embedding of
the same value-level node or attribute-level node is transmitted only once. In other words, the
data are transmitted after the duplicated data are removed. Still in the example described above,
after the de-duplication operation, the data transmitted to the other party is {{1, 2, 3} : hk

v}. In
this paper, the matrix MV = [hk

v1,h
k
v2, · · · ,hk

vp] is used to represent the embedding of the
value-level node after de-duplication. The matrix MA = [hk

a1,h
k
a2, · · · ,hk

am] represents the
embedding of the attribute-level edge after de-duplication to avoid multiple exchanges of the
same embedding. Here, p denotes the number of different attribute values in the dataset and m

denotes the number of different attributes in the dataset. With the DBLP dataset in Figure 1 as
an example, p = 13 and m = 5.

4.3.2 Quantization compression

Since the matrix MA is generally much smaller than the matrix MV , the communication
cost of FeLeDetect is mainly caused by the transmission matrix MV . Therefore, it is possible to
further reduce the communication cost of MV . With the activation function applied, each value
in MV is a real number in the range of [−1, 1]. In order to further reduce the communication
cost, we discretize these real values to compress their sizes. Specifically, the interval [−1, 1]
is divided into 2η sub-intervals. For example, when η = 2, the interval [−1, 1] is divided into
four sub-intervals, namely [−1, −0.5), [−0.5, 0), [0, 0.5), and [0.5, 1]. Thus, only two bits
of data are required to represent the four sub-intervals. Each real value in the original matrix
falls into one of the sub-intervals, so it can be approximated as the endpoint of the sub-interval.
For example, real values falling into the sub-interval [−1, −0.5) are all approximated as −1.
The upper limit of the error between the approximated quantized value and the original value
is 21−η = 0.5. In this way, a real value that originally requires 32 bits (4B) of bandwidth only
needs η bits of coding after quantization. If η = 16, the size of MV will be compressed to half
of the original, and the quantization error is only 2−15.
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4.3.3 Low-frequency transmission
When FeLeDetect collaboratively trains GEDM, multiple epochs of training are required

to make the neural network model converge. One epoch means that we need to use all the
training data to train the model (including the MGGCN and the binary classifier), and each
epoch includes multiple rounds of iteration. In each round, the MGGCN needs to exchange
the intermediate results of each layer of the network. However, the intermediate results of a
round (such as MV ) may be very similar to the results of the previous round, especially after
the network parameters tend to be stable. Therefore, it is possible to reduce the frequency of
data exchange to further reduce the communication cost of the training process. Specifically,
if the intermediate results produced by MGGCN in two adjacent rounds are very similar, both
parties can cancel the exchange of the intermediate results. It is assumed that an intermediate
result matrix MV of the current round, an intermediate result matrix M ′

V of the previous round,
and a transmission threshold τ are given; if Sim(MV ,M ′

V ) = ∥MV −M ′
V ∥F < τ , then the

intermediate results M ′
V of the previous round of exchange are approximated to those produced

by the current round, so as to avoid the exchange of MV . Specifically, ∥ · ∥F denotes the
similarity measurement function. In this paper’s experiments, the simplest Euclidean distance
is used to measure the similarity.
4.3.4 Labeling strategy

As the error detection problem is treated as a binary classification problem in this paper,
the binary classifier requires labeled training data to learn how to classify data cells. However,
data labeling calls for the participation of experts in this field, which consumes a lot of labor
costs, so it often becomes a bottleneck problem in practical applications. HoloDetect[2]uses
data enhancement technology to reduce the need for manual labeling. However, it still requires
manual labeling for 5%–10% of the entire dataset. For a dataset containing 100,000 tuples and
eight attributes, 10% means that 80,000 data cells need to be manually labeled. This amount
of manual work cannot be underestimated. Raha[20] combines clustering and label propagation
techniques to limit the amount of manual labeling to a constant level, or in other words, it should
not increase with the increase in the size of the dataset. However, it cannot be directly applied to
cross-source data scenarios. In view of this, this paper designs an automatic labeling strategy to
reduce the cost of manual labeling and generate labeled training datasets for cross-source data.

