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Abstract Color-Coding is an important algorithmic technique in solving many NP-hard

problems. In this paper, we give a survey on Color-Coding technique and its applications. We

first give brief introduction on three Color-Coding methods: random Color-Coding, Color-

Coding based on perfect hash function, and Color-Coding for n ≤ 2k. Then, applications

of Color-Coding technique in various fields are presented, such as Bioinformatics, Networks,

etc. Finally, we give future research topics of Color-Coding technique.
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1 Introduction

In the field of computer science, many problems can be depicted as subset se-
lection problem, i.e., given an universal set U of size n, to find a subset W ⊆ U

of size k satisfying specific property R. For the subset selection problem, it is easy
to get solution by enumerating all possible subsets of U with size k. Obviously, the
above enumeration process is of time O(

(
n
k

)
) = O(nk), which is unpractical for many

applications.
Color-Coding technique was first proposed by Alon[1], which is an efficient method

dealing with subset selection problem. The general idea of Color-Coding technique is
to use k colors to color the elements of U , aiming at finding a coloring such that any
two elements of W are in different colors. For Color-Coding technique, the following
two questions need to be answered:

(1) How many colorings are needed to guarantee that there exists a coloring
making any two elements of W have different colors?

(2) How to find objective solution W based on the coloring on U?
The first question is about coloring scheme of Color-Coding. In fact, differ-

ent Color-Coding methods have different coloring scheme size. Generally, coloring
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schemes of all Color-Coding methods have form of O∗(ck), i.e., for O∗(ck) color-
ings, there must exist a coloring f such that any two elements of W have different
colors under coloring f , where c is a constant. Currently, there are three popular
Color-Coding methods: random Color-Coding, Color-Coding based on perfect hash
function, and Color-Coding for n ≤ 2k. In section 3, the above three Color-Coding
methods are presented in detail and several examples are given to illustrate how to
use those Color-Coding methods to solve problems.

The second question is about how to use Color-Coding technique to solve prob-
lems. In fact, Color-Coding technique divides elements of U into k classes, each of
which is colored by one color, such that objective solution W can be obtained in a
more efficient way. Generally, Color-Coding technique is combined with dynamic pro-
gramming technique to solve problems. In the literature, Color-Coding technique has
been used to solve many NP-hard problems, such as k-Path problem, Subgraph Iso-
morphism problem, Matching and Packing problems, etc. Particularly, Color-Coding
technique has been used to solve many important problems in the fields of Bioin-
formatics and Networks. In section 4, we give brief introduction on applications of
Color-Coding technique.

2 Related Terminology

For Color-Coding technique, there are many ways to define a coloring. A coloring
can be defined as a function f , i.e, f : {1, 2, · · · , n} → {1, 2, · · · , k}, where k ≤ n.
Moreover, a coloring can also be described as a dividing of universal set, i.e., divide
the elements of universal set into k classes. In this paper, we use function to define
coloring. In the following, universal set is denoted by U = {e1, e2, · · · , en} and color
set is denoted by C = {c1, c2, · · · , ck}. A subset W of U is called a k-subset if W

contains exactly k elements.
Definition.[9,26] (n, k)-coloring: Given an universal set U = {e1, e2, · · · , en} and

a color set C = {c1, c2, · · · , ck}. A (n, k)-coloring is a function f : U → C, satisfying⋃
ei∈U f(ei) = C, i.e, each element in U is colored with one color and each color in C

is used at least once.
Definition.[9,26] Given a (n, k)-coloring f on U and a k-subset W of U , for any

two elements ei, ej ∈ W (i 6= j), if f(ei) 6= f(ej), then W is properly colored by f .
Definition.[9,26] (n, k)-coloring scheme: A (n, k)-coloring scheme is a set of

(n, k)-colorings satisfying that for any k-subset W of U , W is properly colored by
at least one (n, k)-coloring in (n, k)-coloring scheme.

For a (n, k)-coloring scheme F , the size of F is the number of colorings in F .

