
Int J Software Informatics, Volume 6, Issue 2 (2012), pp.125–162 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2012 by ISCAS. All rights reserved. Tel: +86-10-62661040

A Meta-Model for Model-Driven Web Development

Ali Fatolahi, Stéphane S. Somé, and Timothy C. Lethbridge

(School of Electrical Engineering and Computer Science, University of Ottawa, Canada)

Abstract Several model-driven development (MDD) techniques for web applications exist;

these techniques use meta-models for defining transformations and designing models. In

this paper, we propose a meta-model for abstract web applications that can be mapped

to multiple platforms. We extend a UML-based model to support specific features of the

Web and Web 2.0 as well as to establish a bridge to functional and usability requirements

through use cases and user interface (UI) prototypes. The meta-model also helps avoid a

common MDD-related problem caused by name-based dependencies. Finally, mappings to

a number of specific web platforms are presented in order to validate the appropriateness of

the meta-model as an abstract web model.

Key words: web; meta-model; MDD; UML

Fatolahi A, Somé SS, Lethbridge TC. A meta-model for model-driven web develop-

ment. Int J Software Informatics, Vol.6, No.2 (2012): 125–162. http://www.ijsi.org/1673-

7288/6/i117.htm

1 Introduction

Model-driven techniques have been used in the area of web development to a

great extent; examples are found in Refs. [1-10]. Such methods require precise defini-

tion of the meta-models used as the source and the target of transformations. In order

to formally define those transformations, the meta-model postulates the involvement

of unambiguous links between different modeling elements and their mappings. Addi-

tionally, a meta-model for web applications should be defined to cope with the World

Wide Web platform volatility. In this paper, we present a UML-based meta-model of

web applications to be used in the context of model-driven methods targeting several

specific platforms.

Many of the model-driven web engineering approaches are tuned toward specific

platforms or develop only certain parts of web applications. These approaches gener-

ally use meta-models adapted to their targeted platforms. However, approaches that

can flexibly target several platforms are needed because of the rapid evolution of Web

technologies, as well as requirements to deploy applications on multiple platforms

such as desktop and mobile-based platforms. The ability of a model-driven method

to target multiple platforms depends on the abstractness of the meta-model used.

Such a meta-model must allow the description of relevant features of web applica-

tions independently from the specificities of specific platforms. Additionally, trans-

formations mapping from abstract to specific web descriptions must be expressible in

Corresponding author: Ali Fatolahi, Email: ali.fatolahi@gmail.com
Received 2010-12-29; Revised 2011-06-06; Accepted 2011-09-26; Published online 2012-02-16.



126 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

a flexible way. In this paper, we propose such an abstract meta-model. Mappings

that transform abstract models to specific platforms defined based on AndroMDA[8],

WebRatio[9] and Google Web Toolkit (GWT)[11] are also presented for validation.

Our meta-model is an abstract model for web information systems. Models of

web applications that are built upon this meta-model belong to the Platform-Specific

Models (PSM) level of MDA[12]; we name this type of PSM, Abstract PSM (APSM).

The APSM is defined upon an abstract model for web-based applications. It en-

compasses a set of modeling elements delimiting universal necessities of web-based

applications regardless of the platform on which the application is deployed. We

distinguish the APSMs from Specific PSMs (SPSMs) that pertain to specific web im-

plementation platforms such as. Net or J2EE. The APSM is platform-specific in the

sense that it describes features specific to the abstract web platform; it is also ab-

stract since it does not contain details of specific web platforms but only their shared

features.

Our meta-model is typically used for specifying transformations from MDA Plat-

form-Independent Models (PIMs) to APSMs. These PIM-to-APSM transformations

are completely re-usable when for instance a web application needs to be ported

to different specific platforms. Only the transformations required for generating a

specific PSM from the APSM need to be supplied. Since an APSM is semantically

closer to a SPSM, this latter part requires less effort to develop in comparison to the

conventional PIM-to-PSM transformations. A smaller subset of our meta-model is

used for specifying the PIM.

The meta-model has been designed following four principles. First, in order to

ensure MDD transformations can run unambiguously, semantic associations between

elements of different viewpoints are supplied as required. Second, the APSM is con-

nected to functional and usability requirements through state machines that model

use cases, as well as UI prototypes. This allows modeling of the input models at

an abstract level. Third, the APSM integrates specific features required for Web 2.0

applications. Finally, our meta-model extends UML. UML was selected as it is an

established modeling standard. We refer to the version 2.1.1 of UML[13] in this work.

