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Abstract Holographic reductions between some Holant problems and some #CSP(Hd)

problems are built, where Hd is some complex value binary function. By the complexity

of these Holant problems, for each integer d ≥ 2, #CSP(Hd) is in P when each variable

appears at most d times, while it is #P-hard when each variables appears at most d + 1

times. #CSP(Hd) counts weighted summation of graph homomorphisms from input graph

G to graph Hd, and the maximum occurrence of variables is the maximum degree of G.

We conjecture that the converse of holographic reduction holds for most of #Bi-restriction

Constraint Satisfaction Problems, which can be regarded as a generalization of a known re-

sult about counting graph homomorphisms. It is shown that the converse of holographic

reduction holds for some classes of problems.
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1 Introduction

Class #P is proposed by Valiant for which the permanent is #P-hard[19]. An
important kind of complexity results about counting problems in #P is dichotomy
theorem, which claims that all problems in a class is either polynomial computable
or #P-hard. There are dichotomy theorems for #CSP[2,3,10,12,14], counting graph
homomorphisms[1,8,16], and Holant problems[10−11]. Most studied #CSP problems
and Holant problems have domain size 2. Except Ref. [15], most studied counting
graph homomorphisms problems have arbitrary domain size, and they are #CSP
problem defined by one binary function, if we allow self-loop and multi-edge in input
graphs. Holant problem is a restricted version of #CSP, such that each variable occurs
twice, but this restriction makes it a more general problem class than #CSP.

In this paper, we construct a series of complex value binary symmetric functions
Hd, d = 2, 3, . . .. For each integer d ≥ 2, if permitting a variable occurring d+1 times
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instead of d times, a polynomial computable #CSP(Hd) problem becomes #P-hard.
In the language of counting graph homomorphisms, for each integer d > 2, there
exists a complex weighted undirected graph Hd, such that counting the summation of
the weights of all homomorphisms from input graph G to Hd is #P-hard, when the
maximum degree of G is restricted to d + 1, but it has polynomial time algorithm,
when the maximum degree is restricted to d. By the notation #F|H of #Bi-restriction
Constraint Satisfaction Problem, for each integer d ≥ 2, #{Hd}|{=1,=2, . . . ,=d} is
polynomial time computable, while #{Hd}|{=1,=2, . . . ,=d+1} is #P-hard, where =k

denotes the equivalence relation of arity k.
It is well known that #SAT and #2SAT are #P-hard. There are many other

#P-hard results of maximum degree bounded counting problems in Ref. [18]. There
are two general results about maximum degree and complexity for a class of problems.
In Ref. [16], it is proved that if #CSP(H) is hard, then there exist some constant C

(maybe depends on H), such that it is still hard when the maximum degree of input
graph G is restricted to C, where H is a 0-1 weighted undirected graph. That is, H

is a binary function from [n]2 to {0, 1} or rational numbers, where n is the number
of vertices in H. In our result, the range of Hd is the field of complex numbers, and
we do not know whether it can be strengthened to {0, 1}. In Ref. [10], it is proved
for complexity weighted Boolean #CSP, if #CSP(F) is hard, then it is also hard,
when each variables appears at most 3 times (#F|{=1,=2,=3}). In Boolean #CSP,
each variable takes value from Boolean domain {0, 1}, so our result does not hold
for Boolean domain. In our result, the domain of Hd is very large, depending on
the construction and d. Our result shows, in a large class of counting problems, the
relationship of maximum degree and complexity is quite complicated.

This result is proved mainly by holographic reduction from some Boolean do-
main Holant problems. Holographic reduction is proposed by Valiant in his senior
paper holographic algorithms[21]. There have been lots of studies of holographic
reduction[4−7,22−24], including designing algorithms on planar graphs, and charac-
terization of matchgates under holographic reduction, and proving #P-hardness, etc.
Here the holographic reduction is between two problems of different domains. There
are not many this kind of applications. The first example is the holographic algo-
rithm for PL-FO-2-COLOR problem[21]. Its role is not very clear, although there is
characterization for matchgates case[5].