3 Algorithms for Constructing Coloring Scheme

The time complexity of using Color-Coding to solve problems is mainly deter-
mined by the size of coloring scheme. For the case when k ¿ n (k is a small pa-
rameter), there are two available methods for constructing coloring scheme: random
method and method based on perfect hash function. However, in many practical
applications, problem parameter is not very small. For example, for Motif Finding
problem in Bioinformatics, k = 16, n = 20. Obviously, the random Color-Coding
and the Color-Coding based on perfect hash function are not workable any more.
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For problems with n ≤ 2k, a Color-Coding method based on dividing is available,
which can be used to solve many problems in Bioinformatics and Networks. In this
section, we give detailed introduction on random Color-Coding, Color-Coding based
on perfect hash function, and Color-Coding for n ≤ 2k.

3.1 Random color-coding

The general idea of random Color-Coding is that for any element e of U , randomly
choose a color from C to color e.

For any k-subset W of U , in the following, we analyze the probability that W

is properly colored. For any element x of W , x can be colored by any color in C,
i.e., x has k possible colors. Therefore, the total number of possible colorings for the
elements of W is kk. It is easy to see that there are k! ways to color the elements
of W such that any two elements of W are in different colors and each color in C

must be used at least once, which is the number of permutations for the k elements
of W . Therefore, for a random coloring, W is properly colored with probability
k!/kk ≈ 1/ek.

In order to color W with higher probability, repeat the above random coloring
process ek times. In the following, we take k-Path problem as an example to illustrate
how random Color-Coding is applied to solve problems[1].

Definition.[1] k-Path: Given a graph G = (V, E) and a parameter k, find a
simple path in G of length k, or report that no such path exists in G.

The general idea solving k-Path problem by random Color-Coding is as follows:
Color the vertices of G randomly. Then, apply dynamic programming technique to
find a properly colored k-path.

Assume that G contains a k-path P . For each random coloring, it is easy to get
that P is properly colored with probability k!/kk ≈ 1/ek. The remaining problem is
how to apply dynamic programming technique to find properly colored k-path.

In the colored graph G, add a new vertex s with assigned color 0. For each vertex
v of G, add edge (s, v) to E. Denote the new graph by G′. It is easy to see that
there exists a properly colored k-path in G if and only if there is a properly colored
(k+1)-path in G′. In dynamic programming process, additional information is saved.
For example, for any vertex v in G′, all the possible color sets used by paths from s

to v should be saved. The general idea of applying dynamic programming to find a
(k + 1)-path starting from s is as follows.

For any vertex v in G′, if there exists simple path from s to v of length i, all
the color sets used by the paths from s to v with length i are saved. For simple
path of length i, the number of color sets saved is at most

(
k
i

)
. Assume that Qv,i =

{C1, C2, · · · , Ch} (1 ≤ h ≤ (
k
i

)
) is a set of color sets saved for the paths from s to v

with length i. Now we analyze how to get a simple path of length i + 1 from vertex
s passing through v based on the color sets in Qv,i. For each neighbor u of v and for
each color set Cj (1 ≤ j ≤ h) of Qv,i, if the color of u is not contained in Cj , a color
set C ′ = Cj ∪{f(u)} of size i+1 can be constructed, where f(u) is the color of vertex
u. Therefore, color set C ′ is saved to denote that there exists a simple path of length
i + 1 from s to u using the colors of C ′.

Now we analyze the time complexity of above dynamic programming process.
For a simple path of length i through vertex v, in order to get a simple path of length
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i + 1, at most |E| vertices should be considered, and at most
(
k
i

)
color sets are saved

to denote the simple paths from s to v. Therefore, the running time of above dynamic
programming process is bounded by O(

∑k
i=1 i · (k

i

) · |E|) = O(|E| · k · 2k).
For the k-Path problem, if G contains k-path, in order to find a k-path with high

probability, repeat the above random coloring and dynamic programming rek times,
where r is a positive integer. Then, in time O((2e)k · rk|E|), a k-path of G can be
found with probability at least 1− e−r.

3.2 Color-Coding based on perfect hash function

For a k-subset W of U , random Color-Coding can color W with probability
around 1/ek. In order to color W properly in a deterministic way, a deterministic
coloring scheme should be constructed, i.e., construct a (n, k)-coloring scheme of
certain size such that W can be properly colored by at least one coloring in the
(n, k)-coloring scheme.

How to construct a deterministic coloring scheme efficiently has attracted lots of
attention. Currently, the most popular method for constructing deterministic coloring
scheme is perfect hash function.