In this paper, an abstract platform[100] refers to the abstract web as a model

combining common features of web technologies and platforms. The APSM is hence

a model pertaining to the abstract web platform. A specific platform is a collection

of concrete technologies, guidelines and configurations that are used to develop exe-

cutable web applications. The SPSMs are hence defined upon specific platforms. The

gap between APSM and every SPSM is subject to adding the details of the specific

platform, on which the SPSM is dependent, to the APSM. We use the term “plat-

form” generically. Hence, in this paper, a PIM is platform-independent in general

while a PSM is platform-specific in general. Therefore, The APSM and the SPSMs

are both PSMs generically.

The rest of this paper is organized as follows. In Section 2, we will enlist the

requirements of designing an abstract web model. In Section 3, we review the ex-

isting models of web applications and will discuss the features that are not properly

addressed so far. In Section 4, we will present our meta-model and in Section 5 some

examples are introduced. In Section 6, the meta-model is evaluated by different map-

pings to specific platforms. In Section 7, we will discuss the implementation, results



Ali Fatolahi, et al.: A meta-model for model-driven Web development 127

and usability issues. Finally, Section 8 concludes this paper.

2 Requirements of an Abstract Web Model

An abstract web model should allow modeling of common properties and features

present in concrete web models as well as web engineering coding frameworks. These

requirements could be elicited from existing web models as well as more recent web

technologies. More specifically, we are interested in requirements that facilitate the

usage of MDD techniques. We aim at designing a model with the most common fea-

tures as well as the most required ones and we will use our automated transformations

to generate specific features of specific platforms.

We may start with the fact that most web application frameworks are based on

the Model-View-Controller (MVC) or a similar pattern for the separation of concerns.

ASP.NET[86], ColdFusion on Wheels[87], Apache Struts[88], Java Server Faces (JSF)
[89], JBOSS Seams[90], Spring, Ruby on Rails[91], Aida/Web[92] and Catalyst[93] are

only some examples. The most recent version of .Net framework has moved further on

by providing default controllers and stipulating strict packaging rules for separation

of concerns in accordance with MVC 2.0. The notion of “controller” is central in

this structuring scheme. Even a framework such as GWT, which does not explicitly

support MVC, supplies entry points and an asynchronous event-management frame-

work for controlling the application. It is therefore inferred that a web model needs a

controlling feature composed of a controller class and its supporting operations. The

controller acts as a central decision point for the application or its subsequent fea-

tures. The implementation of this controller may be according to the original MVC

pattern[83], variations of MVC such as Ref. [69] or non-MVC patterns such as the

ones of service-oriented applications; this is left to the target specific platforms.

Web application frameworks all support data access. Some, such as Ruby on Rails

provide even more facilities for database migration. A variety of methods are used by

different web application frameworks for data access, interchange, format conversion

and presentation. It is therefore, necessary to model abstract data handling features

that can be mapped to various platform-specific routines. The data supplied through

the data interfaces of the existing frameworks is often required to be serialized to be

usable at the logical layers of the application. Hence, there is a need for two types

of data containers, one to be used at the data access layer and a second one to be

transmitted in between layers.

Most of the existing web application frameworks share security features such

as encoded sessions or authentication mechanisms. An abstract web model needs

elements representing secure pages, operations and services as well as login/logout

mechanisms and session/page variables. Some other frameworks such as CppCMS[84],

Fusebox[85] and GWT do not supply such features as built-in utilities, yet these

frameworks can also be used for implementing security features as well. For example,

GWT is widely based on Ajax and Google services that require and enable secure

connections.

Web application frameworks support the creation of user interfaces (UIs) using

different types of UI components. Many of these frameworks rely on their host lan-

guage such as Java, Perl or PHP for the definition and deployment of UI components.

Some such as GWT and ASP.Net provide custom types. Nevertheless, UI components



128 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

trigger events and use data. As a result, an abstract web model should supply dif-

ferent abstract UI components and support processes that relate them to operations

required to furnish with data and to trigger events.

Web 2.0 has added several new features to web development. Several web appli-

cation frameworks such as GWT, ColdFusion on Wheels and Apache Struts integrate

support for Ajax, which is now seen as the most popular Web 2.0 facilitator. Other

Web 2.0 technologies such as Flash and HTML 5.0 are also popular, especially with

regard to mass data processing and multi-media applications such as media sharing

sites and mobile applications. Web 2.0 requires that separate parts of a web page be

updatable independently, the contents be searchable and the user be able to interact

with the contents in real-time.