It is assumed that there are two data holders F and F ′, which own datasets D =

{t1, t2, · · · , tn} and D′ = {t′1, t′2, · · · , t′n}, respectively. The dataset has completed encrypted
entity alignment. That is to say, each pair of tuples (tj , t′j) (1 ≤ j ≤ n) represents the same
entity. The labeling strategy is carried out in the following steps. First, F randomly samples a
subset S = { tj | tj ∈ D } of data, where |S| = n · α%. Second, the value of each data cell
in each tuple of S is encrypted by the substitution encryption, and the encrypted data subset
E(S) is obtained. Finally, F will transmit E(S) and the sampling index set I = {j|tj ∈ S}
to the other data holder F ′. Wherein, the index set I indicates the tuple labels sampled in the
original dataset D. When the data holder F ′ receives E(S) and I , it will sample from the D′

according to I to obtain S′ = {t′j |j ∈ I} and assemble the tuples pointing to the same entity in
S′ and E(S) to get an integrated dataset SC = {E(tj)||t′j |E(tj) ∈ E(S), t′j ∈ S′}. It should
be noted that SC has (m1 + m2) attributes in total. Specifically, m1 denotes the number of
attributes of dataset D and m2 denotes the number of attributes of dataset D′. F ′ uses SC as
the input dataset of the error detection tool Raha to obtain the label of each data cell. F ′ keeps
the data labels related to S′ and transmits the data labels of E(S) to F . In order to guarantee
the quality of the labels, F ′ only accepts labels returned by Raha with a confidence greater
than a certain threshold (90% in this paper’s experiments). Then, the data labeling process is
completed. Both parties obtain some data labels, and thus the labeled training datasets T and
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T ′ are generated. During this process, both parties do not disclose their original data. As the
automatic labeling strategy uses Raha to generate labels, the cost of manual labeling is the same
as that of Raha, which is a constant level.

Since the substitution encryption technique is used in the above process, E(S) loses its
semantic information of the original data. However, the privacy of the original data is protected.
At the same time, Raha can still detect some data errors (such as the dependency violating
attribute value and format error). This is because the substitution encryption is equivalent to
an anonymous space mapping of the attribute value, and the dependency of the original value
is maintained in the encrypted space. Moreover, errors unrelated to semantics (such as format
errors) can also be detected. For the sake of convenience, the experiments in this paper employ a
substitution cipher to encrypt the sampled data subset S = {tj |tj ∈ D}, which is a classic code.
Although many advanced cryptographic techniques have been proposed and extensively applied,
the substitution cipher remains a very important encryption strategy in the field of cryptography.
Modern common ciphers such as Data Encryption Standard (DES) and Advanced Encryption
Standard (AES) use classical ciphers as their basic building blocks[45]. In practice, both parties
can negotiate and choose more complex and advanced encryption technology to encrypt S to
achieve higher security.

5 Experimental Analysis
This section presents an experimental evaluation on real datasets, and the main purposes

are as follows: (1) prove the effectiveness and sophistication of GEDM; (2) verify that the
detection accuracy of FeLeDetect is higher than that of various local detection methods using
only single-source data and is equivalent to that of GEDM in the centralized scenario; (3)
verify the effectiveness of the communication optimization strategy. In addition, we test the
running time of GEDM and FeLeDetect to evaluate their efficiency, verify the effectiveness of
FeLeDetect under different error rates and error type distributions, and test the scalability of
FeLeDetect. Section 5.1 introduces the experimental data and Section 5.2 the experimental
settings and evaluation indicators. Section 5.3 expounds on the details of the experiments and
Section 5.4 gives the experimental results and corresponding analysis.

5.1 Experimental data
This paper uses three public real datasets for experimental testing. Table 1 shows the

statistics for the datasets used. The types of errors include SE, FIs, Missing Values (MV), and
Violation of Dependency rules between Attributes (VAD). As mentioned in the introduction part,
it is often difficult to detect SEs in the case of a single source, so cross-source data information
is required. The datasets used contain multiple types of errors, which reflects the heterogeneity
of data errors.

Table 1 Experimental dataset
Dataset Size Number of data errors Error type

D-A DBLP 2224×4 444 SE, FI
ACM 2224×4 444 SE, MV

Flights Flights1 2445×4 1,879 SE, MV, FI
Flights2 2445×4 2,972 SE, MV, VAD

Adult Adult1 97864×4 19,481 SE
Adult2 97864×4 19,535 SE

The DBLP-ACM dataset (D-A)[46] is an open dataset commonly used in entity alignment
research. The dataset contains two data tables (DBLP and ACM), which record the information
of some conferences and published papers in the field of computer science. The pattern of the
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data tables is as follows: title, author, venue, year. The data that have completed the entity
alignment are used in the experiment. Since DBLP and ACM belong to different organizations,
it is reasonable to assume that both parties do not allow the privacy leakage of original data.
This experiment introduces SEs into some data cells of the venue attribute column of DBLP and
ACM. This is because many values in the venue attribute domain are very similar, and SEs are
likely to occur in real-world scenarios. Specifically, some data cell in the venue attribute column
are randomly selected, and the original value of the cell is substituted with another value that
is the most similar to it in the venue attribute domain, namely the new value with the smallest
editing distance from the original value. At the same time, format errors (illegal characters)
and missing errors are introduced into the year attribute column of DBLP and the title attribute
column of ACM to simulate the heterogeneity of data errors in real-world scenarios. By default,
the proportion of introduced errors reaches 80%. Here, the error type ratio is defined as the ratio
of the number of SE data cells to that of all erroneous data cells.