We also study the converse of holographic reduction. It is an algebra problem,
asking whether the sufficient condition in holographic reduction is also a necessary
condition. We conjecture it holds, since it is a generalization of a known result about
graph homomorphisms[13,17], and we prove that it holds for some classes of Holant
problems.

In section 2, we introduce definitions and holographic reduction. In section 3, we
prove the result about maximum degree and complexity. In section 4, we prove the
converse of holographic reduction holds for some classes of Holant problems.

2 Preliminary

Let [n] denote the set {0, 1, . . . , n− 1}. [f0, f1, . . . , fk] denotes a symmetric func-
tion F over [2]k, such that fi is the value of F on the inputs of Hamming weight i. The
value table of a function F over [n]k can be written as a column vector F = (Fx1x2···xk

)
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or a row vector F ′ = (Fx1x2···xk
)′ of length nk, where Fx1x2···xk

= F (x1, x2, . . . , xk).
We also look a row or column vector of length nk as a function in the same way. A
binary function F (x, y) can also be written as a matrix (Tx,y), where Tx,y = F (x, y),
and this matrix is denoted by F̂ .

Let =k denote the equivalence relation in k variables. For example, =1 is [1, 1],
and =2 is [1, 0, 1], when variables are in domain [2]. Let Rd

= denote the set {=1,=2,

. . . , =d}, and R= denote the set of all equivalence relations.
Define a general counting problem #F|H, named #Bi-restriction Constraint Sat-

isfaction Problem. F and H are two sets of functions in variables of domain [n].
An instance (G,φl, φr) of this problem is a bipartite graph G(U, V,E), and two

mappings, φl : v ∈ U → Fv ∈ F and φr : v ∈ V → Fv ∈ H (using Fv to denote the
value of φl or φr on v), satisfying the arity of Fv is dv, the degree of v. The bipartite
graph G is given as two one to one mappings, φ1 : (v, i) → e and φ2 : (u, i) → e,
where v ∈ V and u ∈ U respectively, i ∈ [dv] (or [du]), and e ∈ E is one of the edges
incident to v (or u). Let ev,i = φs(v, i), v ∈ U ∪ V , s = 1, 2.

In such an instance, edges are looked as variables with domain [n]. Vertex v is
looked as function Fv(specified by φl or φr) in its edges, and ev,i specifies which edge
of v is the ith input of Fv.

The value on this instance is defined as a summation over all [n] valued assign-
ments σ of edges,

#F|H(G,φl, φr) =
∑

σ:E→[n]

∏

v∈U∪V

Fv(σ(ev,1), σ(ev,2), . . . , σ(ev,dv )).

Suppose p is a nonzero constant. If F ∈ F is replaced by pF , then the value of
#F|H is simply multiplied by a power of p. Since p does not affect the computational
complexity of #F|H, we usually ignore it. #F|{=2} is also called Holant(F) problem
in Ref. [10]. #F|R= is #CSP(F), equivalent to Holant(F ∪R=).

We say two problems #F|H and #P|Q are result equivalent, if there are two
bijections σl : F → P and σr : H → Q, such that for any instance (G,φl, φr),

#F|H(G,φl, φr) = #P|Q(G, σl ◦ φl, σr ◦ φr).

Use ⊗ to denote tensor product. Suppose A and B are two matrices, and A =
(aij) has size k ×m.

A⊗B =




a11B a12B . . . a1mB

a21B a22B . . . a2mB
...

...
. . .

...

ak1B ak2B . . . akmB




.

