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Abstract Producing sentences from a grammar, according to various criteria, is required

in many applications. It is also a basic building block for grammar engineering. This paper

presents a toolkit for context-free grammars, which mainly consists of several algorithms

for sentence generation or enumeration and for coverage analysis for context-free grammars.

The toolkit deals with general context-free grammars. Besides providing implementations

of algorithms, the toolkit also provides a simple graphical user interface, through which the

user can use the toolkit directly. The toolkit is implemented in Java and is available at

http://lcs.ios.ac.cn/~zhiwu/toolkit.php. In the paper, the overview of the toolkit and

the major algorithms implemented in the toolkit are presented, and experimental results and

preliminary applications of the toolkit are also contained.
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1 Introduction

Grammars, especially context-free grammars, are fundamental structures in com-
puter science. Producing sentences from a grammar, according to various coverage
criteria or some other constraints, is required in many applications, such as parser/-
compiler testing, natural language processing, grammar validation, test case gener-
ation, bioinformatics, etc. Recently, grammar engineering has been recognized as
an emerging field of software engineering due to the fact of lacking solid engineering
methods and techniques for grammars on one hand, and due to the importance of
grammars in computer science and in other areas on the other hand[1]. Techniques
for generating sentences form a basic building block for grammar engineering[2].

Thus a toolkit package for generating sentences is useful. However, presently only
very limited abilities to generate sentences are provided in a few grammar tools[3,4].
On the other hand, there are research issues on sentence generation or enumeration
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algorithms that need to explore. Based on the research on the algorithms by the
authors and others, this paper presents a toolkit for context-free grammars, which
mainly consists of several algorithms for sentence generation or enumeration and for
coverage analysis for context-free grammars.

The commonly used algorithm for sentence generation from context-free gram-
mars is the one proposed by Purdom[5], which produces a small set of sentences
satisfying rule coverage. We found out through analysis and experiments that in
most cases, Purdom’s algorithm produces too few sentences and the sentences differ
too much in length, i.e., some of them are much longer and more complex in structure
than others. These sentences are inadequate in many practical applications. To avoid
this, an extended algorithm[6] is proposed and implemented which generates more and
simpler sentences. A more precise criteria is context-dependent rule coverage[2]. How-
ever, as noted in Ref. [7], implementation and computation of this metric are more
involved. A sentence generation algorithm fulfilling context-dependent rule coverage
based on Purdom’s algorithm is proposed and implemented[8], which, to the best of
the authors’ knowledge, is the first algorithm for context-dependent rule coverage.
An extended algorithm, similar to the idea of the above improvement of Purdom’s
algorithm, is also proposed and implemented in the toolkit.

The toolkit contains algorithms[9, 10] for sentence and parse tree enumeration for
context-free grammars, which are the first linear algorithms and answer the open
problem[11] about the existence of such algorithms. The algorithms also lead to
several methods of sentence generation for context-free grammars, generally called
user-controlled methods in the paper, such as random generation, bounded range
enumeration, and structure-sensitive generation of sentences.

The toolkit deals with general context-free grammars, which have no restrictions
on grammars, and is implemented in Java as Java classes. Besides providing imple-
mentations of algorithms, it also provides a simple graphical user interface, through
which the user can use the toolkit directly.

The algorithms implemented in the toolkit have been tested through experiments.
Some of the experimental results are presented in the paper. The toolkit has also been
used in some preliminary applications, which are briefly introduced in the paper.

This paper is the full version of our previous publication with the same title at
SEFM’10[12], the main additional materials being the descriptions of the algorithms
contained in the toolkit (Section 4, Section 5 and Section 6), the implementation
of the toolkit and some of the experimental results (Section 7), and an additional
application (Subtype Checker in Section 8).

The rest of this paper is organized as follows. In Section 2, we review the basic
concepts and notations of context-free grammars. An overview of the toolkit is given
in Section 3. Section 4 and Section 5 present the sentence generation and enumeration
algorithms contained in the toolkit respectively. Section 6 introduces sentence analysis
algorithms contained in the toolkit. The implementation of the toolkit, the description
of the graphical user interface and some of the experimental results are presented in
Section 7. Section 8 gives some applications that use our toolkit. We discuss some
related work in Section 9. Finally Section 10 concludes.
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2 Context-Free Grammar

This section reviews the basic concepts and notations of context-free grammars,
most of which refer to Ref. [13].

A context-free grammar is a tuple G = 〈N, T, P, S〉, where N is a finite set of
nonterminals, T a finite set of terminals (N ∩ T = ∅),P ⊆ N × (N ∪ T )∗ a finite set
of rules and S ∈ N the start symbol. In the remaining, assume that X, Y range over
N , u, v and w over T ∗, and α, β, γ, δ and η over (N ∪ T )∗.