Definition.[1,26] perfect hash function: Given an universal set U = {1, 2, · · · , n}
and a set C = {1, 2, · · · , k}, g is a function from U to C, i.e., g : U → C. For a subset
W ⊆ U , if g(i) 6= g(j), then g is called a perfect hash function on W .

Given a collection F of perfect hash functions, for any k-subset W , if there exists
a function f in F such that f is a perfect hash function on W , then F is called a
k-collection of perfect hash functions. It is easy to see that a k-collection of perfect
hash functions is a (n, k)-coloring scheme.

The hash function for constructing deterministic coloring scheme generally has
the following form:

ga,b,s(x) = ((ax + b) mod pn) mod s

where a, b, s are integers, and pn is the smallest prime number between n and 2n.
The method for constructing deterministic coloring scheme is based on the study

on hash function in Ref. [16]. Schmidt and Siegal[22] gave a method to construct
k-collection of perfect hash functions, in which each hash function can be constructed
using O(k) + 2loglogn bits and is an injective function from Zn to Z3k. Then, (n, k)-
coloring scheme can be obtained based on the (3k, k)-coloring scheme, and the size
of the coloring scheme in Ref. [22] is bounded by 2O(k)log2n. The above result was
reduced by Ref. [20], in which a k2-collection of hash functions from {1, 2, · · · , n} to
{1, 2, · · · , k2} is constructed, then a (n, k)-coloring scheme can be obtained by getting
a k-collection perfect hash functions from {1, 2, · · · , k2} to {1, 2, · · · , k}, which is of
size 2O(k)logn.

For the methods used in Ref. [22], at least 12bits are needed to construct (n, k)-
coloring scheme, i.e., the number of hash functions in (n, k)-coloring scheme is at least
212k > 4000k, which is not practical even if k is very small.

Chen et al.[9] constructed a k-collection of perfect hash functions through three
steps: Zn → Zk2 → Zk/4 → Zcj(cj−1), and obtained a (n, k)-coloring scheme of size
O∗(6.1k). Recently, using conditional expectations and the method in Ref. [19], (ε, k)-
balanced families of hash functions are constructed[2], resulting in a deterministic
coloring scheme of size ek+O(log3k)logn, which is the current best result.
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In the following, we use 3-Set Packing problem as an example to show how
deterministic Color-Coding technique is used to solve problems.

We first give some related terminology and notions. A set of size three is called
a 3-set. For a 3-set σ = (a, b, c), let V al(σ) denote the set of elements contained in
σ, i.e., V al(σ) = {a, b, c}. Assume that S is a set containing n 3-sets. Let V al(S) =⋃

σ∈S V al(σ). For any subset P ⊆ S, if any two 3-sets of P have no common element,
then P is called a packing. If P is a packing containing exactly k 3-sets, then P is
called a k-Packing.

Definition.[15] 3-Set Packing: Given a set S of 3-sets and a positive integer k,
find a k-Packing in S, or return that no such packing exists.

In order to solve 3-Set Packing problem efficiently, the following problem is in-
troduced.

Definition.[15] 3-Set Packing Augmentation: Given a set S of 3-sets and k-
Packing Pk of S, find a (k + 1)-Packing in S, or return that no such packing exists.

In fact, 3-Set Packing problem is equivalent to 3-Set Packing Augmentation prob-
lem, i.e., 3-Set Packing problem can be solved in O∗(ck) time if and only if 3-Set
Packing Augmentation problem can be solved in O∗(ck) time[15].

For an instance of 3-Set Packing Augmentation problem (S, Pk), assume that S

contains a (k+1)-Packing Pk+1. There exists a special structure relationship between
Pk and Pk+1, as follows.

Lemma 3.1.[15] Given an instance of 3-Set Packing Augmentation problem
(S, Pk), if S contains (k + 1)-Packing, then there exists a (k + 1)-Packing Pk+1 such
that for each 3-set p in Pk, |V al(p) ∩ V al(Pk+1)| ≥ 2.