The Flights dataset[47] records the information about more than 1,200 flights collected from
different data sources every day in December 2011; and the information collected is recorded
in the same table. Due to the different quality of data from different sources, there are many
errors in the table, including SEs, MVs, format errors, and VAD. These errors exist in the
dataset, so there is no artificially introduced error in this experiment. In this experiment, the
data collected on December 1st are randomly selected, and the data attribute set includes source,
flight, scheduled departure, actual departure, scheduled arrival, and actual arrival. In addition, in
order to simulate the scenario where two data participants are unwilling to integrate the data, the
Flights is artificially divided into two sub-tables vertically, that is, Flights1 (source, scheduled
departure, and scheduled arrival) and Flights2 (flight, actual departure, and actual arrival), and
it is assumed that each sub-table is owned by a data holder.

The Adult dataset comes from the UCI machine learning library (http://archive.ics.uci.
edu/ml/), which contains 97,684 records from the U.S. Census of Population (1994). In this
experiment, eight attributes are selected and vertically segmented into two disjoint sub-tables,
namely Adult1 (age, education, race, and sex) and Adult2 (marital status, relationship, country,
and income) and it is assumed that each one of them is owned by a data holder. With a process
similar to D-A, SEs are injected into some data cells of age, race, and relationship attributes in
thise experiment.

Since datasets with real errors usually have no ground truth, the effectiveness of the error
detection algorithm cannot be evaluated[48]. A large number of experiments on error detection
have been conducted through artificial error introduction[49, 50]. Related studies[15, 51] show that
in the real world, about 5% of the data cells in a dataset are subjected to data errors for various
reasons. Therefore, this paper sets the error rate to 5% by default when artificially introducing
errors into the D-A and Adult datasets. Here, the error rate is defined as the ratio of the number
of erroneous data cells to the total number of data cells in the dataset. Due to the difficulty in
detecting SEs, the D-A error type ratio is set to 80% by default. Here, the error type ratio is
defined as the ratio of the number of SE data cells to that of all erroneous data units. Unless
explicitly stated, the above default error rate of 5% and error type ratio of 80% are used in the
following experiments. It is worth noting that although the default error rate and error type ratio
are set, this paper also conducts experiments on the change in the error rate and the error type
ratio, proving that FeLeDetect is suitable for scenarios with different error rates and error type
ratios.

5.2 Experimental setting and evaluation index
Five different types of existing error detection methods are chosen as benchmarks, namely

(1) DBoost[52], an exception detection framework that integrates multiple detection models based

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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on machine learning methods; (2) NADEEF[11], a rule-based error detection method that allows
users to specify data consistency rules and perform error detection according to the rules; (3)
KATARA[14], an error detection method based on external knowledge-based system (KBs); (4)
Metadata-driven[22] method (Meta), an integrated error detection method that integrates multiple
metadata and (5) Raha[20], a state-of-the-art (SOTA) error detection system based on machine
learning1. Due to the randomness of Raha’s error detection results, the experimental evaluation
method of Raha researchers is adopted here, or in other words, the mean value of 10 times of
independent running is reported for its related evaluation indicators.

Three different scenarios are set in the experiment. (1) Local scenario (L), where each
data holder performs error detection only through local data. The proposed GEDM and five
benchmark models are tested in the local scenario. (2) Federated scenario (F ), where the data
holder does not need to exchange original data, and the error detection models are collaboratively
trained. The FeLeDetect error detection method proposed in this paper is tested in the federated
scenario, and its superiority is proved. (3) Centralized scenario (C), where all data holders
transmit their own data to a data center and then perform error detection based on the integrated
dataset. Such a setting is to verify that the detection accuracy of the FeLeDetect method in the
federated scenario is equivalent to that of the GEDM method in the centralized scenario. The
GEDM and five benchmark models are tested in the centralized scenario.

The experiment comprehensively evaluates the proposed method by using different
evaluation indexes and reports the following items. (1) Precision P , namely the probability
that the data cell detected as an error is actually an erroneous cell; (2) Recall R, namely the
probability that the cell is detected as an error in the actual erroneous data cell; (3) F1 score,
namely the harmonic mean of the precision and the recall: F1 = 2 × (P × R)/(P + R); (4)
model training time TT and model detection time DT (i.e., the error detection time on complete
data); (5) the communication cost V of the model training in bytes, which indicates the data
communication traffic of both parties in the collaborative training.