We call X the left-hand side and η the right-hand side for a rule (X, η) ∈ P . For
convenience, we write X → η for a rule (X, η) ∈ P , and X → η1| · · · |ηn for several
rules with the same left-hand side. Moreover, we call a rule p with at least one non-
terminal at the right-hand side a nonterminal rule, while a rule without nonterminals
at the right-hand side a terminal one.

We write α ⇒ β if there exist γ, δ, η and X such that α = γXδ, β = γηδ,
and X → η ∈ P . We write α

∗⇒ β if there exist α0, . . . , αn(n ≥ 0) such that
α = α0 ⇒ . . . ⇒ αn = β. If S

∗⇒ w, we say w is a sentence of G. Thus, the context-
free language defined by G, denoted by L(G), is composed of all sentences of G. A
parse tree of a sentence w is a tree presentation of a derivation S

∗⇒ w whose root is
S, leaf nodes are terminals and interior nodes are nonterminals.

In the paper, height of a parse tree is defined as the maximum path length which
is the number of nonterminals in a path traversed from the root to the leaf node,
and length of a sentence w is defined to be the number of nodes in its parse tree[5],
representing the derivation complexity of w. Let W be a sentence set. The volume
data |W | is defined to be the number of sentences contained in W , and ||W || denotes
the maximal sentence length in W .

A nonterminal X is said to be useless if it generates no sentences, or unreachable
if there is not a derivation S

∗⇒ αXβ. A context-free grammar is said to be well-
defined, if it has neither useless nor unreachable nonterminals.

A sentence w ∈ L(G) is said to cover a rule p = X → η ∈ P if there is a derivation
S

∗⇒ αXβ
p⇒ αηβ

∗⇒ w. A sentence set W ⊆ L(G) is said to achieve rule coverage [5]

for G, if for each p ∈ P there is a w ∈ W which covers p.
If Y → αXβ ∈ P , then Y → α X β is called a direct occurrence of X in G.

A sentence w ∈ L(G) is said to cover a rule p = X → η ∈ P for the occurrence
Y → α X β if there is a derivation S

∗⇒ γY δ
q⇒ γαXβδ

p⇒ γαηβδ
∗⇒ w with

q = Y → αXβ ∈ P . A sentence set W ⊆ L(G) is said to achieve context-dependent
rule coverage [2] for G, if all p ∈ P for all occurrences are covered.

Let N = {X1, . . . , Xm}. We refer to Li as the language of Gi = 〈N, T, P, Xi〉,
where i = 1, . . . , m. If there exists a derivation X

∗⇒ αY β
∗⇒ αvβ

∗⇒ w, we say v is
a sub-sentence of w. If X

p⇒ u0X1u1 . . . Xrur
∗⇒ u0v1u1 . . . vrur = w, where r is the

number of nonterminals at the right-hand side of rule p, we say vi is the i-th (from
left to right) direct sub-sentence of w.

If X
∗⇒ αY β, we say that Y is successor of X and write X .∗ Y . The successor

relation induces an equivalence relation on the nonterminals and partitions them into
a collection of equivalence classes, known as grammatical levels. For different levels L1

and L2, if there exists X ∈ L1 and Y ∈ L2 such that X .∗Y , we write L1 Â L2. Based
on these definitions, there are five complexity measures [14], including size measures
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and structural complexity measures, for a context-free grammar:
VAR The number of nonterminals

PROD The number of rules

LEV The number of grammatical levels

DEP The number of nonterminals in the largest grammatical level

HEI The maximum length of the chain of levels L0 . . . Ln such that

Li Â Li+1 holds for 0 ≤ i < n

3 The Toolkit: An Overview

In this section, we give an overview of our toolkit. The toolkit contains the
following functionalities and algorithms:

• Manipulations of context-free grammars

– Editing of context-free grammars

– Checking the usefulness and reachability of nonterminals

• Sentence generation with coverage criteria

– Purdom’s algorithm[5]

– An extension of Purdom’s algorithm[6]

– CDRC-P algorithm[8]

– An extension of CDRC-P algorithm

• Sentence enumeration

– Dong’s algorithms[9,10]

– Sentence generation methods based on sentence enumeration

• Sentence analysis

– Earley’s algorithm[15]

– Coverage analysis algorithms

• Graphical user interface (GUI)

– Sentence generation panel

– Sentence enumeration panel

– Sentence analysis panel

The toolkit provides an editor for the user to input and edit a context-free gram-
mar. The editor can check whether the grammar is well-defined. The toolkit focuses
on sentence generation, sentence enumeration and coverage analysis, which constitute
the main functionalities of the toolkit. The introductions of the correlative algorithms
are presented in the next three sections. The toolkit also contains a simple graphical
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user interface, which consists of three panels corresponding to the three main func-
tionalities and through which the user can use the toolkit directly. The toolkit is
available at http://lcs.ios.ac.cn/~zhiwu/toolkit.php.

