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Abstract The Kolmogorov complexity of a string is the length of the shortest program that

generates it. A binary string is said to have trivial Kolmogorov complexity if its complexity

is at most the complexity of its length. Intuitively, such strings carry no more information

than the information that is inevitably coded into their length (which is the same as the

information coded into a sequence of 0s of the same length). We study the set of these

trivial sequences from a computational perspective, and with respect to plain and prefix-free

Kolmogorov complexity. This work parallels the well known study of the set of nonrandom

strings (which was initiated by Kolmogorov and developed by Kummer, Muchnik, Stephan,

Allender and others) and points to several directions for further research.
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1 Introduction

In order to measure the information that is coded into binary strings, Kolmogo-
rov[9] provided a formal framework which is based on the theory of computability
and Turing machines. Given a Turing machine M that operates on binary strings,
the Kolmogorov complexity of a string σ relative to M is the length of the shortest
string (program) τ such that M(τ) = σ (in words, τ is a description of σ). If there
is no such string τ , then this complexity of σ is infinite. We denote the Kolmogorov
complexity of σ relative to M by CM (σ). The existence of optimal universal Turing
machines allows for a theory of Kolmogorov complexity that does not depend on the
underlying Turing machine M in any essential way.

Definition 1.1 (Optimal machines, see Ref. [11]). An optimal universal
machine U is a Turing machine with the following property: every Turing machine
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M can be associated with a constant c such that for all σ, if M(σ) is defined then
M(σ) = U(τ) for some string τ such that |τ | ≤ |σ|+ c.

In other words, an optimal universal machine can simulate any other machine
with only a constant overhead. Let U be the machine that acts on input 0e1σ by
simulating the machine with code e on input σ and outputs the result of this com-
putation. Clearly the Kolmogorov complexity of strings with respect to any other
Turing machine M can only be smaller than the one with respect to U by at most a
fixed constant (corresponding to its code). Hence without loss of generality we may
fix U as the underlying machine and denote the corresponding complexity by C. A
variation of this approach is obtained when we restrict our considerations to prefix-
free Turing machines, i.e. with prefix-free domain (no string in it is an extension of
another). The above considerations allow for the definition of prefix-free complexity
K which is based on an underlying optimal universal prefix-free machine. The latter
is defined as in Definition 1.1 but restricted to prefix-free machines.

Kolmogorov[9] called a string σ random if C(σ) ≥ |σ| and showed that the set of
non-random strings is simple (i.e. computably enumerable and its complement does
not contain any infinite computably enumerable sets). Intuitively, a string is random if
it contains a lot of information. The study of the computational properties of the set of
non-random strings continued with the work of Kummer, Muchnik, Stephan, Allender
and others. Kummer[10] used a non-uniform argument in order to show that it is truth
table complete. Muchnik and Positselsky[13] studied the set of non-random strings
with respect to prefix-free Kolmogorov complexity and showed it may be truth table
incomplete if a certain underlying optimal universal prefix-free machine is chosen.
On the other hand Allender, Buhrman, and Koucký[13] showed that the latter can be
truth table complete under a suitably chosen underlying optimal universal prefix-free
machine, and studied the same question with respect to resource-bounded versions
of Kolmogorov complexity. Stephan[17] studied the set of nonrandom strings (with
respect to C and K) further, in the context of the lattice of computably enumerable
sets and the Ershov hierarchy of n-c.e. sets.

In this paper we are interested in the collection of strings that are very far from
being random. These strings can be described as easily as a sequence of 0s of the
same length. In other words, in terms of Kolmogorov complexity such a string is as
simple as the one that we obtain if we switch all of its digits to 0. This notion can be
formalized in terms of plain or prefix-free complexity as follows.

Definition 1.2 (Ke and Ce trivial strings). A string σ is called Ke-trivial
if K(σ) ≤ K(|σ|) + e. Similarly, a string is called Ce-trivial if C(σ) ≤ C(|σ|) + e.

Whenever we write K(n) for n ∈ N we identify n with the string 0n (the particular
encoding of numbers into strings is not significant). The intuitive notion of trivial
strings that we discussed above corresponds to the special case e = 0 in Definition
1.2. However since the theory of Kolmogorov complexity is always dependent on
an underlying constant corresponding to a particular optimal universal system of
descriptions, it is necessary to allow the formal definition to depend on a similar
constant. Let us use the terms ‘K-trivial and C-trivial’ if the choice of the underlying
constant e of Definition 1.2 is not essential, and even talk about the collection of
‘trivial’ strings when the nature of the underlying system of descriptions (plain or
prefix-free) is also not important in the particular context. The facts that we prove
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about the sets of K-trivial and C-trivial strings do not depend on the underlying
constant e, as long as the constant is chosen to be above a certain value. However, as
it happens with the case of the collection of the nonrandom strings, some properties
of the collection of trivial strings may depend on the choice of the underlying optimal
universal systems of descriptions.

In Section 2 we examine the collections of trivial strings in the light of the simplic-
ity and immunity notions from classical computability theory. We show that there is
no simple set of trivial strings. Notice that Kolmogorov[9] followed a similar approach
to the study of the collection of nonrandom strings, where he showed that it forms a
simple set. Despite this analogy, the real reason that we follow this path of investiga-
tion is the basic question of whether the trivial strings can be effectively enumerated.
Although intuitively this does not seem likely, a direct attack to this question via a
straightforward diagonalization fails. However, as it turns out, the approach that we
initiate in Section 3 leads to the negative answer of this basic question in Section 3.