By Lemma 3.1, at least 2k elements of V al(Pk) are contained in V al(Pk+1). Since
V al(Pk+1) contains exactly 3k + 3 elements, V al(Pk+1) − V al(Pk) contains at most
k + 3 elements, which are in V al(S)− V al(Pk). The general idea using Color-Coding
technique to find a Pk+1 in S is as follows: Use k + 3 colors to construct a (V al(S)−
V al(Pk), V al(Pk+1) − V al(Pk))-coloring scheme such that V al(Pk+1) − V al(Pk) is
properly colored by at least one coloring in (V al(S)−V al(Pk), V al(Pk+1)−V al(Pk))-
coloring scheme. In order to properly color V al(Pk+1), use extra 3k colors to color
V al(Pk). Therefore, a (V al(S), 4k + 3)-coloring scheme can be constructed to color
V al(Pk+1) properly .

Based on the (V al(S), 4k +3)-coloring scheme, dynamic programming technique
is used to find a properly colored (k+1)-Packing, as follows. Let Q be a set to save all
possible packings obtained in the process of dynamic programming, which is initialized
as an empty set. For each 3-set σi and each packing P in Q, if the elements in σi have
no common color with the elements in V al(P ), then a new packing P ′ = P ∪ {σi}
is constructed. Moreover, if there is no packing in Q using the same colors as the
elements of P ′, then P ′ is added into Q. After handling all the 3-sets in S, if there
exists a (k+1)-Packing in S, then by searching in Q, a (k+1)-Packing can be returned.

3.3 Color-Coding for n ≤ 2k

The random Color-Coding and the Color-Coding based on perfect hash function
are only workable for the case when k is a small parameter, i.e., k ¿ n. However,
for many problems, parameter k is very close to n, such as Motif Finding problem,
k = 16, n = 20. In this section, a Color-Coding method for n ≤ 2k is presented[26],
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which can be applied to many problems in Bioinformatics and Networks[25,28].
Assume that f is a (n, k)-coloring and C = {c1, c2, · · · , ck} is a color set. If the

elements of U are divided into k parts: V1, V2, · · · , Vk, satisfying Vi = {v|f(v) = ci},
then the number of k-subsets properly colored by coloring f is

∏k
i=1 |Vi|. What is

the maximum value of
∏k

i=1 |Vi|? Based on the inequality
∏k

i=1 ai ≤ ((
∑k

i=1 ai)/k)k,
when ||Vi|−|Vj || ≤ 1 is true for any two sets |Vi|, |Vj | (i 6= j), the number of k-subsets
properly colored by f is maximized, i.e., when the k colors of C are evenly distributed
among the elements of U , (n, k)-coloring f has maximum number of k-subsets properly
colored.

Assume that the number of elements of U is n. Divide set U into dn/2e subsets
B = {B1, B2, · · · , Bdn/2e} such that U =

⋃dn/2e
i=1 Bi, and Bi, Bj (i 6= j) have no

common elements. Then, each subset contains at most two elements. For the subsets
obtained by dividing U , each subset is called a block. A block with two elements is
called a double-block, and a block with single element is called a single-block. It is
easy to see that the number of single-block is at most one. For a coloring and a block
Bi, if two elements of Bi have same color, then Bi is called 1color-block, otherwise it
is called 2colors-block.

3.3.1 Algorithms for coloring scheme

The Color-Coding method for n ≤ 2k makes full use of the idea of evenly dis-
tributing colors. For any (n, k)-coloring under the case n ≤ 2k, the number of elements
with same color is at most two. In the following, we first give coloring scheme con-
struction method for some special cases, such as n = k, n = k + 1, n = k + 2. Then,
a general method of constructing coloring scheme for n ≤ 2k is given.

(1) n = k

Under this case, a coloring scheme of size one can be constructed by one-to-one
mapping from U to C.

(2) n = k + 1, k ≥ 1
Since n = k +1, a coloring scheme can be constructed by using any color exactly

twice, as follows.
For a block Bi, discuss the coloring on Bi by the following two cases.
(a) Bi is a double-block.
Under this case, choose an arbitrary color ci to color the two elements of Bi.

Then, get a one-to-one mapping from U −Bi to C − {ci}.
(b) Bi is a single-block.
Under this case, choose an element e from any other blocks and add e into Bi to

make Bi a double-block, which can be handled by case (a).
By choosing a block Bi from B and using the above coloring process, a (n, k)-

coloring can be constructed. Therefore, dn/ke colorings for n = k + 1 can be con-
structed by enumerating all possible blocks of B, denoted by F .