To illustrate the algorithms and to describe the graphical user interface, we use
the following grammar as the sample grammar throughout the paper. We use angle
brackets to distinguish nonterminals from terminals.

<S> -> <E> <E> -> <E> + <T> | <T>
<T> -> <T> * <F> | <F> <F> -> id | (<E>)

4 Sentence Generation

The sentence generation algorithms provided in our toolkit are based on grammar
coverage criteria, including rule coverage (RC)[5] and context-dependent rule coverage
(CDRC)[2]. For each coverage criterion, two algorithms are implemented, one with a
sentence length control mechanism and the other without.

4.1 Sentence generation with rule coverage

The notion of rule coverage as a coverage criterion for context-free grammars was
introduced by Purdom[5]. Rule coverage simply means that a sentence set explores
all the rules of a grammar. Note that the sentence set satisfying rule coverage for a
given grammar is not unique.

4.1.1 Purdom’s algorithm

Purdom described a fast algorithm for automatically generating a sentence set
that achieves rule coverage for a context-free grammar[5]. Purdom’s algorithm takes
a context-free grammar as input and produces a small set of sentences such that each
rule of the grammar is used at least once. The algorithm proceeds in two distinct
phases.

The first phase statically collects necessary information from the grammar and
stores them in some tables. The information includes: length of the shortest sentence
that can be derived from each nonterminal and each rule, length of the shortest
sentence which uses a nonterminal X in its derivation, which rule to use to derive the
shortest sentence from a nonterminal X, which rule to use to introduce a nonterminal
X into the shortest derivation, and so on.

The second phase dynamically generates sentences by utilizing the information
collected in the first phase. A table known as ONCE calculates the next rule to be
used for each nonterminal. The algorithm terminates when all the grammar rules
have been exploited. Readers are referred to Ref. [5, 16] for a complete interpretation
of this algorithm.

Example 4.1. The sentence set generated by Purdom’s algorithm for the
sample grammar is {id ∗ (id) + id}, containing one sentence with length 19.

4.1.2 The extension of Purdom’s algorithm

We found out through analysis and experiments that in most cases, Purdom’s
algorithm produces too few sentences and some of them are long and complex, i.e.,
with complicated derivation structures. These sentences are inadequate in many
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practical applications. For example, in applications to grammar testing or test case
generations for the systems based on grammars, such sentences may not be helpful
for error location and debugging purposes[6,17].

To avoid the shortcoming of Purdom’s algorithm, Ref. [6] proposed an improved
algorithm which still accomplishes the rule coverage goal but generates more and
simpler sentences. The algorithm builds upon Purdom’s with two main extensions.

First, a reference length is used in the sentence generation process as a reference
to control the length of the generated sentence. The reference length for a given
grammar G, denoted as RL(G), is selected to be the minimal ||W || for all W ⊆ L(G)
that achieves rule coverage for G.

Second, the length of the shortest sentence derivable from the current derivation
is forecasted in the sentence generation process. When choosing a rule to use, it
compares this shortest length with the reference length and takes corresponding length
control strategies. Interested readers are referred to Ref. [6] for a detailed description
of this algorithm and its comparison with Purdom’s original algorithm.

Example 4.2. The sentence set generated by the extension of Purdom’s algo-
rithm for the sample grammar is {id + id; (id) ∗ id}, containing two sentences with
lengths 10 and 14 respectively.

4.2 Sentence generation with context-dependent rule coverage

Rule coverage explores a grammar’s structure in a relatively weak sense since it
considers each rule independently. To achieve more preciseness, Lämmel proposed a
generalization of rule coverage such that the context in which a rule is covered is also
taken into account. This is known as context-dependent rule coverage [2].

In our toolkit we provide two algorithms to achieve this coverage. One is based
on Purdom’s algorithm, called CDRC-P algorithm[8], and the other extends CDRC-P
algorithm with a length control mechanism.

4.2.1 CDRC-P algorithm

Reference [8] modified Purdom’s algorithm by changing table ONCE from cal-
culating the next rule to use for each nonterminal to calculating the next rule to use
for each direct occurrence of each nonterminal. In the sentence generation process, it
records the context (occurrence) of each encountered nonterminal and then consults
table ONCE to choose the right rule to rewrite that nonterminal. When all the rules
for all the occurrences in the grammar have been covered, the generation process
ceases. The sentences generated by this algorithm are in general more complex than
those of Purdom’s.