In Section 3 we show that if e ∈ N is chosen large enough, the set of Ke-trivial
strings intersects every infinite computably enumerable set of strings. Moreover, the
same holds for the C-trivial strings. This result, combined with the work of Section
2, shows that when e ∈ N is chosen sufficiently large the collections of Ke-trivial and
Ce-trivial strings are not computably enumerable. The results in Sections 2 and 3
also show that the many-one degree of these sets of strings (again, for suitably large
constant e) is incomparable with the many-one degree of the halting problem. In
particular, they are many-one incomplete. Continuing this degree theoretic analysis
of the sets of trivial strings, in Section 4 we show that (for suitably large e ∈ N)
the set of Ke-trivial stings is in the same weak truth table degree as the halting
problem. Moreover, this also holds for the set Ce-trivial strings. We note that this
also holds for the set of non-random strings. An natural question here is whether
these collections are also truth table complete. In the case of the set of nonrandom
strings, this question turned out to be quite interesting. As we discussed above, in
the case of plain complexity the set of nonrandom strings is truth table complete
(independently of the underlying optimal universal machine). However in the case of
prefix-free complexity it can be truth table complete or incomplete, depending on the
underlying optimal universal system of descriptions.

In Section 4 we start a similar analysis to determine whether the collection of
trivial strings is truth table complete or not. First, we show that in the case of
prefix-free complexity it can be made complete or incomplete, if suitable underlying
systems of descriptions are chosen. For the case of plain complexity we show that
it is complete, again subject to a suitable choice of the underlying Turing machine.
However the question remains as to whether it is truth table complete with respect to
any choice of underlying optimal universal machine. In other words, does Kummer’s
theorem hold for the case of the trivial strings? Kummer’s original argument does
not translate to this case. We leave this interesting question open.

In Section 4 we study subsets of N (viewed as infinite binary sequences) in the
light of trivial strings. A set X ⊆ N is called K-trivial if there is some e ∈ N such that
all of its initial segments are Ke-trivial. An analogous definition applies in the case of
plain Kolmogorov complexity. We show that if X is computably enumerable and not
K-trivial, then it is the disjoint union of two computably enumerable sets that are
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not K-trivial. A similar result holds for the case of C-triviality. Actually, we prove
a stronger result that can be stated in terms of the so-called C and K reducibilities
(denoted ≤C and ≤K respectively) that were proposed in Ref. [7] as measures of
relative randomness.

Definition 1.3 (≤C and ≤K , see Ref. [7]). Given X, Y ⊂ N we say that
X ≤C Y if there is some c ∈ N such that C(X ¹n) ≤ C(Y ¹n) for all n ∈ N. Similarly,
we say that X ≤K Y if there is some c ∈ N such that K(X ¹n) ≤ K(Y ¹n) for all
n ∈ N.

We show that any computably enumerable set A is the disjoint union of two c.e.
(short for ‘computably enumerable’) sets A0, A1 such that Ai <K A and Ai 6≤K A1−i

for i = 0, 1. This theorem also holds for ≤C and can be seen as an analogue of the
well known Sacks splitting theorem (e.g. see Ref. [15, Theorem 3.1]) for randomness
reducibilities. Finally in Section 6 we conclude with suggestions for further research
on the collection of trivial strings and a number of open questions.

The reader will notice that a number of results in this paper about the sets of
Ke-trivial and Ce-trivial strings hold when e is chosen ‘sufficiently large’. For these
results, it is possible to find certain underlying optimal universal machines and certain
(finitely many) e ∈ N with respect to which they do not hold. For example, consider
Corrollary 3.2 which says that (given some underlying optimal universal machine) for
sufficiently large e ∈ N the corresponding set of Ke-trivial strings are not computably
enumerable. We exhibit a particular optimal universal machine with respect to which
the above statement does not hold for e = 0.1) Given any optimal universal machine
U define machine V by V (11τ) = U(τ) and V (0τ) = 0|U(τ)|. Then

{τ | KV (τ) 6 KV (|τ |)} = {0n | n ∈ N} (1.1)

Indeed, by definition we have KV (0n) 6 KV (n) for each n ∈ N. On the other hand,
if σ 6= 0|σ| then KV (σ) = KU (σ) + 2. But by the second clause of the definition of V

we have that KV (0|σ|) ≤ 1+KU (σ). Hence KV (0|σ|) < KV (σ) which shows that σ is
not K0-trivial with respect to V . This proves (1.1), which in turn shows that the set
of K0-trivial strings with respect to V is computable. Similar counterexamples can
be found for other results in this paper that require ‘sufficiently large e ∈ N’.

For background on algorithmic randomness we refer the reader to Ref. [11] and
Ref. [14].

2 Simplicity and Immunity

Clearly every string is Ke-trivial for some e ∈ N. What we are interested in here
is the complexity of the set of Ke-trivial strings. The same applies to C-triviality.
Recall that a set of strings is called immune if it does not contain any infinite c.e. set
of strings. It is called simple if it is c.e. and it intersects all infinite c.e. sets of strings
(i.e. its complement is immune).