A⊗r denotes the tensor product of r matrices, that is, A⊗1 = A and A⊗(r+1) =
A⊗r ⊗A. If A = (A1, . . . , Am), that is, the ith column of A is Ai, then the i1i2 · · · ir
column of A⊗r is Ai1 ⊗ · · · ⊗Air

by definition.
Suppose F is a binary function, then A⊗2F and AF̂A′ are the column vector

form and matrix form of the same function.
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We say two problems #F|H and #P|Q are algebra equivalent, if there exist a
nonsingular matrix M , and two bijections σl : F → P and σr : H → Q, such that for
any function F ∈ F and H ∈ H,

σl(F )′ = F ′ M⊗RF , σr(H) = (M−1)⊗RH H,

where RF (resp. RH) denotes the arity of F (resp. H).
Both result equivalent and algebra equivalent are equivalence relations.

Theorem 2.1.[21] If #F|H and #P|Q are algebra equivalent, then they are
result equivalent under the same bijections σl and σr.

By this theorem, if #F|H and #P|Q are algebra equivalent, we can reduce one
to the other. This kind of reduction is called holographic reduction. The matrix M

in the algebra equivalent is called the base of holographic reduction. There is another
form of this theorem, which is convenient for domain size changed applications.

Theorem 2.2.[21] Suppose F is a function over [m]s, and H is a function over
[n]t, and M is an m× n matrix. Problems #{F ′}|{M⊗tH} and #{F ′M⊗s}|{H} are
result equivalent.

This theorem also holds for general function sets like Theorem 2.1.

3 An Application

Let {ai} be Fibonacci sequence, that is, a0 = 0, a1 = 1, ai+2 = ai+1 + ai,
and let d be an integer no less than 2. Let Fi = [a0, a1, . . . , ai], i = 1, 2, . . . , d,
Fd+1 = [a0, a1, . . . , ad,−2ad].

We need some complexity results for Holant problems. One is that #{=2}|{F1, . . . ,

Fd} is polynomial time computable[9,10]. The other is the following hardness lemma,
which is not a straightforward corollary of the dichotomy theorems for HolantC and
Holant∗ in Ref. [10].

Lemma 3.1. For any integer d ≥ 2, #{=2}|{F1, . . . , Fd+1} is #P-hard.
Proof: We will reduce the problems in the following list to the problem before it.

#{F1, . . . , Fd+1}|{=2}
#{F1, P, F3}|{=2}

#{F1, F3}|{P}
#{=1,=3}|{Q}

#{=1,=2,=3}|{Q}
#{=1,=2,=3}|{Q,=2}

#R=|{Q}
In the first reduction, the binary function P = [ad−1, ad,−2ad] is constructed

directly by connecting d− 1 functions F1 = [0, 1] to Fd+1.
The second reduction is simply because #F|F is a restricted version of #F|{=2}.

The third reduction is holographic reduction by the base M =

(
1 −1

1+
√

5
2

−1+
√

5
2

)
.

Q =

(
2ad − ad−1 5ad + ad−1

5ad + ad−1 2ad − ad−1

)
, ignoring a constant factor.
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In the fourth reduction, =2 is constructed by connecting unary function Q̂ =1 to
=3, where Q̂ =1 is constructed by connecting =1 to Q.

In the fifth reduction, we can apply the interpolation reduction method in Ref.[16]
to realize right side =2, by using Qs, s = 1, 2, . . . ,poly(n), to interpolate on the
eigenvalues.

In the last reduction, r−2 functions =3 are connected by right side =2 to realize
left side =r.

All entries in Q̂ are nonzero, and Q̂ is nonsingular, by result in Ref. [1], #R=|{Q}
is #P-hard. ¤

Theorem 3.1. For any integer d ≥ 2, there exists a complex valued symmet-
ric binary function Hd, such that #{Hd}|Rd

= has polynomial time algorithm, but
#{Hd}|Rd+1

= is #P-hard.
Proof: We construct a holographic reduction between #{=2}|{F1, . . . , Fd+1} and

#{Hd}|{=1, . . . ,=d+1}. Let k = d + 1.
The first problem is in domain [2], and the second problem is in domain [m]. The

value of m will be determinated later in the construction.
We construct a matrix M of size 2×m, such that for any 1 6 i 6 k,

M⊗i(=i) = Fi. (3.1)

Recall that =i and Fi denote the column vectors of length mi and 2i correspond-
ing to the two functions.