Since our approach is MDD-based, it is important to consider requirements from

these techniques as well. As described by Cicchetti and Di Ruscio[43], most of the

existing models are affected by name-based mapping rules that can cause ambiguities

with regard to the separation of concerns. Semantic relationships instead of name-

based associations should be used in meta-models. MDD techniques often establish

a mapping between elements of different viewpoints based on their names. This is a

useful technique but one that makes it difficult to back-track and to identify the origin

of mappings because of changes applied by developers to element names as well as

the one-to-many nature of most of the mappings. Another MDD-related requirement

is the selection of an appropriate language for the meta-model. Many domain-specific

languages (DSLs) for web development exist but another option would be a UML-

based language. Using UML, one can benefit from the popularity of an established

standard as well as its integration to different tools and methods.

Finally, from the viewpoint of a software engineering technique, we take notice

of two important features. First, it is important that lower-level models be created in

accordance with higher-level requirements[70−72]. Although there is a limited capacity

for directly addressing this aspect in an abstract web model, different researchers and

practitioners[73−80] have observed that the more a web modelling approach include the

possibility to express requirements-related features, the more beneficial it becomes.

It also has been observed that a barrier that prevents developers from using MDD

techniques is their reluctance to learn a new complicated technique after becoming

experts in one technology[81]. To alleviate this barrier, it is important that a web

application can be defined using a simplified input language, and to provide automated

transformations from that language.

In summary, the following are main requirements for an abstract web model used

in MDD:

1) Support for data access and event handling. This includes controlling mecha-

nisms and support for data services.

2) Platform-Independence. This ensures the model is abstract and can be mapped

to several specific web platforms.

3) Support for MDD necessities. This includes the fact that modeling elements,

when required, must be connected using semantic associations. This category also

addresses the ease-of-use by offering a simplified subset of the meta-model as an input

language along with the required transformations to map the input to the complete

model.



Ali Fatolahi, et al.: A meta-model for model-driven Web development 129

4) UML support. This is seen as a requirement for defining the meta-model to

enhance the popularity of the meta-model and its portability with respect to other

tools, models and techniques.

5) Support for Security.

6) Support for Web 2.0.

7) Support for expressing requirements. This includes functional requirements as

well as UI components that represent the expected UI prototype of the application.

3 Models of Web Applications

The most related models are those that address web modeling along with UI

modeling. WebML is introduced as a modeling language for designing web based ap-

plications by Ceri et al.[14]. WebML provides a notation to define the UI presentation

layer and the semantics to specify web-based applications in a multi-layer approach.

According to WebML, a web-based application is defined in terms of: Data model-

ing, Hypertext modeling, Personalization to give different users different viewpoints,

Presentation to add the look-and-feel, and Integration of business processes and Web

services.

Botterweck[17] presents an abstract model for specifying web-based applications

supported by a UI model and a data model along with connections to the UML

state machines. Botterweck’s model aims at specifying multiple UIs, which is close to

our objective. It extends UML in order to model an application in different layers.

Modeling elements are provided for state machines, presentation layer, data layer and

services. In our work, we have adapted Botterweck’s model as the basis of our model.

Other models such as WebML provide the same support we need but Botterweck’s

has the advantage of being UML-based.

Some web engineering processes have also suggested web models as parts of their

framework. As an example, UWE[15] bears its own abstract model of web-based ap-

plications as well as an abstract UI model. UWE was broached as an extension to the

Rational Unified Process (RUP)[16] for web development. UWE offers means of defin-

ing requirements and modeling navigational aspects as well as presentation features

of a web application. These, along with the contents and the required processes are

used to generate the application using the transformations. It is, however, noteworthy

that as its origin – RUP – UWE acts as a framework rather than a concrete method.

The most proper usage of UWE, therefore, is perhaps to define model-driven methods

on top.

Muller et al.[18] provide another abstract model with the same intentions as

Botterweck’s but based on a different approach. Muller et al. break up the PSM level

into two levels: One is named platform-dependent PSM and the other is technology-

dependent PSM. Since the model is provided for web in general, the term ’platform’

is not applicable to web itself but to specific platforms and technologies. Such a

separation results in transformation from PIM to platform-dependent PSM relatively

longer than the ones from platform-dependent PSM to technology-dependent PSM. A

difficulty with Muller et al.’s approach is thus to identify and differentiate the terms

platform and technology.

There are abstract models that address web applications but do not specifically

describe the details of UI modeling. Nikolaidou and Anagnostopoulos[5] suggest a



130 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

common UML meta-model for web-based information systems to tackle performance

problems in the functional and physical layers. W2000 is a meta-model for web

applications by Baresi et al.[19], which provides a multi-layer architecture for web-

based applications in accordance with the Model-View-Controller (MVC) pattern[20].