Proposition 2.1. For each e ∈ N, the sets of Ke-trivial and Ce-trivial strings
are not immune.

Proposition 2.1 follows from the fact that the infinite set of strings 0n, n ∈ N is
computable and each of its members is Ke-trivial and Ce-trivial for all e ∈ N.

1) This nice example was provided to us by Adam Day.
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Theorem 2.2. Let e ∈ N. There is no simple set of Ce-trivial strings.
Proof: If A is a simple set of strings, then

For each n ∈ N there exists t ∈ N such that there are at least n

strings in A of length t.
(2.1)

Indeed, otherwise if m be the largest number such that for infinitely many n there
are m strings of length n in A the set

{n | there are exactly m strings of length n in A}

is c.e. and infinite. Hence if 2.1 did not hold, we would be able to enumerate an
infinite c.e. set of strings in the complement of A. This would contradict the fact that
A is simple.

It remains to show that given a simple set of strings A, there exists σ ∈ A such
that C(σ) > C(|σ|) + e.

We construct a Turing machine M and by the recursion theorem we may use an
index d of it in its definition. The machine M simply searches for some n ∈ N and a
stage s such that 2d+e+1 strings of length n are in A[s]. By (2.1) this search halts.
Then it describes n with a string of length 1.

By the standard encoding of the underlying optimal universal machine that we
have chosen we have C(i) ≤ CM (i) + d for all i ∈ N. Moreover by the definition of M

we have CM (n) = 1, where n is a number such that there are 2d+e+1 strings of length
n in A. For each Ce-trivial string σ we have C(σ) ≤ CM (|σ|) + e + d hence if σ is of
length n then C(σ) ≤ 1 + e + d. This means that there are less than 21+e+d many
Ce-trivial strings of length n. Hence A contains a string which is not Ce-trivial. ¤

An important fact in descriptive string complexity (e.g. see Ref. [14, Lemma
5.2.21]) is that for each machine N there is some constant d such that

|{σ | N(σ) = n ∧ |σ| ≤ C(n) + b}| ≤ b2 · 2b+d (2.2)

for all b ∈ N and strings σ. Let U be the underlying optimal universal machine and
consider the machine N(σ) = |U(σ)|. Given n ∈ N all descriptions of strings of length
n are N -descriptions of n.

Given n ∈ N, the number of strings of length n such that C(σ) ≤ C(n) + b is
at most the number of the descriptions of length ≤ C(n) + b that describe strings of
length n. Therefore it is at most the number of N -descriptions of n that have length
≤ C(n) + b. Hence by (2.2) there is some constant c such that for all b ∈ N

|{τ | C(τ) ≤ C(|τ |) + b}| ≤ b2 · 2b+c. (2.3)

The proof of Theorem 2.2 becomes shorter if we use (2.3) instead of constructing
machine M . We follow this route in the proof of the following analogous theorem
for prefix-free complexity. In particular we use the so-called coding theorem (see e.g.
Ref. [14, Theorems 2.2.25 and 2.2.26]) which implies that there is a constant d such
that for all b, n ∈ N the cardinality of the set {σ | |σ| = n ∧ K(σ) ≤ K(n) + b} is
less than 2b+d.

Theorem 2.3. Let e ∈ N. There is no simple set of Ke-trivial strings.
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Proof: Suppose that A is a simple set of strings. In the proof of Theorem 2.2 it
was shown that (2.1) holds. By the coding theorem there is some constant c such that
for each n ∈ N there are at most c strings of length n which are Ke-trivial. Hence A

cannot consist entirely of Ke-trivial strings. ¤

The above results will be used in Section 3 in order to establish that the set of
Ke-trivial strings and the set of Ce-trivial strings are not computably enumerable, for
suitably large e ∈ N.

3 Computable Enumerability

We wish to exhibit some e ∈ N such that the set of Ke-trivial strings and the
set of Ce-trivial strings intersect every infinite c.e. set of strings. For this reason, we
need the following simple fact about the complexities K and C.

If V = {ts | s ∈ N} is a computable 1-1 enumeration of an infinite
c.e. set then there are infinitely many s ∈ N such that C(ts) <

C(ts)[s]. The same holds for K in place of C.
(3.1)

To see why (3.1) holds, construct a Turing machine M as follows. By the recursion
theorem we can use an index d of M in its definition. For each i ∈ N find some s > i

such that C(ts)[s] > d+i+1 and describe ts with a string of length i+1. Let this chosen
s be si. For each i there is at most one description of length i + 1, hence machine
M as prescribed above exists. By the standard encoding of the chosen underlying
universal machine, C(tsi

) ≤ d + CM (tsi
) = d + i + 1, hence C(tsi

) < C(tsi
)[si] for

each i ∈ N. The same argument shows (3.1) for the prefix free complexity.
The following result shows that the complements of the sets of Ce and Ke-trivial

strings are immune. It will be combined with Theorems 2.2 and 2.3 in order to show
that the sets of Ce and Ke-trivial strings are not computably enumerable.

Theorem 3.1. There is e ∈ N such that every infinite c.e. set of strings contains
a Ce-trivial and a Ke-trivial string.