Suppose there are cj columns with the same value

(
bj

bjqj

)
in M temporarily,

0 6 j 6 k. We have M⊗i(=i) =
∑k

j=0 cj

(
bj

bjqj

)⊗i

, because the s1s2 · · · si columns

of M⊗i is Ms1 ⊗ · · · ⊗Msi
(Ms denotes the sth column of M), and the vector =i is

nonzero only on entries s1s2 · · · si satisfying s1 = s2 = · · · = si.

We need that
∑k

j=0 cj

(
bj

bjqj

)⊗i

= Fi. Notice that both sides of the equation

are symmetric functions. We need
∑k

j=0 cjb
i
j [1, qj , . . . , q

i
j ] = [a0, a1, . . . , ai] holds for

1 6 i 6 k. Let bj = 1, we only need
∑k

j=0 cjq
i
j = ai. Let qj are different inte-

gers. Then, this is a system of linear equations in cj with nonsingular Vandermonde
coefficient matrix in qj . Because qj and ai are integers, the solution of cj are rational.

We look at two simple cases firstly. If the solution of cj are all nonnegative
integers, it is done. If the solution of cj are nonnegative rational numbers. Suppose

p is a constant such that pcj are nonnegative integers. Put pcj columns

(
bj

bjqj

)
in

M . We get M⊗i(=i) = pFi. (The constant p does not change the complexity of the
corresponding problem.)

In the general case, the solution of cj may be negative rational. In fact we
only need to show how to utilize bj to realize a factor −1. Suppose we want some

column

(
b

bq

)
in M contribute −1

(
1

q

)⊗i

in M⊗i(=i) =
∑k

j=0 cj

(
bj

bjqj

)⊗i

for
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1 6 i 6 k.

Let r = ei2π/(k+1). Replace this column

(
b

bq

)
by k columns

(
bs

bsq

)
, 1 6

s 6 k, where bs = rs. Notice

k∑
s=1

bi
s =

s∑
s=1

rsi =
k∑

s=0

rsi − 1 =
1− ri(k+1)

1− ri
− 1 = −1,

for all 1 6 i 6 k. These k columns indeed contribute −1

(
1

q

)⊗i

.

Suppose we get the solution of cj from the system of linear equations. Firstly,
we only take the absolute values of this solution, and handle it as the second simple
case to get a matrix M . Secondly, for each cj which should take a negative value,
we replace each of its pcj columns in M by k new columns as above to get a new M

satisfying equations 3.1.
By Theorem 2.2, let Hd = (=2)M⊗2, then #{=2}|{F1, . . . , Fd+1} and #{Hd}|Rd+1

=

have the same value. Obviously, the same holographic reduction exists between
#{=2}|{F1, . . . , Fd} and #{Hd}|Rd

=.
By the results in Ref. [10], we know that #{=2}|{F1, . . . , Fd} is in P, while

#{=2}|{F1, . . . , Fd+1} is #P-hard by lemma 3.1.
The conclusion follows from the complexity of #{=2}|{F1, . . . , Fd} and #{=2

}|{F1, . . . , Fd+1}. ¤

4 Some Partial Converse of Holographic Reduction

Since result equivalent is enough to design reductions, and algebra equivalent is
a sufficient condition of result equivalent, we wonder whether it is also a necessary
condition. If it is not, maybe we can explore more sufficient conditions to design new
reductions. This question itself is also an interesting mathematical problem.

The converse of Theorem 2.1 does not hold for some cases. For example #{F1 =
F2 = (1, 0)}|{(4, 1)′} and #{W1 = (1, 1),W2 = (1, 2)}|{(4, 0)′} always have the same
value, but obviously there is no nonsingular M such that F1 = W1M and F2 = W2M .