Example 4.3. The sentence set generated by CDRC-P algorithm for the sam-
ple grammar is {id ∗ id ∗ ((id) + id ∗ id) + id + id; id}, containing two sentences with
lengths 42 and 5 respectively.

4.2.2 The extension of CDRC-P algorithm

As a modified version of Purdom’s algorithm, CDRC-P preserves most of the
features of Purdom’s algorithm, i.e., the generated sentences are relatively few and
some of them may be rather long and complicated (see example 4.3). Therefore we
adopted the same length control idea as in the extension of Purdom’s algorithm to
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CDRC-P algorithm so that more and simpler sentences achieving context-dependent
rule coverage will be produced. But the reference length is selected to be the minimal
||W || for all W ⊆ L(G) that achieves context-dependent rule coverage for G.

Example 4.4. The sentence set generated by the extension of CDRC-P algo-
rithm for the sample grammar is {id + id + id; (id) ∗ id ∗ id; (id) ∗ id + id; (id + id) ∗
id; id ∗ (id) + id; id; id + id ∗ id}, containing seven sentences with lengths 15, 18, 19,
19, 19, 5 and 14 respectively.

5 Sentence Enumeration

The sentence enumeration algorithm provided in our toolkit is the one proposed
by Dong[9,10], which is the first linear algorithm for general context-free grammars
and answers the open problem[11] about the existence of such algorithm. Dong’s
algorithm enumerates the sentences of a general context-free grammar in hierarchical
lexicographic order, and can be easily extended to enumerate the parse trees of a
general context-free grammar[10], which is also contained in the toolkit.

5.1 Introduction to Dong’s algorithm

According to the height of the parse tree, the set of sentences of a context-free
grammar is partitioned into (in)finite hierarchies, such that sentences of the same
height belong to the same hierarchy. The 0-th hierarchy consists of sentences of
height 1, which is determined by the grammar directly. The n-th (n > 0) hierarchy
consists of sentences of height n + 1, which is constructed by utilizing the previous
well-constructed hierarchies mechanically.

5.1.1 Hierarchical lexicographic order

To partition the sentences into hierarchies, Dong’s algorithm constructs four
different kinds of sentence sets:

• heapi
n, containing the sentences in Li whose height is no more than n + 1,

• hierarchyi
n, containing the sentences of height n + 1 in Li ,

• clusterp
n, containing the sentences of height n + 1 using the nonterminal rule p

as the first one in the derivation,

• cubep,t
n , containing the sentences in clusterp

n whose t-th (from right to left) direct
sub-sentence is from the (n− 1)-th hierarchy.

Corresponding to the four kinds of sentence sets, there are four kinds of volume
data: heap volume data, hierarchy volume data, cluster volume data and cube volume
data. Consider the sample grammar. Since there are no terminal rules (sentences of
height 1) for nonterminals S,E and T , all their hierarchy volume data on the 0-th
hierarchy equal to 0. While there is one and only one terminal rule for F , so the
hierarchy volume data |hierarchyF

0 | is 1.
Apparently, the hierarchies in Li are disjoint finite sets, and every hierarchy

(except the 0-th hierarchy) consists of some disjoint clusters and every cluster consists
of some disjoint cubes. Thus, the set of sentences can be sorted either set (i.e.,
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hierarchy, cluster and cube) by set or by lexicographic order. The order relation is
called hierarchical lexicographic order.

5.1.2 Enumeration procedures

The most important enumeration procedure is the next procedure, which gener-
ates the next sentence of a given sentence. There are four possible different cases for
a given sentence and its next sentence:

• they are in different hierarchies,

• they are in the same hierarchy but different clusters,

• they are in the same cluster but different cubes,

• they are in the same cube.

Two modes are presented for this procedure: bottom-up or top-down. The top-
down mode runs from the different hierarchies case to the same cube case, while the
bottom-up one does reversely. The time complexities of them are both O(n). But in
practice, the time needed by the bottom-up one is usually less than that needed by
the top-down one, as the same cube case occurs more frequently.

The previous procedure, which generates the previous sentence of a given sen-
tence, is similar to the next one and we do not discuss it here.

There are two procedures for the conversion between sentences and natural num-
bers, namely N2L and L2N respectively. The N2L procedure converts a natural number
to the corresponding sentence, while the L2N procedure does the opposite. Note that
when computing a natural number corresponding to a given sentence, it needs to
ensure that the sentence belongs to the grammar.