Proof: Let (Wn) be an effective enumeration of all c.e. sets of strings. For the part
of the theorem that refers to plain complexity, it suffices to define a Turing machine
M such that

Rn : Wn is infinite ⇒ ∃σ ∈ Wn [CM (σ) ≤ C(|σ|)]

for each n ∈ N. Indeed, by the standard encoding of the underlying universal machine
we have C(τ) ≤ CM (τ) + e for an index e of M and all strings τ . Hence each infinite
c.e. set will contain a string σ such that C(σ) ≤ C(|σ|) + e. Similarly, for the prefix-
free complexity it suffices to define a prefix-free machine M such that the modified
Rn, n ∈ N with K in place of C are satisfied. The following argument will produce
such a machine M simply by shuffling the descriptions that are used by the underlying
universal machine (i.e. mapping the same descriptions to possibly different strings).
Therefore exactly the same argument applies to both C and K. Without loss of
generality we state the argument in terms of C.

In order to meet a single condition Rn one would only have to wait for a string
σ to appear in Wn and then ensure that CM (σ) ≤ C(|σ|) by letting M describe σ

with the descriptions that the underlying universal machine gives to |σ|. However
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when we try to satisfy all Rn we meet the following problem. When we decide to act
on some σ ∈ Wn, other strategies may have already acted on other strings of length
|σ|. If we ignore this issue, we may easily end up with M not having enough short
descriptions for certain strings. In fact, Theorem 2.3 shows that such a standard
‘simple set construction’ strategy is bound to fail.

The solution is to employ a more sophisticated finite injury argument using (3.1).
Consider the strategies in a priority list R0, R1, . . . We order the strings first by length
and then lexicographically. Also, we use the term ‘universal description’ to refer to
the descriptions issued by the underlying optimal universal machine. At each stage
each strategy may hold a string σ. At each stage, each strategy holds at most one
string. Moreover at each stage and for each n ∈ N there is at most one strategy that
holds a string of length n. A strategy may get hold of a string σ such that some τ of
the same length is currently held by a lower priority strategy. In this case the latter
strategy no longer holds τ . Consequently, if σ is held by some strategy Rj , the only
reason why Rj may lose σ is if at some later stage a higher priority strategy gets hold
of some string of length |σ|.

Strategy Rn requires attention at stage s + 1 if

• it does not hold a string and

• there is some σ ∈ Wn[s + 1] such that C(|σ|)[s + 1] < C(|σ|)[s] and none of
Ri, i < n holds a string of length |σ|.

In this case, if σ is the least string with this property we say that Rn requires attention
via σ.

Construction. At stage s + 1 if Ri, i < s is the highest priority that requires
attention via some string σ, let it get hold of σ. If some Rj held some τ with |τ | = |σ|
at stage s, it loses it at this stage. For each Rj , j < s which holds some σ, if
C(|σ|)[s + 1] < C(|σ|)[s] use the new universal description of |σ| as an M -description
of σ.

Verification. First, notice that M operates simply by using the descriptions
issued by the underlying universal machine. Since this shuffling is effective, M is
indeed a Turing machine. It remains to show that each Rn, n ∈ N is met. We use
induction to show that each Rn, n ∈ N is met and requires attention only finitely
often. Suppose that this holds for all i < n and after stage s0 no Ri, i < n requires
attention. If Rn gets hold of a string after stage s0, or already holds one at stage
s0 clearly it never requires attention after stage s0. On the other hand if it never
gets hold of a string at stages s ≥ s0 it also does not require attention after stage s0

(otherwise it would get hold of a string). If Wn is not infinite, Rn is met. Otherwise
if we consider the infinite c.e. set of the lengths of the strings in Wn, it follows from
(3.1) that Rn will require attention and get hold of a string σ at some stage s ≥ s0

(if it does not already have one at s0). By the induction hypothesis it will hold σ at
all latter stages. Then the construction ensures that CM (σ) ≤ C(|σ|). Hence Rn is
met. ¤

Since the complexity functions K and C are ω-c.e. (i.e. the limit of a computable
function with a computable bound on the number of changes that occur before the
limit is reached), the same holds for the sets of Ce-trivial and Ke-trivial strings. The
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following result shows however that these sets are not 2-c.e., i.e. the difference of two
c.e. sets.

Corollary 3.2. For sufficiently large e ∈ N, the sets of Ce-trivial and Ke-trivial
strings are not c.e and not the difference of two c.e. sets.

Proof: Fix e as large as the constant of Theorem 2.1. If the set of Ce-trivial strings
was c.e., by Theorem 3.1 it would be simple. But this contradicts Theorem 2.2. A
similar argument applies to Ke-trivial strings, using Theorem 2.3. Finally if the set
of Ce or Ke-trivial strings was the difference of two c.e. sets then it would either be
c.e. or its complement would have an infinite c.e. subset. This would contradict the
same theorems. ¤

As we discussed above, the sets of Ke-trivial and Ce-trivial strings are ω-c.e. for
all e ∈ N (i.e. they can be computably approximated with a computable bound on the
number of changes in the approximation). We do not know if Corollary 3.2 can be
extended to all levels of the Ershov hierarchy of the n-c.e. sets. Frank Stephan (per-
sonal communication) suggested that the following result from Ref. [3] may possibly
be used in order to achieve this extension.