Unfortunately, the converse of Theorem 2.2 does not hold neither. Consider
#{F1 = F2 = (1, 0), F3 = (1, 4)}|{(4, 1)′} and #{W1 = (1, 1),W2 = (1, 2),W3 =
(2, 0)}|{(4, 0)′}. They always give the same value. Suppose the converse of Holant
theorem holds, then it must be that F1 = W1M and F2 = W2M , so the second
column of M is a zero vector. Because F3 = W3M , the second entry of F3 should be
zero. Contradiction.

It is still possible that the converse of the two theorems holds for most situation
except for some special cases. In the following conjecture, we simply add a condition
on the arity, but maybe this is far from the right condition.

Conjecture 4.1. #F|H and #P|Q are two counting problems, such that at
least one of F, H, P, Q contains some function of arity more than 1. If they are
result equivalent, then they are algebra equivalent.

We compare this conjecture with the following result. (The result in Ref.[17] is
more general.)
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Theorem 4.1.[13,17] Suppose H1 and H2 are directed acyclic graphs. If for all
directed acyclic graphs G, the number of homomorphisms from G to H1 is equal to
the number of homomorphisms from G to H2, then H1 and H2 are isomorphic.

Theorem 4.1 can be regarded as a special case of the conjecture that H = Q =
R=, and F = {H1}, P = {H2}, with stronger conclusion that the matrix M in algebra
equivalent is a permutation matrix.

Now we prove that if there is a matrix M keeping =k unchanged for all airty k,
then it must be permutation matrix.

Suppose M = (Mij) is an n × n matrix. Let Mj denote the jth column of
M , and ej denote the standard column base vector. eij denotes the ith entry of ej ,
that is, (eij) is identity matrix. We have condition M⊗k(=k) = (=k), which means∑n

j=1 M⊗k
j =

∑n
j=1 e⊗k

j , 1 6 k 6 n. Fix an i and focus on the (ii · · · i)th entry
of these vector equations. We get

∑n
j=1 Mk

ij =
∑n

j=1 ek
ij , 1 6 k 6 n. This means

{Mij |1 6 j 6 n} and {eij |1 6 j 6 n} are the same multi-set, that is, each row of M

is composed of 1 one and n− 1 zeros. Suppose one column of M contains more than
one 1. For example Msj = Mtj = 1. Consider the (ii · · · ij)th entry of these vector
equations, we will get a contradiction. Hence, M is a permutation matrix.

In the rest of this paper, we prove that the conjecture holds for several classes of
problems #F|{=2} (Holant problems). We denote this problem by #F for simplicity.
The range of all functions are real numbers.

Since we only consider #F|{=2} problems, the base M keep =2 unchanged, that
is, M⊗2(=2) = (=2). The matrix corresponds to =2 is identity matrix I, so the
matrix form of this equation is MIM ′ = I, which means M is orthogonal.

Theorem 4.2. Suppose F = {F1, . . . , Ft} and P = {P1, . . . , Pt} are composed
of unary functions over [n]. If #F and #P are result equivalent, then they are algebra
equivalent.

Proof: This a straightforward linear algebra problem.
Let F (resp. P ) denote the matrix whose ith column is Fi (resp. Pi). The

condition is that F ′F = P ′P .
If t = n and F is full rank, then P is also full rank. Let M = HF−1. Obviously,

MFi = Hi. Because F ′F = H ′H = F ′M ′MF , M is orthogonal matrix.
For the general case, we can show F and P has the same maximum linear in-

dependent column subset (two subset have the same element index) and the other
columns are generated by this set in the same way. We can turn them into nonsingular
matrices. Details omitted. ¤

Theorem 4.3. Suppose F and H are two symmetric binary real functions over
[n]2. If #{F} and #{H} are result equivalent, then they are algebra equivalent.

Proof: Suppose KFK ′ and LHL′ are diagonal matrices and K, L are orthogonal
matrices.

#{F} and #{KFK ′}, #{H} and #{LHL′} are algebra equivalent. We only
need to prove that #{KFK ′} and #{KHK ′} are algebra equivalent.