5.2 Sentence generation

Dong’s algorithm can be used to implement several methods of sentence gen-
eration, generally called user-controlled methods in the paper, such as random gen-
eration, bounded range enumeration, and structure-sensitive generation of sentences.
With a random number generator, Dong’s algorithm can generate sentences randomly
by using N2L. Given a bounded range indicated by, for example, two numbers, Dong’s
algorithm can enumerate all the sentences in this range. Hierarchy, cluster, and cube
can be used to specify restrictions on sentence generation as well, which is called
structure-sensitive generation. For instance, the sentences generated from some cube
have a similar structure. The structure-sensitive generation and the two sentence
generations above are orthogonal. This indicates that we can generate some random
sentences or a bounded range of sentences in some hierarchy, cluster or cube.

Further, Dong’s algorithm can also be used for sentence generation with coverage
criteria. To cover a rule p, it needs to generate such a sentence that contains a sub-
sentence from the cluster clusterp

n. Similarly, to exploit a rule p = X → η for an
occurrence q = Y → α X β, it needs to generate a sentence containing a sub-sentence
from those sentences, which are in the cluster clusterq

n and whose t-th direct sub-
sentence (assume that X is the t-th nonterminal at the right-hand side of rule q) is
from the cluster clusterp

m instead of the hierarchy hierarchyX
n−1 or the heap heapX

n−1
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(or heapX
n−2). However, we found out through analysis and experiments that it is time-

consuming to generate a sentence set that satisfies rule coverage or context-dependent
rule coverage by enumeration starting from the first sentence, as it produces a lot of
sentences that repeatedly cover already-used rules. It likely needs to collect some
effective information as that used in Purdom’s algorithm, such as which rule to use to
introduce a nonterminal into the shortest derivation. We will consider this problem
in the future.

6 Sentence Analysis

There are several parsing algorithms for determining whether a sentence belongs
to a grammar. As our toolkit deals with general context-free grammars, we use
Earley’s algorithm[15] for sentence parsing. Earley’s algorithm is an efficient parsing
algorithm for general context-free grammars and is implemented in our toolkit as
follows: given a grammar and a sentence, if the sentence belongs to the grammar, the
toolkit extracts all possible parses of the sentence. This is useful for checking sentence
ambiguity.

Based on Earley’s algorithm, the coverage of a sentence set, including rule cov-
erage and context-dependent rule coverage, can be analyzed. The coverage analysis
algorithm parses each sentence in a sentence set using Earley’s algorithm, and marks
all the exploited rules and occurrences used in the derivation of the sentence. Once
some sentence is rejected by the grammar, the algorithm exits by marking the sen-
tence unaccepted. When the parsing of the sentence set ends, the algorithm checks
whether all the rules and occurrences have been exploited. If a sentence set does
not satisfy rule coverage, it would not satisfy context-dependent rule coverage either.
In addition, if the given grammar is ambiguous, the algorithm picks only one of the
derivations of a sentence for coverage analysis. Therefore, in this case, a sentence set
generated according to some criterion may be stated not to satisfy the same criterion.

7 Implementation and Experiments

The toolkit is implemented entirely in Java. The architecture of the toolkit is
shown in Fig.1, where solid rectangles represent modules, while arrows represent de-
pendency relations between modules. The architecture of the toolkit consists of six
main modules, each of which is implemented as a java package. The parser module
parses a input text into a grammar, and then passes this grammar to the cfg mod-
ule. The cfg module checks whether this grammar is a context-free grammar, and
if it is, whether it is well-defined, and so on. The cfg module is a basic one, which
contains a sub-module grammar to deal with a general grammar and is used by most
of the other modules. Once a well-defined context-free grammar is ready, the gener-

ation module, which implements the algorithms for sentence generation, can be used
for sentence generation with coverage criteria. Similar to the generation module, the
enumeration module implements the algorithms for sentence generation based on sen-
tence enumeration, while the analysis module implements the algorithms for sentence
analysis. These three modules form the toolkit’s main functionalities. Finally, the gui

module implements a simple graphical user interface for the user to use the toolkit
directly, which consists of three separate sub-modules corresponding to the three main
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functionalities and is described in Section 7.1. As the toolkit is implemented as sev-
eral modules, it is easy for us (and the user) to extend with more algorithms and
functionalities.

Figure 1. Architecture of toolkit

The toolkit is distributed both as a stand-alone tool, which can be used directly
through the graphical user interface, and as a library, containing the cfg, generation,
enumeration and analysis modules (the dotted rectangle in Fig.1). By adding the
toolkit into the classpath, the user can invoke the functions and classes implemented
in the toolkit in his own programs. The javadoc API specification is available online
as well.