For every underlying optimal universal machine U, there is a con-
stant a such that the Kolmogorov complexity C (as a function
from strings to N) is f -c.e. (for a computable function f : N→ N)
if and only if f(n) ≥ n/a for almost all n.

(3.2)

Here we say that the Kolmogorov function C : 2<ω → N is f -c.e. for some computable
function f : N → N if it has a computable approximation during which the value of
C on each string σ changes at most f(|σ|) many times.

4 Truth Table Completeness

Recall that a set is c.e. iff it is m-reducible to the halting problem. Also, if
the halting problem is m-reducible to a set, then this set has an infinite c.e. set in
its complement. Hence the following is a direct consequence of Theorem 3.1 and
Corollary 3.2.

Corollary 4.1. For sufficiently large e ∈ N the m-degree of the sets of Ce and
Ke-trivial strings is incomparable to the m-degree of the halting problem.

We wish to know how the collection of trivial strings is classified with respect to
other reducibilities. For example, does it have the same Turing degree as the halting
problem? In the following we give a positive answer. In fact, we show that it has
the same weak truth table degree as the halting problem. Recall that a set X is
weak truth table to a set Y (often denoted by ≤wtt) if every digit X(n) of it can be
computed via an algorithm which has access to a computably bounded (dependent
on n) segment of Y . It is not hard to see that the complexity functions K and C

are ω-c.e. (i.e. limits of computable functions with computably bounded number of
changes in the approximation). Since a function is truth table reducible to the halting
set if and only if it is ω-c.e., we have the following.

Proposition 4.2. For every e ∈ N the set of Ke-trivial and the set of Ce-trivial
strings are truth table reducible to the halting set.

In other words, they can be computed via a truth table which refers to the halting
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set. The following theorem shows that, in fact, the collection of trivial strings has the
same weak truth table degree as the halting set.

Theorem 4.3. For sufficiently large e, the sets of Ke-trivial and Ce-trivial
strings are (uniformly) weak truth table complete (i.e. ∅′ is wtt-reducible to them
through a single reduction).

Proof: We give the proof for prefix-free complexity, as the proof for plain com-
plexity is entirely similar. Since there is a constant d such that K(n) ≤ 2 log n+d for
all n ∈ N, there is some n0 such that K(n) < 3 log n for all n ≥ n0. We are going to
enumerate a c.e. set V containing at most one string of each length. Then by Ref. [5,
Lemma 2.6] there is a constant c such that K(σ) ≤ K(|σ|) + c for all σ ∈ V .

Let de,n be a 1-1 computable double sequence of powers of 2 such that de,n > n0

and 2de,n−e > d3
e,n. By the latter property we have

2de,n · 2−(e+3 log de,n) > 1. (4.1)

At stage s, if n is enumerated in ∅′ for each e ≤ s we do the following: if K(de,n)[s] <

3 log de,n we enumerate into V the least string of length de,n such that K(σ) ≥
3 log de,n + e (by the choice of de,n, in particular (4.1), such a string exists). Notice
that by the choice of de,n we have K(de,n) < 3 log de,n for all e, n ∈ N. Moreover, V

contains at most one string of each length.
Now fix e > c. We show how to (uniformly) compute ∅′ from the set of Ke-trivial

strings. To see if n ∈ ∅′, find a stage s > e, n such that K(de,n)[s] < 3 log de,n and
K(σ)[s] < 3 log de,n + e for all Ke-trivial strings of length de,n. We claim that n ∈ ∅′
iff n ∈ ∅′[s]. Indeed, if n was enumerated in ∅′ at a later stage s′, a string τ of length
de,n such that K(τ)[s′] ≥ 3 log de,n + e would be enumerated in V . Such a string will
not be Ke-trivial by the choice of s. Since e > c, all strings in V are Ke-trivial. This
is a contradiction. ¤

In view of Theorems 4.3 and 2.1 it is natural to ask if the sets of Ke-trivial and
Ce-trivial strings are (or can be, under a suitable choice of the underlying optimal
universal machine) truth table complete. As a matter of fact, the truth table degrees
of many sets that are naturally found in algorithmic randomness tend to depend on the
underlying universal coding of machines. For example, consider the set of nonrandom
strings. In the case of prefix free complexity, Muchnik and Positselsky[13] showed that
the set of nonrandom strings has incomplete truth table degree, under a certain choice
of the underlying optimal universal prefix-free machine. On the other hand in Ref. [1]
it was shown that the same set is truth table equivalent to the halting problem, under
a different choice of the underlying optimal universal prefix-free machine. Despite
this, Kummer[7] showed that in the case of plain complexity the set of nonrandom
strings is always truth table complete. Another example of the ambiguity of the truth
table degrees of notions from algorithmic randomness is Chaitin’s Ω. In Ref. [8] it was
shown that there are two universal optimal prefix-free machines M, N such that the
truth table degrees of the respective halting probabilities ΩN , ΩM are incomparable.
Despite this, it is known (see e.g. Ref. [6]) that the truth table degree of the halting
probability of any universal optimal prefix-free machine is strictly below the truth
table degree of the halting problem.