Consider a cycle of length i. Since #{KFK ′} and #{LHL′} have the same value
on it, tr((KFK ′)i) = tr((LHL′)i).

Take i = 1, . . . , n, we get that the diagonal entries sets of KFK ′ and LHL′ are the
same. Hence, #{KFK ′} and #{LHL′} are algebra equivalent under a permutation
matrix. ¤
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Corollary 4.1. Suppose F1, F2,H1,H2 are symmetric binary real functions
over [k]2, and all eigenvalues of F1 are equal. If #{F1, F2} and #{H1,H2} are result
equivalent, then they are algebra equivalent.

Proof: By Theorem 4.3, the eigenvalues of H1 are also equal. If these eigenvalues
are zero, then F1 and H1 are zero function. The conclusion holds by Theorem 4.3.

If these eigenvalues λ are not zero, #{F1, F2} (resp. #{H1,H2}) is algebra equiv-
alent to #{λI, P2} (resp. #{λI, Q2}). By Theorem 4.3, #{λI, P2} and #{λI, Q2}
are algebra equivalent. ¤

We need the following lemma for the next theorem.

Lemma 4.1. G = (U, V,E) is a bipartite graph with edge weight function
w : E → {1,−1}. If for every cycles e1, e2, . . . , e2k of G, w(e1)w(e2) · · ·w(e2k) = 1,
we say G is consistent. If G is consistent, then we can extend weight function w to a
complete bipartite graph G′ = (U, V, U × V ), such that G′ is also consistent.

Proof: Given G = (U, V,E), we take a spanning tree of each of its connected
components. We get a forest and denote it by G1 = (U, V,E1). Edges in E1 take the
same weight as in G. Extend G1 to a spanning tree G2 = (U, V,E2), that is, E1 ⊆ E2,
such that the weights of edges in E2 − E are either 1 or −1 arbitrarily. At last, we
extend G2 to complete graph G′. For each edge (u, v) 6∈ E2, there is a unique path
Pu,v in G2 connecting u and v. We set the weight of (u, v) to the product of weights
of edges in Pu,v.

Firstly, we prove that G′ is consistent. Take an arbitrary cycle C ′ of G′. For
each edge e in C ′, there is a unique path Pe corresponding to it in the spanning tree
G2. We replace each edge e in C by its path Pe to get a cycle C2 of G2. By the
definition of weights of G′, the two cycles have the same product of edge weights.
Each edge appears in C2 for even many times. (Otherwise, if C2 contains some edge
e for odd many times, the cycle will start from one of the two components of the
graph (U, V,E2−{e}) and stay in the other component.) Hence the products of edge
weights are 1 for both cycles C and C ′.

Secondly, we prove that G′ and G give the same weight to edges in E. We prove
it for all edges in each connected component of G. To reuse the notations above, we
can assume that G is connected. By definition, G′ and G give the same weight to
edges in E1. Because both G′ and G are consistent, and the weight of e = (u, v) 6∈ E1

is decided by the weights on the path Pu,v ⊆ E1, they give the same weight to e. ¤
Theorem 4.4. Suppose F1, F2,H1,H2 are symmetric binary real functions

over [k]2, and all eigenvalues of F1 are different and all eigenvalues of F2 are different.
If #{F1, F2} and #{H1,H2} are result equivalent, then they are algebra equivalent.

Proof: By Theorem 4.3, there exist orthogonal matrices K1, L1 and diago-
nal matrix Λ1 such that F1 = K ′

1Λ1K1, H1 = L′1Λ1L1. Because #{F1, F2} and
#{Λ1,K1F2K

′
1}, #{H1,H2} and #{Λ1, L1H2L

′
1}, are algebra equivalent, #{Λ1,

K1F2K
′
1} and #{Λ1, L1H2L

′
1} are result equivalent.

To prove the conclusion, we only need to prove #{Λ1,K1F2K
′
1} and #{Λ1,

L1H2L
′
1} are algebra equivalent. We use F (resp. H) to denote K1F2K

′
1 (resp.