Now, we prove that F is a (n, k)-coloring scheme for n = k +1. For any k-subset
W = {x1, x2, · · · , xk}, if the element of {y} = U\W is contained in a double-block
Bi, then by case (a), a (n, k)-coloring can be constructed by coloring Bi with any
color ci and getting a one-to-one mapping from U − Bi to C − {ci}. On the other
hand, if y is in a single-block Bi, by case (b), an element e of W can be added into
Bi to make Bi a double-block, which has been handled by case (a). Therefore, for
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any k-subset W of U , W can be properly colored by a coloring in F . Therefore, F is
(n, k)-coloring scheme for n = k + 1.

(3) n = k + 2, k ≥ 2
Assume that Q contains all k-subsets of U , where |Q| = (

n
k

)
=

(
n
2

)
. The k-subsets

of Q are divided into the following two subsets to handle.
(a) Q1 = {W |W ∈ Q and there exist only two blocks in B, each of which has one

element not in W }.
For any k-subset W of Q1, in order to color W properly, each coloring must

have two 1color-blocks. Therefore, choose any two blocks Bi, Bj from B. If {Bi, Bj}
contains single-block, choose any element from B−{Bi, Bj} to make the single block
in {Bi, Bj} a double-block. Then, arbitrarily choose two colors ci, cj from C to color
blocks Bi, Bj , each of which is colored by one color respectively. Finally, get a one-
to-one mapping from U − (Bi ∪ Bj) to C − {ci, cj}. It is easy to see that

(dn/2e
2

)
colorings are needed to properly color the k-subsets in Q1.

(b) Q2 = {W |W ∈ Q and for each block Bi of B, W either contains all elements
of Bi, or contains no element of Bi. }.

Since for a k-subset W of Q2 and any block Bi of B, W either contains all
elements of Bi, or contains no element of Bi, the coloring on elements of U can be
transformed to the coloring on blocks of B, which is equivalent to using k′ = dn/2e−1
colors to color n′ = dn/2e blocks. Since n′ = k′ + 1, a set of (n′, k′)-coloring F ′ can
be constructed based on the method in case (2), which is of size dn/4e. Based on
(n′, k′)-coloring in F ′, a set F of (n, k)-coloring can be obtained in the following way.
For a (n′, k′)-coloring f ′, a color ci used by f ′ corresponds to two colors ci1, ci2 in
a (n, k)-coloring. For each (n′, k′)-coloring f ′, and for each color ci used by f ′, if a
double-block Bi is colored by ci, then use colors ci1, ci2 to color the elements of Bi.
If a single-block is colored by ci, find a double-block Bj whose color is uniquely used
by Bj under f ′. Add one element of Bj to Bi to make Bi a double-block. Then, use
colors ci1, ci2 to color the elements of Bi. Therefore, a set F of (n, k)-coloring of size
dn/4e can be constructed, which can properly color the k-subsets in Q2.

In conclusion, for the case n = k + 2, a coloring scheme of size
(dn/2e

2

)
+ dn/4e

can be constructed.
Before presenting the idea for constructing coloring scheme for n ≤ 2k, we first

give a method to adjust a single-block to a double-block, as follows. Assume that P

contains all the blocks to be adjusted. For any block Bi of P , arbitrarily choose a
block Bj from B −P , and add one element of Bj into Bi to make Bi a double-block.

The process of constructing (n, k)-coloring scheme for n = k, n = k+1, n = k+2
gives a basic idea how to get (n, k)-coloring scheme for n ≤ 2k, which is specifically
given in the following.

(1) Divide the elements of U into dn/2e blocks, and get a set B of blocks.
(2) Enumerate all possible 1color-blocks from B.
(3) For each enumeration on the 1color-blocks, let B′ be the set of 1color-blocks

obtained. Then, all blocks in B − B′ are 2colors-block. The coloring on all 2colors-
blocks can be transformed to a (n′, k′)-coloring, which can be recursively solved, where
n′ is the number of 2colors-blocks, k′ = d(k − |B′|)/2e.