5.3 Implementation details

The implementation of the FeLeDetect method entails the use of the PyTorch library[54].
The experiment uses SGD as the optimal algorithm for model training and sets the learning
rate to 0.01 and the momentum to 0.9. After some initial experimental evaluation, the batch
sizes for DBLP-ACM, Adult, and Flights are set to 16, 128, and 512, respectively. During the
training process, all datasets are trained for 300 epochs. In the automatic data labeling process
of FeLeDetect, the label sampling rate α of DBLP-ACM and Flights is set to 20%. Due to the
large size of the Adult dataset, α of 5% is sufficient to support model training. In the experiment,
the labeled dataset is randomly divided into training set (60%) and validation set (40%), and the
checkpoint with the highest F1 score on the validation set is returned, and the trained model is
used for error detection on the complete dataset. By default, the communication optimization
parameters are η = 4 and τ = 1.5. All experiments are carried out on the Dell server with Intel
Xeon 4110 CPU, 128 GB RAM, and 4 NVIDIA GeForce RTX2080ti GPUs. All test programs
for this evaluation are written in the Python language2.

1 HoloDetect[2] and Raha are advanced error detection systems based on machine learning. Since Raha
makes the source code publicly available, this paper uses Raha as a benchmark method for comparison.
Meanwhile, Ref. [54] confirms that Raha can achieve error detection accuracy at a lower labor cost,
comparable to that of HoloDetect.

2 The experimental code is published in the https://github.com/ZJUDAILY/FeLeDetect.

https://github.com/ZJUDAILY/FeLeDetect
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5.4 Experimental results and analysis
In this section, GEDM and FeLeDetect are comprehensively evaluated on three datasets

and compared with the five benchmark methods mentioned above.

5.4.1 Effectiveness and efficiency of GEDM
Firstly, the error detection performance of GEDM is compared with that of the other five

benchmark methods in the local scenario and the centralized scenario. The precision of the
error detection is estimated by using P , R, and F1 score; DT (in seconds) required by different
error detection methods is also given to evaluate the efficiency of error detection. For the sake
of fairness, only the error detection time of GEDM (i.e., the detection time of the model) is
reported, and the training time TT of the model will be given in the supplementary experiment
section. Table 2 shows the error detection results of GEDM and the other five benchmark
methods in the local scenario and the centralized scenario, and the optimal F1 score is marked
in bold.
Table 2 Comparison of P , R, and F1 of different error detection methods in different detection scenarios

Error detection in the local scenario

Detection
method

D-A Flights Adult
DBLP ACM Flights1 Flights2 Adult1 Adult2

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
dBoost 0.17 1.00 0.29 0.33 0.20 0.25 0.78 0.87 0.82 0.72 0.49 0.58 0.63 0.36 0.45 0.23 0.90 0.36

NADEEF 0.44 0.21 0.28 0.50 0.21 0.29 0.08 0.12 0.09 0.40 1.00 0.57 0 0 0 0 0 0
KATARA 0.12 1.00 0.21 0 0 0 0.02 0.13 0.56 0.02 0.14 0.02 0.02 0.29 0.08 0.02 0.10 0.02

Meta 0.45 0.22 0.29 1.00 0.01 0.01 1.00 0.87 0.93 0.70 0.68 0.68 1.00 0 0 1.00 0 0
Raha 0.57 0.32 0.42 0.65 0.63 0.64 0.98 0.87 0.92 0.71 0.70 0.70 0.50 0.83 0.62 0.74 0.93 0.82

GEDM 0.68 0.33 0.45 0.78 0.80 0.79 1.00 0.87 0.93 0.71 0.73 0.72 0.76 0.75 0.75 0.86 0.90 0.88
Error detection in the centralized scenario

Detection
method

D-A Flights Adult
DBLP ACM Flights1 Flights2 Adult1 Adult2

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
dBoost 0.10 0.20 0.13 0.31 1.00 0.48 0.78 0.87 0.82 0.67 0.30 0.41 0.67 0.36 0.45 0 0 0

NADEEF 0.10 1.00 0.17 0.10 1.00 0.17 0.38 0.41 0.40 0.40 1.00 0.57 0 0 0 0 0 0
KATARA 0.12 1.00 0.21 0 0 0 0.02 0.13 0.06 0.02 0.01 0.01 0.05 0.29 0.08 0.02 0.10 0.02