In addition, two implementations are provided for Dong’s algorithm: one with
the specific volume data and the other without. There are essentially no differences
between the two implementations except the type of volume data. The first one uses
the BigInteger type to compute and store the specific volume data, while the other
one uses the Boolean type to denote the emptiness of the volume data. Clearly, the
first one needs more time and space than the other in practice. Both implementations
can be used to compute sentences one by one and to enumerate sentences in order.
While with the specific volume data, the conversion between sentences and natural
numbers and the top-down version of next procedure can be implemented. Thus, we
use the one with the specific volume data in the graphical user interface to provide
more functionalities, namely, to query the volume data for an arbitrary hierarchy, to
do operations about a sentence, such as the generation of the next or previous sentence
for a given sentence and the conversion between sentences and natural numbers,
to enumerate a bounded range of sentences, which can also be restricted in some
hierarchy, some cluster or some cube, and so on.

7.1 Graphical user interface

The interface consists of three panels, which correspond to the three main func-
tionalities: sentence generation, sentence enumeration and sentence analysis. Each
panel is implemented independently as a module, so that they can be used indepen-
dently.
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7.1.1 Editor and console

Each panel contains a grammar editor which enables the user to edit, load or save
a grammar and to check whether a grammar is well-defined, and an output console
which outputs the outcomes and extra information like sentence length, running time
and so on.

The grammar rules are written as the following form: <X > −> η1| . . . |ηn, where
nonterminals are bracketed by angle brackets to be distinguished from terminals. Once
a grammar is input, the editor will check whether it is well-defined. By default, the
start symbol corresponds to the left-hand side of the first rule. It can be also indicated
by the user through the “Start” dropdown box.

7.1.2 Sentence generation panel

The sentence generation panel allows the user to generate a sentence set that
satisfies rule coverage or context-dependent rule coverage. A length control mecha-
nism can as well be configured on in the sentence generation process by marking the
“Length Control” check box. After generation, the number of generated sentences,
the information of sentences’ lengths, and the total time for generating sentences are
also counted. For instance, we generate a sentence set that satisfies rule coverage
from the sample grammar with the length control. The result is shown in Fig.2.

Figure 2. Sentence generation with rule coverage and length control

7.1.3 Sentence enumeration panel

The sentence enumeration panel consists of three tabs. Figure 3 shows a general
view of the panel.

The first tab enables the user to query the volume data among a bounded hier-
archical range by giving the “From” hierarchy index and the “To” hierarchy index.
It also allows the user to choose which kinds of volume data to query by marking the
corresponding check boxes.

The second tab allows the generation of the previous or next sentence for a given
sentence and the conversion between sentences and natural numbers. As mentioned
in Section 5.1.2, there are two modes, bottom-up and top-down, for computing the
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next or previous sentence of a given sentence. The user can choose either one through
the “Next Mode” dropdown box. Thanks to the specific volume data, the user can
also computer a sentence corresponding to a sequence number and vice verse.

Figure 3. Enumerating the sentences in [0, 100] in the 5-th hierarchy

The third tab allows the user to enumerate a bounded range of sentences by giving
the sequence numbers of the first and last sentences. The range can be restricted in
a hierarchy, cluster or cube, by giving the corresponding indices in which case only
the sentences in the intersection of the range and the restriction are enumerated.
The hierarchies, clusters and cubes are used for expert users. For normal users,
we will consider how to give the restriction by giving some rules or structures in
the future. After enumeration, the total time for enumerating sentences, the actual
number of enumerated sentences and the average time for enumerating a sentence are
also counted. For instance, we enumerate the sentences in the range [0, 100] in the
5-th hierarchy for the sample grammar. Since the 5-th hierarchy volume data is 11
(<100), only 11 sentences are enumerated. The result is given in Fig.3.

As the enumerated sentences may be too many, the output console wouldn’t
display them. Additionally, the toolkit allows the user to export them into a file. This
file contains the corresponding sequence number and parse tree for each enumerated
sentence, as well as the statistic information mentioned above.

7.1.4 Sentence analysis panel

Through the sentence analysis panel, the user can parse a sentence or analyze
the coverage of a sentence set, including rule coverage and context-dependent rule
coverage. Sentences are written as sequences of tokens separated by blanks, and one
sentence one line. Since a sentence set has been generated from the sample grammar
with rule coverage and length control (see Fig.3), we parse this sentence set as an
instance. Figure 4 shows the result of the coverage analysis for the sentence set.
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Figure 4. Analyzing the coverage of a sentence set

7.2 Experiments

We have used the toolkit to conduct some experiments for the algorithms con-
tained in the toolkit. Most of the experiments are conducted on those grammars whose
complexity measures are given in Table 1. The first one is the sample grammar used
in the paper. The next five grammars are the same as those used in Ref. [6]. The Java

grammar is retrieved from the comp.compilers FTP at ftp://ftp.iecc.com/pub/file/.
From the table, we can see that our toolkit can be used for grammars with a relatively
large complexity measure (such as the Java grammar).