In the following we discuss the truth table degrees of the set of K and C trivial
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strings. Theorem 4.4 is a consequence of the following theorem from Ref. [13].

There is a universal optimal prefix-free machine V such
that the set OV = {〈σ, n〉 | KV (σ) < n} is not truth table
complete.

(4.2)

Theorem 4.4. There exists a universal optimal prefix-free machine V such
that for all e ∈ N the set of KV,e-trivial strings is not truth table complete.

Proof: Fix e ∈ N and let V be the machine of (4.2). By the same fact it suffices
to show that the set SK(e) = {σ | KV (σ) ≤ KV (|σ|) + e} is truth table reducible
to OV . Let L(e) = {〈σ, t〉 | KV (|σ|) = t}. Clearly, L(e) ≤tt OV . Since there is a
constant c such that ∀σ, KV (|σ|) ≤ |σ|+c we have SK(e) ≤tt OV ⊕L(e). Hence since
L(e) ≤tt OV we have SK(e) ≤tt OV . ¤

The following result is based on an adaptation of an idea that was used in Ref. [1]
in order to show that with respect to a certain universal optimal prefix-free machine,
the set of K-nonrandom strings is truth table complete.

Theorem 4.5. There exists an optimal universal prefix-free machine V such
that for all e ∈ N the sets of KV,e-trivial strings are (uniformly) truth table complete.
The same is true for the plain complexity, regarding the set of CF,e-trivial strings
with respect to a plain machine F .

Proof: The proof applies uniformly to the prefix-free and plain complexity cases.
We elaborate on the case of prefix-free complexity. Given a prefix-free machine M ,
let

TM (e) = {σ | KM (σ) ≤ K(|σ|) + e}
be the set of KM,e-trivial strings. In the following we let 2m (for m ∈ N) denote the
set of strings of length m (apart from its standard meaning as a number). It will be
clear from the context whether we regard it as a number or a set of strings. We wish
to build an optimal universal prefix-free machine V such that for a certain constant
c and each e ∈ N and n > c

n ∈ ∅′ ⇐⇒ |2〈e,n〉 ∩ TV (e)| is odd. (4.3)

This condition implies that ∅′ ≤tt TV (e). Moreover these truth-table reductions are
uniform in e (because the constant c does not depend on e). Given a string σ we let
σ denote the string that is obtained from σ if every 0 is replaced by a 1 and every
1 is replaced by a 0. Let U be a universal optimal prefix-free machine. We define a
machine N as follows: if U(σ) = τ we let N(0σ) = τ and N(1σ) = τ . Clearly N is
prefix-free and for all strings σ, e ∈ N,

σ ∈ TN (e) ⇐⇒ σ ∈ TN (e), hence |2m ∩ TN (e)| is even for each m ∈ N. (4.4)

Without loss of generality we may choose the 1-1 pairing function 〈e, n〉 such that∑
e,n 2−KN (〈e,n〉) < 2−3 and 〈e, n〉 > e + n for all e, n ∈ N.

The following construction defines a new machine V dynamically. Notice that
V (0σ) = N(σ) for all σ, while V (1σ) is defined under certain conditions. A string
ρ is said to be acceptable at stage s + 1 if it is incomparable with all strings σ such
that V (1σ)[s] ↓. In other words, if the addition of 1ρ to the domain of V preserves
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the prefix-freeness of V . The construction will choose acceptable strings ρi, i ∈ N of
certain lengths in the course of stages. The existence of these strings will follow from
the Kraft-Chatin theorem, once we show that

∑
i 2−|ρi| < 1 in the verification. We

order the strings first by length and then lexicographically.
Construction of V At stage s + 1 do the following. If s is even and N(σ)[s] = τ

for some strings σ, τ of length < s, let V (0σ) = τ . If s is odd, for each e, n < s with

• n ∈ ∅′[s] and 2〈e,n〉 − TV (e)[s] 6= ∅

• |2〈e,n〉 ∩ TV (e)[s]| is even

pick a string τ 6∈ TV (e)[s] of length 〈e, n〉 and the leftmost acceptable string ρ of
length KN (〈e, n〉)[s] + e and let V (1ρ) = τ .

Verification First we show that the acceptable strings that are requested in the
course of the construction exist. By the Kraft-Chaitin theorem it suffices to show
that

∑
i 2−|`i| < 1, where (`i) is the sequence of the lengths of the strings that are

requested during the construction.
Let us divide the machine V into two parts. The left part V` is the restriction

of V to the strings that are prefixed by 0. The right part Vr is the restriction of V

to the strings that are prefixed by 1. Clearly the domains of V`, Vr are disjoint and
V`(0σ) = N(σ) for all strings σ. Moreover for each e, n ∈ N,

TV (e) = TV`
(e) ∪ TVr

(e) at each stage
|2〈e,n〉 ∩ TV`

(e)| is even at each stage
(4.5)

where the second clause follows by (4.4). Each request for an acceptable string is
associated with a pair 〈e, n〉 and a current value k of KN (〈e, n〉) at the stage where the
request is issued. By (4.5) for each 〈e, n〉, k at most one request is made and this is for a
string of length k+e. Since KN (〈e, n〉)[s] is non-increasing in s, the requests associated
with 〈e, n〉 have weight at most

∑
i 2−KN (〈e,n〉)−e−i which is at most 2 ·2−KN (〈e,n〉)−e.