Meta 1.00 0.21 0.35 1.00 0.01 0.01 1.00 0.87 0.93 0.70 0.68 0.69 1.00 0 0 1.00 0 0
Raha 0.67 0.37 0.47 0.68 0.61 0.65 0.97 0.88 0.92 0.66 0.75 0.70 0.67 1.00 0.80 0.87 0.90 0.88

GEDM 1.00 0.72 0.84 1.00 0.84 0.91 0.98 0.88 0.93 0.73 0.74 0.73 0.92 0.99 0.96 0.99 0.90 0.95
Error detection in the federated scenario

Detection
method

D-A Flights Adult
DBLP ACM Flights1 Flights2 Adult1 Adult2

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
FeLeDetect 1.00 0.72 0.84 1.00 0.84 0.91 1.00 0.87 0.93 0.73 0.74 0.73 0.92 1.00 0.96 1.00 0.90 0.95

In terms of precision, first of all, the F1 score of GEDM is higher than that of the other
five benchmark methods in both local and centralized scenarios. Specifically, in the local
and centralized scenarios, the F1 scores of GEDM are improved by 10.3% and 25.2% on
average, respectively, compared with that of the optimal benchmark method. Especially in the
centralized scenario, when cross-source data are integrated, GEDM can effectively capture the
features of the integrated data, so it can achieve high precision and high recall at the same
time. However, other benchmark methods cannot achieve high precision and high recall at the
same time. Specifically, dBoost reports low accuracy because it uses heuristic ideas to treat
outliers in statistical probability as data errors. NADEEF has low accuracy because rule-based
detection methods generally have the problem of coarseness. KATARA inevitably mismatches
the relations on some KBs with the attributes on relational data, which leads to its low precision.
Moreover, as the limited KBs cannot completely cover the knowledge in relational data, the
recall is relatively low. As it is difficult for the error detection methods integrated by Meta to
cover all error types, it shows a low recall. Raha is currently the best error detection method,
but its accuracy is still not as high as that of GEDM, because it cannot fully capture the rich
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features of data in the dataset. On the contrary, the GEDM proposed in this paper can not only
capture the semantic features of attribute values but also represent the dependencies between
different attributes and different tuples. It should be pointed out that since most of the errors in
dataset Flights1 (over 85%) are MVs, and the detection of MVs is less difficult, GEDM does
not show a clear advantage over Flights1. Second, it should be noted that the error detection
performance of dBoost, NADEEF, and KATARA in the centralized scenario is not better than
that in the local scenario. This is because these methods cannot effectively capture the correlation
between different attributes. Therefore, even in the centralized scenario, the integrated dataset
has more attributes (more dimensional data features), and the precision of error detection is
not substantially improved. Specifically, dBoost detects errors independently for each attribute
column and adjusts the related parameter configuration based on the dataset. Therefore, in the
centralized scenario, dBoost performs parameter selection based on the integrated complete
dataset, and the global parameter may not be the optimal parameter configuration for both local
datasets. So, its detection effect in the centralized scenario is inferior to the error detection in
the local scenario. NADEEF performs error detection based on the consistency rule. However,
given its coarse-grained detection method, when the number of attributes increases (in the
centralized scenario), more misjudgment of detection results may arise. KATARA uses KBs for
error detection. Therefore, in the centralized scenario, the probability of a mismatch between the
relation in the KBs and the attribute in the data table is higher, and there is no guarantee that the
precision of error detection in the centralized scenario will be improved. Since other methods
can effectively represent the relationship between different attributes, the detection effect in the
centralized scenario is naturally better than that in the local scenario.

In terms of running efficiency, it can be seen from Table 3 that in both local and centralized
scenarios GEDM outperforms other benchmark methods. For example, dBoost takes a lot of
time to run under different parameter configurations to get the final result; KATARA takes a
long time to run because it needs to go through each KB and match it with the attributes in the
data table; Raha needs to run different error detection strategies and perform data cell clustering
and label propagation, which are extremely time-consuming, so its running time is the longest.
In contrast, GEDM’s error detection is highly efficient. This is because once the model is
trained, the error detection result can be obtained by performing only one forward propagation
calculation on the model on the complete dataset.