L1H2L
′
1).

Applying Theorem 4.3 to #{F} and #{H}, there exist orthogonal matrices K,
L and diagonal matrix Λ such that F = KΛK ′, H = LΛL′. The diagonal entries of
Λ are different eigenvalues.
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Let σi denote the binary relation {(i, i)}, i ∈ [n]. Consider a circle of r + s

with r functions Λ1 and s functions F . The value of #{Λ1, F} on this instance
is tr(Λr

1F
s) = tr(Λr

1KΛsK ′). This equation holds for any r and s. Suppose the
ith diagonal entry of Λ1 is λi. tr(Λr

1KΛsK ′) = Σiλ
r
i tr(σiKΛsK ′). Fix s and take n

different values of r. We get a nonsingular system of linear equations in tr(σiKΛsK ′),
with Vandermonde coefficient matrix in λi.

Similar analysis also holds for tr(Λr
1LΛsL′). By the conditions tr(Λr

1F
s) =

tr(Λr
1H

s). Two systems of linear equations are the same, so if λi 6= 0, tr(σiKΛsK ′)
= tr(σiLΛsL′). If there is some unique λi0 = 0, notice tr((Σi∈[n]σi)KΛsK ′) =
tr(=2 KΛsK ′) = tr(LΛsL′) = tr((Σi∈[n]σi)LΛsL′), we also have tr(σi0KΛsK ′) =
tr(σi0LΛsL′).

Similar analysis holds for Λ part. Hence, for any i, j, tr(σiKσjK
′) = tr(σiLσjL

′),
which means (K(i, j))2 = (L(i, j))2.

Define a weighted undirected bipartite graph G = (U, V,E), such that (i, j) ∈ E

iff L(i, j) 6= 0. The weight of (i, j) is w((i, j)) = K(i, j)/L(i, j) ∈ {1,−1}.
We just consider Λr

1F
s in the above analysis. If consider Λr1

1 F r2Λr3
1 F r4 , we

can get for any i, j, k, l ∈ [n], tr(σiKσjK
′σkKσlK

′) = tr(σiLσjL
′σkLσlL

′), which
means K(i, j)K(k, j)K(k, l)K(i, l) = L(i, j)L(k, j)L(k, l)L(i, l). If none of them is
zero, ((i, j), (k, j), (k, l), (i, l)) is a cycle in G, and the equation says G is consistent
on this cycle (the product of edge weights in the cycle is 1). If we consider arbitrary
alternations between Λ and F , we get arbitrary cycles, so G is consistent. By lemma
4.1, we can get a consistent complete bipartite graph G′. Suppose the weight function
of G′ is W (i, j), which is also a matrix.

For any 2×2 submatrix W ({i, k}, {j, l}) of W , its two rows are identical or linear
dependent by a factor −1 (consider the circle ((i, j), (k, j), (k, l), (i, l)) in G′). Hence
the rank of W is 1.

Suppose W is the product of two ±1 valued vectors δ1δ
′
2. Let diag(δi) denote the

diagonal matrix whose diagonal is δi. Since W (i, j)L(i, j) = K(i, j) for all entries,
diag(δ1) L diag(δ2) = K. Notice diag(δ1) Λ1 diag(δ1) = Λ1 and diag(δ2) Λ diag(δ2) =
Λ. #{Λ1, F} and #{Λ1,H} are algebra equivalent by matrix diag(δ1). ¤

Corollary 4.2. Suppose F1, F2,H1,H2 are symmetric binary real functions
over [2]2. If #{F1, F2} and #{H1,H2} are result equivalent, then they are algebra
equivalent.

Proof: Since the size of domain is 2, either one of F1 and F2 have the same
eigenvalues, or neither of them has.

The first case is by corollary 4.1, the second case is by Theorem 4.4. ¤
Corollary 4.3. Suppose F1,H1 are unary real functions over [2], and F2,H2

are symmetric binary real functions over [2]2. If #{F1, F2} and #{H1,H2} are result
equivalent, then they are algebra equivalent.