So the requests associated with e have weight at most 21−e
∑

n 2−KN (〈e,n〉) which is
at most 2−e−2 by the choice of the pairing function. This shows that the total weight
of the requests that occur in the construction is at most

∑
e 2−e−2 < 1.

Hence the construction is sound. By the choice of N and the definition of ac-
ceptable strings, the machine V is prefix-free. Moreover, by the definition of V and
the encoding n → 0n of numbers into strings we have KV (n) = KN (n) + 1 for each
n ∈ N. It remains to show there is a constant c such that (4.3) holds for all e ∈ N
and all n > c. By the coding theorem (see e.g. Ref. [14, Theorem 2.2.26]) there exists
a constant c such that |2〈e,n〉 ∩ TV (e)| < 2c+e for each e, n ∈ N. By the choice of the
pairing function we have e+n < 〈e, n〉 for all e, n ∈ N. Hence |2〈e,n〉 ∩TV (e)| < 2〈e,n〉

for each e ∈ N and each n > c. Given any e ∈ N and n > c we demonstrate (4.3). If
n 6∈ ∅′ the part Vr of the machine will not enumerate any descriptions for strings of
length 〈e, n〉. Therefore by (4.4) the number |2〈e,n〉∩TV (e)| is even and (4.3) holds for
the chosen e, n. Now suppose that n ∈ ∅′. Since |2〈e,n〉 ∩TV (e)| < 2〈e,n〉 at each stage
of the construction there will be a string of length 〈e, n〉 which is not in TV (e). Since
we also have KV (n) = KN (n) + 1, the construction will ensure (in the odd stages
after n appears in ∅′) that |2〈e,n〉 ∩ TVr (e)| = 1. Since |2〈e,n〉 ∩ TV`

(e)| is always even
we can conclude that |2〈e,n〉 ∩ TV (e)| is odd. Hence (4.3) holds for the given e, n.
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Notice that instead of using the Kraft-Chaitin theorem, we could let the domain
of Vr be the strings 1ρ such that N(ρ) = 0n for some n ∈ N. This shows that the
above proof applies invariably to the case of plain complexity.

We do not know if the set of Ce-trivial strings is tt-complete with respect to all
underlying optimal universal machines and for all sufficiently large e.

5 Splitting Theorems for ≤ C and ≤ K

The archetypical splitting theorem for the computably enumerable sets in a de-
gree structure is the so-called Sacks splitting theorem (e.g. see Ref. [15, Theorem
3.1]). This asserts that each c.e. set of non-zero Turing degree is the disjoint union of
two c.e. sets of incomparable degrees which are strictly lower than the degree of the
original set. With the growing interest in weak reducibilities as measures of relative
randomness, the local and global study of the corresponding degree structures has
become very relevant. In Ref. [5] it was observed that Sacks’ original argument can
be translated into the context of weak reducibilities. This observation was applied
to the so-called LR reducibility, which can be used to compare oracles in terms of
the power that they have in ‘derandomizing’ sequences. A necessary condition for
this approach of emulating arguments from the theory of Turing degrees is that the
reducibility in question is Σ0

3.
In this section we use this intuition to show that a splitting theorem holds for

the reducibilities of relative randomness based on plain and prefix-free complexity.
Although the proofs follow Sacks’ original ideas, the translation of the argument is
not always trivial. This was already observed in Ref. [12] where the fact that ⊕ is
not a join operator in the structure of the LR degrees meant that Sacks’ argument
(as this is presented in Ref. [15, Theorem 3.1]) gave a weaker version of the splitting
theorem for this structure. In Ref. [2, Footnote 6] it was observed that a modified
argument gave the full analogue of the splitting theorem for the LR degrees. A
detailed presentation of this modified argument can be found in Ref. [18, Chapter 2].
In this section we use an analogue of this argument, along with special properties of
the reducibilities ≤C ,≤K , in order to show the splitting theorem in this context. The
work in this section is joint with Tom Sterkenburg, and his thesis Ref. [18, Chapter
2] contains a more detailed presentation of it.

In the following we let A0|CA1 mean that A0 6≤C A1 and A1 6≤C A0. Similar
notation applies to other reducibilities. First, we need the following lemma that gives
useful information about the nature of ≤C and ≤K .

Lemma 5.1. Suppose that a set A is the disjoint union of two c.e. sets A0, A1.
If A0|KA1 then A0, A1 <K A. Similarly, if A0|CA1 then A0, A1 <C A.