Table 3 Comparison of DT between different error detection methods in different detection scenarios

Detection
method

Error detection in the local scenario Error detection in the
centralized scenario

Error detection in the
federated scenario

D-A Flights Adult D-A Flights Adult D-A Flights AdultDBLP ACM Flights1 Flights2 Adult1 Adult2
dBoost 2.21 2.37 2.35 2.64 74.29 77.06 5.29 6.06 211.85 — — —

NADEEF 0.13 1.05 1.06 1.30 1.76 2.11 1.98 1.42 2.97 — — —
KATARA 9.28 9.35 9.62 9.64 40.02 40.02 14.70 15.45 100.72 — — —

Meta 2.20 2.16 2.18 2.66 14.69 17.90 4.41 3.10 29.04 — — —
Raha 14.97 15.91 14.44 13.73 1,059.06 1,266.30 27.04 31.58 2,397.48 — — —

GEDM 0.10 0.09 0.23 0.22 1.29 1.27 0.12 0.36 3.12 — — —
FeLeDetect — — — — — — — — — 9.43 9.46 386.9

5.4.2 Effectiveness and efficiency of FeLeDetect
For privacy protection, cross-source data are often not allowed to be transferred to a public

data center for integration. Therefore, data error detection in the centralized scenario is seriously
hindered. In view of this, the error detection method tailored for single-source data can only
be performed locally by a data holder, and the information of other data sources related to the
data source cannot be obtained. In the federated scenario, the FeLeDetect method proposed in
this paper is compared with various benchmark methods (including GEDM) in the local and
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centralized scenarios. Table 2 shows the error detection results of FeLeDetect in the federated
scenario and those of the other five benchmark methods and GEDM, with the best F1 score in
bold.

In terms of precision, Table 2 shows that the F1 score of FeLeDetect is better than that of
other methods (including GEDM) in the local scenario. The F1 score of FeLeDetectis further
improved by an average of 23.2% compared with that of GEDM which has the best detection
precision in the local scenario. This is because in the local scenario, all error detection methods
only use local data information and lack the support of data information from other sources.
In contrast, FeLeDetect uses the federated learning mechanism to fully capture cross-source
data features. This proves that cross-source data can indeed improve the precision of error
detection. Since simple errors such as missing and format errors account for more than 85%
of all error types in the real erroneous dataset (Flights1), and difficult error types such as SEs
and dependency violation account for a relatively small proportion, the proposed method has
no significant precision improvement (but it still outperforms or shares the same performance
with other methods). The above experiment proves that for the data errors that are easy to be
detected, the proposed method can exceed or perform the same as the most advanced method.
For data errors that are difficult to be detected, the proposed method can outperform existing
methods. In addition, the F1 score of FeLeDetect on all three datasets reaches the same level as
that of GEDM in the centralized scenario. This also verifies that the FCTA can ensure lossless
information from the perspective of experimental results and achieve the same error detection
effect as that of GEDM in the centralized scenario.

In terms of running efficiency, Table 3 shows that all detection methods have the
shortest running time in the local scenario compared with the federated and centralized
scenarios. This is because in the local scenario, the dataset is smaller and has no time cost of
federated communication. Nevertheless, FeLeDetect’s error detection is still relatively efficient.
FeLeDetect can complete the error detection task in about six minutes, especially on a large-
scale dataset, such as an Adult dataset with nearly 100,000 tuples, and its running efficiency
is improved by more than 60% compared with that of Raha, the benchmark method with the
highest precision in the local scenario.

5.4.3 FeLeDetect communication optimization experiment

Since data de-duplication can reduce the communication traffic during federated training
without affecting the detection effect, only the impact of quantization and low-frequency
transmission on federated communication and detection performance will be explored here.

The compression parameter η varies in the range of {32, 16, 8, 4, 2, 1} to explore the impact
of the number of compressed bits on the communication traffic and error detection accuracy. It
should be noted that η = 32 means no quantization optimization. As shown in Figure 6(a), the
communication traffic decreases significantly as η decreases. This is because a smaller number
η of bits after compression indicates a shorter coding length of each value in the transmission
matrix MV and a smaller data transmission volume. Also, the error detection precision is less
affected by the number of compressed bits. As shown in Figure 7(a)–(f), when η changes,
the curves of precision rate, recall rate, and F1 score of the detection results are relatively
stable. When the number of compressed bits is 1, the precision is significantly reduced. This
is because the initial features of nodes and edges in the MRG are randomly initialized, and
the final feature representation is obtained by feature aggregation of GNNs. Compressing the
intermediate results of neural networks is equivalent to adding an active layer between different
layers of GNNs to compress the feature space. As the initial feature is randomly generated,
compressing the value of the intermediate embeddings is equivalent to simplifying its feature
space. The quantization will lead to a certain error (the upper limit of the error is 21−η) when
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the two parties exchange the intermediate results of the neural network. However, such a small
intermediate result error only has a slight effect on the precision, but it can greatly reduce the
communication cost of federated training.
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Figure 6 Variation of communication traffic with the number of compressed bits/transmission thresholds