Proof: Let binary functions F3 = F⊗2
1 , H3 = H⊗2

1 . Apply corollary 4.2 to
#{F3, F2} and #{H3,H2}.

There exists orthogonal matrix M , such that M⊗2F3 = H3, M⊗2F2 = H2

Because M⊗2F3 = H3, which means (MF1)⊗2 = H⊗2
1 , either MF1 = H1 or

MF1 = −H1. If MF1 = H1, the conclusion holds by base M . If MF1 = −H1, the
conclusion holds by base −M . ¤
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Theorem 4.5. Suppose F3,H3 are symmetric ternary real functions over [2]3,
If #{F3} and #{H3} are result equivalent, then they are algebra equivalent.

Proof: Suppose H3 = [h0, h1, h2, h3]. F1 (resp. H1) denote the unary function by
connecting two inputs of F3 (resp. H3) using =2 , that is, H1 = [h0 + h2, h1 + h3].

Let F2 (resp. H2) denote the binary function which is one F3 (resp. H3) function
connected by one F1 (resp. H1).

Obviously, #{F1, F2} and #{H1,H2} are result equivalent. Apply corollary 4.3
to #{F1, F2} and #{H1,H2}. There exists orthogonal matrix M such that MF1 = H1

and M⊗2F2 = H2.
Let M⊗3F3 = [f0, f1, f2, f3], ∆j = hj − fj , j = 0, 1, 2, 3. Because MF1 =

[f0 + f2, f1 + f3] and MF1 = H1, ∆0 + ∆2 = 0 and ∆1 + ∆3 = 0.
Let H1 = [h0+h2, h1+h3] = MF1 = [a, b], then H2 = [ah0+bh1, ah1+bh2, ah2+

bh3] and M⊗2F2 = [af0 + bf1, af1 + bf2, af2 + bf3]. (F2 is composed of F3 and F1.
Because M is orthogonal, M⊗2F2 can be realized by composing M⊗3F3 and MF1.)
Because M⊗2F2 = H2, a∆0 + b∆1 = 0, a∆1 + b∆2 = 0, a∆2 + b∆3 = 0.

Now we get five linear equations about ∆j . Notice a and b are real numbers, since
F3 and H3 are real functions. Calculation shows that, there is only zero solution iff
a2 + b2 6= 0. Hence, if a 6= 0 or b 6= 0, we have proved M⊗3F3 = H3.

If a = b = 0, H1 = MF1 = [0, 0], so F1 = [0, 0]. let F3 = [x, y,−x,−y]. There

exist s = (x − iy)/2 and t = (x + iy)/2 such that F3 = s

(
1

i

)⊗3

+ t

(
1

−i

)⊗3

.

Because x and y are real number, s 6= 0, t 6= 0. Under base

(
1 1

i −i

)
, #{F3}|{F3}

is holographic reduced to #{[s, 0, 0, t]}|{[8t, 0, 0, 8s]}. Similarly, H3 also has form

H3 = c

(
1

i

)⊗3

+d

(
1

−i

)⊗3

, and under the same base, #{H3}|{H3} is holographic

reduced to #{[c, 0, 0, d]}|{[8d, 0, 0, 8c]}.
Because #{F3}|{F3} is special case of #{F3}, #{[s, 0, 0, t]}|{[8t, 0, 0, 8s]} and

#{[c, 0, 0, d]}|{[8d, 0, 0, 8c]} are result equivalent. Hence, st = cd.

Notice

(
( c

s )
1
3 0

0 (d
t )

1
3

)
can turn [s, 0, 0, t] into [c, 0, 0, d]. Let

M =

(
1 1

i −i

)(
( c

s )
1
3 0

0 (d
t )

1
3

)(
1 1

i −i

)−1

.

Then, M⊗3F3 = H3 and M ′M = I (the second equation is right because of the
condition st = cd). ¤
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