Proof: Observe that if A is the disjoint union of two c.e. sets A0, A1 then A0,
A1 are identity bounded Turing reducible to A (i.e. Turing reducible via a reduction
which uses only the first n bits of A on the argument n). Indeed, to determine if x

is in (say) A0, we can check if x ∈ A. If so, we know it is in one of the disjoint parts
A0 and A1; and we can computably enumerate both of them until x appears in one.
As a consequence, Ai ¹n can be described using A ¹ n. Hence the initial segment
complexity of the former is no more than that of the latter, up to a constant. In other
words, Ai ≤K A. Moreover, if A0 and A1 are K-incomparable then A 6≤K Ai because
otherwise we would have A1−i ≤K Ai.
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It follows in the same way from A0, A1 ≤ibT A (where ≤ibT denotes the identity
bounded Turing reducibility) that A0, A1 ≤C A. So if A0|CA1 then A �C A0, A1 just
as in the prefix-free case.
We are now ready to prove the splitting theorem for ≤K . As we indicated above, the
construction is not a straightforward adaptation of the argument behind the splitting
theorem of Sacks for the Turing degrees. On the other hand, one can use the ideas
below to prove Sack’s theorem for the Turing degrees without any assumption about
⊕ being a least upper bound operator in the Turing degrees.

Theorem 5.2. Let A be a c.e. set such that A >K ∅. Then A is the disjoint
union of two c.e. sets A0, A1 such that A0|KA1 and A0, A1 <K A.

Proof: In the course of enumerating the elements of A into A0 and A1 we satisfy
the following requirement for e ∈ N and i = 0, 1.

R〈e,i〉 : ∃n [
K(A1−i ¹n) > K(Ai ¹n) + e

]
.

Thus we ensure that A0 6≤K A1 and A1 6≤K A0. By Lemma 5.1 we also get A0, A1 <K

A. Define the length of agreement of Re at stage s by

l(e, i)[s] = the greatest n ≤ s such that K(A1−i ¹n)[s] ≤ K(Ai ¹n)[s] + e

and let the restraint of Re at stage s be given by

r(e, i)[s] = max
t≤s

{l(e, i)[t], e}.

Notice that by definition the restraint is non-decreasing in the stages s. Let Ai[0] = ∅
for i = 0, 1 and without loss of generality assume that at each stage exactly one
element is enumerated in A.

Construction If x ∈ A[s+1]−A[s] consider the least 〈e, i〉 such that x ≤ r(e, i)[s]
and enumerate x into A1−i.

Verification By induction we show that each requirement is satisfied and its re-
straint reaches a limit. Suppose that there is a stage s0 such that for all 〈e′, i′〉 < 〈e, i〉
requirement R〈e′,i′〉 is met and r(e′, i′)[s] remains constant for all s ≥ s0. Without loss
of generality we may assume that s0 is large enough so that all numbers enumerated
in A after s0 are larger than the final values of r(e′, i′), 〈e′, i′〉 < 〈e, i〉.

By the choice of s0, after that stage all numbers enumerated into Ai will be larger
than the current value of r(e, i). If R〈e,i〉 was not met, the length of agreement l(e, i)
and the restraint r(e, i) tend to infinity. Hence Ai is computable, hence K-trivial.
Since R〈e,i〉 is not met, it follows that A1−i is K-trivial. Since A is the disjoint union
of A0 and A1 we have A ≡T A0 ⊕ A1. Then A is K-trivial, given that K-triviality
is closed under the join operator. This contradicts the assumption about A. Hence
R〈e,i〉 is met.

To conclude the induction step it suffices to show that r(e, i) reaches a limit. But
this is a direct consequence of its definition and the fact that R〈e,i〉 is met.

The proof of Theorem 5.2 can be written for ≤C instead of ≤K with no essential
changes. This trivial modification gives the following.

Theorem 5.3. Let A be a c.e. set such that A >C ∅. Then A is the disjoint
union of two c.e. sets A0, A1 such that A0|CA1 and A0, A1 <C A.
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Finally we note that Theorems 5.2 and 5.3 can be combined with a number of
other c.e. splitting theorems, like the Sacks splitting theorem for the Turing degrees.
In other words, in the conclusion we can add the conditions A0, A1 <T A and A0|T A1.
This merely requires a direct combination of the two splitting constructions, hence
we do not elaborate.

6 Ideas for Further Research

In this paper we studied the complexity of the collection of strings with trivial
Kolmogorov complexity. A basic open question that remains is whether it is truth
table complete independently of the underlying optimal universal machine, in the
case of plain Kolmogorov complexity. Another question (see Section 3) is whether
this set is n-c.e. for some n ∈ N, and whether the answer depends on the choice of
the underlying optimal universal machine.

Another way of studying this collection is from a resource bounded point of view
(e.g. time complexity). This is the approach that was taken by Allender, Buhrman
and Koucký, for example, in Ref. [1] for the study of the collection of the nonrandom
strings. In this spirit we can ask

What can be efficiently reduced to the strings with trivial Kolmogorov complex-
ity?

The issues that we discussed in this paper can also be investigated in the case
of another interesting and closely related set of strings, the so-called strongly random
strings.

Definition 6.1 (Strongly random strings). A string σ is called strongly
Kc-random if K(σ) > |σ|+ K(|σ|)− c.

These strings were studied by Solovay[16] and Miller[12]. They are also called
‘strongly K-random with constant c’. Notice that these are highly random strings,
given that there is a constant d such that K(τ) < |τ | + K(|τ |) + d for all strings τ .
Clearly the complement of the set of strongly Kc-random strings is a variation of the
set of nonrandom strings. However Miller[12] showed that, in contrast with the set
of nonrandom strings, it is not computably enumerable (for sufficiently large c). The
methodology presented in this paper may be applicable to the study of the complexity
of this collection.
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