F1 score Precision Recall

0.70

0.76

0.82

0.88

0.94

1.00

16 8 4 2 1

P
er

fo
rm

an
ce

Compressed bit η

32

(a) DBLP

0.70

0.76

0.82

0.88

0.94

1.00

16 8 4 2 1

P
er

fo
rm

an
ce

Compressed bit η
32

(b) ACM

0.70
0.75
0.80
0.85
0.90
0.95
1.00

16 8 4 2 1

P
er

fo
rm

an
ce

Compressed bit η
32

(c) Flights1

0.70

0.71

0.72

0.73

0.74

0.75

16 8 4 2 1

P
er

fo
rm

an
ce

Compressed bit η
32

(d) Flights2

0.90

0.92

0.94

0.96

0.98

1.00

16 8 4 2 1

P
er

fo
rm

an
ce

Compressed bit η
32

(e) Adult1

0.70

0.76

0.82

0.88

0.94

1.00

16 8 4 2 1

P
er

fo
rm

an
ce

Compressed bit η
32

(f) Adult2

0.70

0.76

0.82

0.88

0.94

1.00

P
e
rf

o
rm

a
n
c
e

0 0.5 1 1.5 2 5

Transmission threshold τ

(g) DBLP

0.70

0.76

0.82

0.88

0.94

1.00

P
e
rf

o
rm

a
c
e

0 0.5 1 1.5 2 5 
Transmission threshold τ 

(h) ACM

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
e
rf

o
rm

a
c
e

0 0.5 1 1.5 2 5 
Transmission threshold τ

(i) Flights1

0.70

0.71

0.72

0.73

0.74

0.75

0.5 1 1.5 2 5

P
e
rf

o
rm

a
n
c
e

Transmission thresholdt

0

(j) Flights2

0.90

0.92

0.94

0.96

0.98

1.00

0.5 1 1.5 2 5

P
e
rf

o
rm

a
n

c
e

Transmission threshold t

0

(k) Adult1

0.70

0.76

0.82

0.88

0.94

1.00

P
e
rf

o
rm

a
n
c
e

0 0.5 1 1.5 2 5 
Transmission threshold τ

(l) Adult2

Figure 7 Variation of error detection precision with number of compressed bits/transmission thresholds

Then, the compression parameter η is fixed to 4, and the frequency threshold τ varies in the
range of {0, 0.5, 1, 1.5, 2, 5} to explore the impact of frequency threshold on communication
traffic and error detection accuracy. It should be noted that τ = 0 means that no frequency-
reduced optimization is performed. The variation of the communication traffic with τ is shown
in Figure 6(b). It can be seen that when the transmission threshold is increased from 0 to 0.5, the
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communication traffic is significantly reduced. As the transmission threshold increases, more
intermediate results are filtered. So, the amount of data that need to be transmitted is significantly
reduced. However, as τ continues to increase, the rate of decrease in communication traffic
gradually slows down, and the communication traffic tends to be stable. Specifically, when τ

increases from 0.5 to 5, the communication traffic is almost stable. This is because in the later
stage of training, the model gradually converges, and the update speed of the parameters to
be learned in the neural network slows down and tends to be stable, so the difference between
the intermediate result matrices generated by two adjacent times is very small, and a very
small transmission threshold (such as 0.5) is enough to filter some intermediate results. In the
initial stage of training, the model parameters are updated quickly. Even if the transmission
threshold is set to 5, the intermediate results generated in the initial stage of training cannot be
filtered. As a result, the communication traffic no longer decreases significantly as the threshold
increases. As Figure 7(g)–(l) shows, when τ is small, the detection precision is hardly affected.
As the transmission threshold increases from 2 to 5, the precision begins to decline. When
the transmission threshold is small, the frequency-reduced transmission selectively filters some
intermediate results with low information content generated by the neural network and reuses
the intermediate results with high information content, so the exchange of key information will
not be affected, and the detection results will not be greatly influenced. However, when the
threshold value increases to a certain value, some key eigenvectors are filtered (not transmitted),
which results in poor model training effect and precision. The smaller threshold can not only
ensure the precision of the results but also greatly reduce the communication traffic, which
further shows the advantages of frequency-reduced transmission.

5.4.4 Supplementary experiment

Next, (1) the training time TT of GEDM and FeLeDetecton different datasets is given, (2)
the generality of FeLeDetect in datasets with different error rates and error type ratios is verified,
and (3) the extensibility of FeLeDetect is verified.