(4) Based on the enumeration on 1color-blocks and the (n′, k′)-coloring on 2colors-
blocks, a (n, k)-coloring scheme can be obtained by the relationship between colors
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used by (n′, k′)-coloring and colors used by (n, k)-coloring. .
For n ≤ 2k, by using the above process, a (n, k)-coloring scheme can be con-

structed.
Theorem 3.2.[26] Given any two integers n, k such that n ≤ 2k, a (n, k)-

coloring scheme of size O(em(n−k)) can be constructed, where m is the maximum
root of ex − e(3−2β)x + 1 = 0, 0.5 ≤ β ≤ k/n < 1.

3.3.2 Application on motif finding

Motif Finding problem is an important problem in Bioinformatics, which is to
identify motif model and motif instance in DNA sequence. We first give related
definition.

Definition.[10,25] (l, d)-k Motif Finding: Given a set S = {s1, s2, · · · , sk} of K

strings, where |si| = L (1 ≤ i ≤ k), construct a string x of length l, satisfying that
there exists a subset S′ ⊆ S, |S′| ≥ k, such that for any string si in S′, a substring yi

of length l in si having d different positions with string x can be found.
For (l, d)-16 Motif Finding problem with K = 20, a (n, k)-coloring scheme of

size 403 can be constructed with n = 20 and k = 16, which greatly improves the
enumeration number

(
20
16

)
= 4845. Based on the Color-Coding method, the (l, d)-16

Motif Finding problem with K = 20 can be transformed to (l, d)-16 Motif Finding
problem with K = 16, which can be solved using branch-and-bound technique.

4 Applications of Color-Coding

As an efficient way solving subset selection problem, Color-Coding technique has
great applications in many fields, such as Bioinformatics, Networks, Model Checking[8,12],
Counting[3], etc. In this section, we give brief introduction on applications of Color-
Coding technique, especially in solving problems related to k-Path problem, Subgraph
Isomorphism problem, Matching and Packing problems, (t, n)-Ring Signature prob-
lem, and Worm Signature problem.

4.1 Problems related to k-Path

In section 3.1, we have shown that random Color-Coding method can be used to
solve k-Path problem efficiently.

Recently, lots of attention has been focused on using Color-Coding to solve path
finding problems in Bioinformatics. Scott et al.[23] applied Color-Coding method to
find protein path in protein interaction networks. Based on real biological data, the
algorithm in Ref. [23] can find a 8-path in 1 minutes and 10-path in 2 hours. By using
Color-Coding on path finding, Shlomi et al.[24] designed a tool called Q-Path to find
paths in biology data.

For k-Path problem, Hüffner et al.[13] gave that by using 1.3k colors, k-Path
problem can be solved in time O(|lnε|(4.32)km) with probability ε, where m is the
number of edges of given graph. The implemented algorithm of Ref. [13] can find
13-path in a few seconds.

Line Planning is an important problem in public transport system, which is
closely related to maximum weighted k-Path problem[6]. For the maximum weighted
k-Path problem, Color-Coding technique can be used to give an efficient algorithm[6].
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4.2 Subgraph Isomorphism problem

Subgraph Isomorphism problem is an important model matching problem, which
has great applications in Bioinformatics, VLSI, etc.

Definition.[1] Subgraph Isomorphism: Given two graphs G and Q, does there
exist a subgraph W of G which is isomorphic to Q.

When Q is a forest, by using Color-Coding technique, Alon et al.[1] gave algo-
rithms of expected time complexity O(2O(k)|E|) and O(2O(k)|V |) for directed and
undirected graphs respectively.

In order to solve Steiner tree problem in biology networks analysis, Betzler[5]

used Color-Coding and dynamic programming to solve tree isomorphism problem,
and obtained an algorithm of running time O(2O(k)log|V | · |E| · k), where |V |, |E| are
the number of vertices and edges of given graph respectively.

4.3 Matching and packing problems

Matching and Packing problems form an important class of NP-hard problems,
which have wide applications in the fields of scheduling[4] and code optimization[21].
In section 3.2, we have shown that Color-Coding can be successfully used to solve 3-
Set Packing problem. In the following, we give some other results using Color-Coding
to solve Matching and Packing problems.

Fellows et al.[11] gave a systematic study on rD-Matching, r-Set Packing, Graph
Packing and Graph Edge Packing problems. By using Color-Coding and dynamic
programming technique, an algorithm of time O(n + 2O(k)) was given in Ref. [11].