Table 1 Complexity measures of grammars

Grammar VAR PROD LEV DEP HEI

sample 4 7 2 3 1

bExp 4 9 2 3 1

polishExp 6 12 6 1 3

elemFunc 14 38 9 6 4

miniPascal 47 81 33 8 11

ANSI C 65 214 22 38 14

Java 110 282 67 24 19

To illustrate the features of the two algorithms with context-dependent rule cov-
erage and their differences, we present the results of our experiments conducted on
a few grammars, as shown in Table 2. For each grammar, we recorded the number
of sentences, as well as the average, minimal and maximal length of the sentences
generated by each algorithm. The number of rules for each grammar is also presented
for comparison of grammar size with the number of generated sentences.

One experiment for Dong’s algorithm is conducted on the sample grammar. We
enumerated the first 1000 sentences of each hierarchy from the 7-th hierarchy to the
15-th hierarchy (the numbers were selected arbitrarily) and chose the top-down mode
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Table 2 Sentences generated by (CDRC-P / the extension) algorithm

No. of No. of Avg len. of Min. of Max. of

Grammar rules sentences sentences lengths lengths

bExp 9 2/8 32.0/16.1 9/13 55/19

polishExp 12 2/3 18.5/16.0 5/15 32/17

elemFunc 38 2/35 256.5/28.5 8/12 505/33

miniPascal 81 4/19 191.0/65.9 23/23 329/82

ANSI C 214 75/149 115.2/87.5 8/8 2131/148

Java 282 222/471 85.4/62.5 6/6 4889/102

to generate the next sentence. The experiments were performed on a PC of P4 3.2G
CPU and 2G RAM. These experimental results are given in Fig.5, which shows that
the real computing time for generating the next sentence of height n is O(n).

Figure 5. Total time of enumerating sentences on the sample grammar

8 Applications

The toolkit has been used in several research projects, namely SAQ[18], grammar
testing methods[19], testing of LFC[20−22], and Subtype Checker[23].

SAQ supports construction and validation of specifications consisting of context-
free grammars and operations upon context-free languages. Initially SAQ supports
grammar validation but quite weak[18]. We enhanced it by adding several sentence
generation and enumeration algorithms contained in this toolkit. In the experiments,
several errors in a number of grammars in SAQ bases were found. It is observed that
the bounded range enumeration is very useful for this kind of grammar validation.

The second project is an extension of the research of the grammar validation of
SAQ, which aims at systematic methods and techniques for testing context-free gram-
mars. Generally, there are two classes of faults with a grammar G with respect to an
intended language L[2]: incorrect (i.e., L(G) * L) and incomplete (i.e., L * L(G)).
We implemented a systematic framework for testing context-free grammars[19], which
contains two test methods that fit well with these two classes of faults with gram-
mars. These two test methods are derived from the two usages of grammars, that is,
a generator which generates sentences and a recognizer which accepts valid sentences.
The processes of these two test methods are given in Fig.6 and Fig.7 respectively.
As the figures show, sentence generation, sentence recognition and coverage analysis,
which are provided in the toolkit, are three main techniques involved in the testing
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process. Thus they can be implemented using the algorithms in the toolkit. We
used the framework to conduct some experiments on the C and Java grammars that
are from comp.compilers FTP at ftp://ftp.iecc.com/pub/file/. Through experi-
ments some errors were found, one of which is the sentence “indentifer {}” generated
from the C grammar. This sentence is intended to define an empty C function but
has syntax errors: the function name “indentifer” should be followed by “( )” or “(pa-
rameters)”. The error is due to that the grammar uses the same declarator to specify
function declaration and variable declaration. Indeed, these two declarators should
be distinguished. Readers are referred to Ref. [19] for more detail.

Figure 6. Test w.r.t. a generator

Figure 7. Test w.r.t. a recognizer

LFC is a language based on recursive functions on context-free languages[20−22].
It uses context-free grammars to specify data types, and supports pattern matching
definition of functions, where patterns represent structures of the grammars. LFC was
designed to support formal specification acquisition and was used in SAQ. Test data
for LFC programs can be derived directly by using the sentence generation algorithms
provided by this toolkit. To investigate the usefulness of the generated test data in
terms of fault detection capability, we added a testing module to conduct mutation
testing[24] on the test data. In particular, we took CDRC-P algorithm as test data
generator and conducted mutation testing on five LFC programs, which are taken
from SAQ. We applied five mutation operators[25] to each program and compared the
result of each mutant with the original result to check whether a mutant is killed by
the test data. Experimental results are summarized in Table 3. From the last column
we can see that the ratio of the killed mutants to the total mutants is above 30% for
all the five programs, which reflects the relatively good capability for fault detection
of the test data generated by the CDRC-P algorithm in this toolkit.