First, Table 4 shows the model training time TT of the GEDM in local and centralized
scenarios and the collaborative training time TT of FeLeDetect in the federated scenario. It
should be noted that as described in Section 5.3, model training refers to training for 300 epochs
at a given batch size on the training dataset; error detection refers to using a trained model to
detect errors on the complete dataset. The results of the comparison between different datasets
clearly show that the large dataset Adult takes a longer time to run. Meanwhile, the training time
is closely related to the batch size. A dataset with larger batch size, such as Flights, requires less
training time. This is because the number of iterations in each epoch is equal to the ratio of the
training dataset size to the batch size. When the training dataset size is similar, a larger batch size
means fewer iterations, so the neural network conducts less forward propagation and backward
propagation, and the training time required is naturally shorter. In addition, according to the
error detection time in Table 3, it can be seen that the error detection time of GEDM/FeLeDetect
is several orders of magnitude faster than the training time. Even on a large dataset (such as
Adult), the error detection process of FeLeDetect takes only 386.97 s, which is much lower than
the running time of Raha.

Then, with dataset D-A as an example, the generality of FeLeDetect is verified on datasets
with different error rates and error type ratios. As mentioned in Section 1, data errors are sparse
in the real world, so the dataset’s error rate varies from 3% to 9% under the default error type
ratio (80%), and the F1 score of FeLeDetect is tested. In addition, under the condition of a
default error rate (5%), the error type ratio is changed from 20% to 80%, and the F1 score of
FeLeDetect is tested. Since the results on each dataset are similar, only the error detection results
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Table 4 Training time of GEDM in the local scenario (L) and the centralized scenario (C)/FeLeDetect
in the federated scenario (F )

Dataset GEDM(L) GEDM(C) FeLeDetect(F )

D-A DBLP 270.28 633.75 1443.04ACM 286.64

Flights Flights1 67.02 65.86 525.84Flights2 61.69

Adult Adult1 1,023.32 1,711.02 4,474.41Adult2 1,005.63

Table 5 F1 score of error detection byFeLeDetect under different error rates/error type ratios

Dataset Error rate Error type ratio
3% 5% 7% 9% 80% 60% 40% 20%

D-A DBLP 0.78 0.84 0.83 0.85 0.83 0.88 0.89 0.89
ACM 0.89 0.91 0.93 0.97 0.90 0.91 0.94 0.97

on dataset D-A are reported here. The experimental results are given in Table 5. As Table 5
shows, the F1 score increases slightly as the error rate increases. This is because the sparsity
of errors makes error detection more difficult. Second, it can be seen that the F1 score slightly
increases as the error type ratio decreases. This is because as the error type ratio decreases,
the proportion of missing errors or format errors increases, while that of SEs drops. Compared
with SEs, missing data and format errors are easier to be detected, so the detection results are
more accurate. However, even when SEs account for the highest proportion (80%), FeLeDetect
still achieves a high F1 score. This is because GEDM can effectively capture the feature of
each data source, and the FCTA ensures no loss of cross-source data information. Therefore,
FeLeDetect is applicable to datasets with different error rates and different error type ratios.

Finally, the scalability of FeLeDetect is verified. In this experiment, the dataset Adult is
selected, and its dataset size is changed. Table 6 shows the training time TT and error detection
time DT of FeLeDetect under different data scales, and the training time and data scale are
calculated, respectively. In addition, the Pearson correlation coefficient of error detection time
and data size are deduced to assess the linear correlation between them. It can be seen from
Table 6 that the training time and error detection time of FeLeDetect increase approximately
linearly with the dataset size (the Pearson correlation coefficient is close to 1). This proves that
FeLeDetect has great scalability.

Table 6 Comparison between FeLeDetect’s TT and DT with the variation of dataset size
Data size |D| TT DT

20,000 818.25 39.45
40,000 1,518.05 99.66
60,000 2,237.33 187.97
80,000 3,407.48 299.29
97,864 4,369.12 386.97

Pearson correlation coefficient 0.99 0.99

6 Conclusion
This paper proposed FeLeDetect, a cross-source data error detection method based on

federated learning. First, a Graph-based Error Detection Model (GEDM) has been presented to
capture sufficient data features from each data source. This paper also proposed an information-
lossless federated co-training algorithm, namely FCTA, which collaboratively trains GEDM
from different data sources while guaranteeing the privacy and security of cross-source data.
Furthermore, the paper designed a series of optimization methods to reduce communication
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costs during the federated learning and manual labeling efforts. Finally, experiments have
been conducted on open datasets and prove that (1) GEDM is superior in both local and
centralized scenarios; (2) on the basis of GEDM, FeLeDetect further improves the precision of
error detection; (3) the communication optimization algorithm proposed in this paper greatly
reduces the communication costs during the federated training process. Since datasets with real
errors usually have no ground truth, the effectiveness of the error detection algorithm cannot
be evaluated. In the future, we plan to collect, label, and publish benchmark datasets with real
errors for subsequent studies on error detection.
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