By using Color-Coding technique, Koutis[17] proposed an algorithm of time
O(2O(t)nN logN) for r-Set Packing problem, where n is the number of sets in given
instance, and N is the number of elements in given instance.

For 3D-Matching problem, Chen et al.[9] pointed out that for a given instance
of 3D-Matching problem (S, k), where S is a collection of n triples, if S contains a
matching Sk of size k, by using 3k colors, Sk can be properly colored, and for each
coloring, dynamic programming can return a matching of size k in time O(23kn) if
such matching exists. Finally, an algorithm of time O∗(12.83kn2) was presented in
Ref. [9].

For the weighted mD-Matching and weighted m-Set Packing problems, Wang
and Liu[27] gave parameterized algorithms of time O∗(12.8(m−1)k) and O∗(12.8mk)
respectively by using Color-Coding and dynamic programming technique.

For Edge Disjoint Triangle Packing problem, by using Color-Coding method, an
algorithm of time O(2(9k/2)logk+(9k/2)) was presented in Ref. [18].

4.4 (t, n)-ring signature problem

(t, n)-ring signature is a popular encryption technique, which has been used in
electronic voting, digital lottery, electronic credit card, etc. For (t, n)-ring signature
technique, assume that there are n users, each of which has a public key and a private
key. If an information is delivered, in order to guarantee the correctness of delivered
information, the information must contain the public keys of n users and the private
keys of t users, i.e., the correctness of information is guaranteed by t users whose
private keys are contained in the information, and it can be said that the t users sign
on the information.
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Combining Color-Coding technique with (t, n)-ring signature technique, Bresson
et al.[7] proposed a technique called Ad-Hoc ring signature. Different from (t, n)-
ring signature, for Ad-Hoc ring signature, there exists an Ad-Hoc group, i.e., a list
of subsets of users, each of which is called an acceptable-subset. Moreover, Ad-Hoc
ring signature requires that all users signed belong to at least one acceptable-subset.
In order to satisfy the above requirement that all signed users are in at least one
acceptable-subset, the user ring is divided into sub-rings such that each sub-ring
contains exactly one user signed, which is called Fair Partition. For achieving Fair
Partition, Color-Coding technique can be used to color the ring, i.e., divide the ring
into several sub-rings such that the users in each sub-ring is colored by the same
color. Based on the coloring on the ring, the signature process can be achieved by
using sub-ring to sign on the information.

Isshiki and Tanaka[14] applied Color-Coding technique to solve the (n−t)-out-of-n
signature problem, where t is the number of users not signing.

4.5 Worm signature

In order to prevent worms from propagating rapidly, worm signature should be
generated quickly and accurately. Wang et al.[28] applied Color-Coding technique to
generate worm signature. Firstly, the given sequences can be divided into groups
such that each group contains 20 sequences. In each group, worm signatures can be
generated by using Color-Coding for n ≤ 2k. Experiment results in Ref. [28] show
that worm signatures generated by Color-Coding have obvious advantages over other
approaches. Table 1 gives a comparison between the number of colorings used and
the corresponding enumeration number.

Table 1 Comparison between (20, u)-coloring and
(20

u

)

(20, u)-coloring
(20

u

)

u = 19 10 20

u = 18 50 190

u = 17 170 1140

u = 16 403 4845

u = 15 862 15504

u = 14 1220 38760

u = 13 2036 77520

u = 12 2085 125970

u = 11 3250 167960

5 Conclusions and Further Research

In this paper, we give brief introduction on Color-Coding technique, mainly fo-
cusing on three Color-Coding methods: random Color-Coding, Color-Coding based
on perfect hash function, and Color-Coding for n ≤ 2k. Moreover, applications of
Color-Coding technique are presented.

Although Color-Coding technique is well-studied, there still exist some interesting
and challenging problems.

(1) Practical software of Color-Coding.
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The involved problems include: How to construct coloring scheme database?
How to save coloring in an efficient way? How to avoid repeated coloring (A subset
is properly colored by many colorings)?

(2) Extend applications of Color-Coding.

How to apply Color-Coding technique to solve problems in Database System,
Artificial Intelligence, Social Science, etc? On the other hand, for some problems,
based on real data set, how to design Color-Coding for special application cases?
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