Subtype Checker is a type-checker prototype of Ref. [23], which is a research
project to study parametric polymorphism for a type system with recursive, prod-
uct, union, intersection, negation and function types. According to Definition 3.1
in Ref. [23], type expressions can be expressed as a context-free grammar. Thus,
we used sentence generation methods based on sentence enumeration provided in
the toolkit (i.e., random generation and structure-sensitive generation) to generate
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Table 3 Results for fault detection using CDRC-P algorithm

Programs Mutants

Name LoC1) Total Killed Ratio (%)

bEval 8 23 9 39.1

pEval 11 122 104 85.3

Diff 34 130 120 92.3

Diff2 46 273 118 43.2

idCount 60 650 516 79.4

arbitrary type expressions to test the prototype, in particular, to check the termi-
nation. Through experiments we found several programming errors and conjectured
that Subtype Checker terminates on all recursive types. Moreover, it is required
that the recursion must traverse a type constructor. In other words, once a rule
for recursive types (e.g., < T > − > mu x. < T >) is used, then the sentence gen-
erated from this rule (e.g., < T > at the right hand) must cover either a rule for
product types (e.g., < T > − > (< T >, < T >)) or a rule for function types (e.g.,
<T > −><T >→<T >). This can be done using the structure-sensitive generation,
the feature provided in our toolkit but not in other tools as we known. Without this
feature, we have to carefully and accurately define a special input grammar, such as
to distinguish the non-recursive types and recursive types by different nonterminals,
wherein it is error-prone and redundant. However, the structure-sensitive generation
provided in our toolkit is simple as it only considers one-step derivation. An alterna-
tive approach is to use sentence generation with rule coverage. But it yields a sentence
set that covers all the rules rather than a sentence that covers some required rules. In
the future, we will think about how to extend the structure-sensitive generation with
many-steps derivation and how to generate a sentence (set) that covers some required
rules.

9 Related Work

Bilska et al.[26] presented a collection of tools for formal languages and automata
theory. The tools include JFLAP for creating and simulating finite automata, push-
down automata and Turing machines, PumpLemma for proving specific languages
are not regular, and some others. Zeph Grunschlag implemented a Java package
JavaCFG[27], which is a command-line program for viewing parse trees of context free
grammars. Møler[28] developed a grammar tool which contains a parser and an am-
biguity analyzer for context-free grammars. The parser parses a sentence without
giving parses. This tool is used mainly for analyzing grammar ambiguity. Almeida
et al.[29] presented an interactive graphical environment CGM for the manipulation of
context-free languages. It allows the editing of context-free grammars, the conversion
to Chomsky normal form, sentence parsing and the construction of parse trees. The
above tools do not provide sentence generation, sentence enumeration, or coverage
analysis as our toolkit.

Programming Languages Laboratory at University of Calgary provided an online
tool Context Free Grammar Checker[3] to check the basic properties of context free
grammars, including the usefulness and reachability of the nonterminals, the first sets,

1)Line of Codes
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the follow sets and so on. After checking, it generates no more than 20 sentences,
which are the first 20 ones ordered by the sentence length (token number). Compared
with ours, its sentence generation is too simple.

Another related work is the sentence generation tool Forson[4], implemented by
Alfonso Tarantini. Forson takes a Bison grammar file as input and provides random
sentence generation, following Grow’s algorithm (may not terminate), or sentence gen-
eration with rule coverage, following Purdom’s algorithm, for the grammar defined in
the input file. It only covers a small part of the functionalities of our toolkit. More-
over, Forson is a batch program, which means that it does not provide a graphical
user interface.

10 Conclusion

The paper presents a toolkit for generating sentences from context-free gram-
mars. The toolkit supports sentence generation with coverage criteria, sentence enu-
meration and sentence analysis. It also contains a simple graphical user interface,
through which the user can use the toolkit directly. The toolkit has been used in
several research projects. The toolkit provides richer functionalities for sentence gen-
eration, enumeration and analysis than existing tools, thus is expected to have more
applications.

Our ongoing work includes the study of the unresolved problems mentioned in
the paper, a web interface for the toolkit and experiments on more grammars. In the
future, we plan to further enrich the toolkit by adding more functionalities, such as a
graphical parse tree editor and algorithms for regular grammars.

Acknowledgment

The authors thank Yunmei Dong for his suggestions on developing the toolkit
and on implementing, improving and experimenting with the sentence enumeration
algorithm and its GUI.

References
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