He et al.[21] report an interesting approach to define a role-based abstract model

for web-based applications. However, the method is instead a general method for

creating abstract web models. Another effort to support web modeling using MVC

is presented by Lowe et al.[97] as an extension to UML. Based on the motivations

found in Ref. [98], Lowe et al. address the functional aspects of a web application

and create a conceptual model that relates different layers of the web application and

hence alleviate following business needs through layers of applications.

Another group of the existing models are those that address abstract UI models

with less connection to web applications. Blankelhorn[22] has provided a UML profile

for GUI layouts. Da Silva and Paton[23] describe a how-to for designing user interfaces

using UMLi that is an extension to UML and compares the results with the ones

from the UML itself. Vanderdonckt[24] presents an MDA-compliant environment for

designing user interface models of information systems in general. Schattkowsky and

Lohmann[25] introduce a general method for designing platform-independent UIs but

the method is not supported by any specific meta-model. Diamodl[26] is a modeling

language to describe the data-related logic of UIs. This includes the links, data

flows and data collection gates. Diamodl is very limited and cannot scale up to

cover higher-level aspects of UI modeling because it only models the data interchange

between abstract atomic data units at the programming level.

We may also mention other efforts devoted to synthesize UI models in different

ways. Li et al.[27] illustrate a how-to UML-based approach to devise the architecture

of web-based applications in a three-tier framework. Kavaldjian[4] and Bogdan et

al.[28] describe a method to extract a UI model from a discourse model in a general

sense. Costa et al.[29] present an MDA-compliant method to devise a step in user

interface design for web applications in accordance with UML version of ConcurTask-

Tree (CTT). The new language is called Canonical Abstract Prototype (CAP) that is

an abstract language to define user interfaces. The goal of the article is to transform

the UID (user interface definition) model to a UML-compliant specific model for in-

teroperability. The PIM is use case-driven. Conceptual Architecture, Presentation

Model and Dialog Model are elements of both PIM and PSM. The authors suggest

an example mapping from CAP to HTML as a specific platform. The transformation

from PIM to PSM and to code is executed using the PHP application Model2Code.

De Souza et al.[30] have published another model-driven approach to generate web

UIs. The method covers the layers of MDA as follows: CIM with use cases, PIM

with analysis and presentation models, PSM with design, navigation and UI design

model. The method starts with use cases and spans through analysis, presentation,

design and navigation models. The final result is a UI design model, which is fol-

lowed by the implementation of the UI. An implemented Eclipse plug-in hard-codes

transformation rules required to generate JSF code. Sukaviriya et al.[31] introduce

a process framework for model-driven UI design based on iterative/incremental ap-

proaches. Arraes, Nunes and Shwabe[32] present a combined approach of model-driven

development and domain specific language to derive a rapid software prototyping for



Ali Fatolahi, et al.: A meta-model for model-driven Web development 131

web applications. A tool named HyperDe takes conceptual instances, a navigation

model and an abstract UI to produce HTML pages.

Approaches that address parts of the web UI form another group of the related

work. As an example, Freudenstein et al.[33] present a modeling language to specify

web dialogs, which includes a domain specific language (DSL), based on Petri-nets;

a Domain-Interaction Model, which is a simple interface to connect the models to

DSL and work with the application that provides the model; Solution Building Block

that is a software component to execute the dialog model. The modeling notation is

capable of defining data elements and their interactions as well as the user interface

components used within the dialogs. Tongrungrojana and Lowe[34] use WebML in

order to present the language WEID at a higher-level of abstraction to address the

inefficiency of the existing web/information modeling languages when dealing with

information exchange models at the level of business processes. This is a companion

to Tongrungrojana and Lowe’s previous work about WebML+[35], a language for

modeling information exchange in the workflow models. Some older approaches such

as LHM introduced by Wan et al.[37] and GHMI by Wan and Bieber[36] are early efforts

to integrate classic information systems with hypertext features. Another similar

approach is taken by Whitehead et al.[10] to bring repositories to the hypertext level

so that they could be visualized using the web.

Finally, Web 2.0[38] has been also addressed in the model-driven community.

Specific model-driven approaches targetting Web 2.0 exist. For example, Valverede

and Pastor[39] describe a meta-model to specify technical details of a Web 2.0 platform

based on OOWS[40]. These include the features related to Rich Internet Applications

(RIA) such as UI widgets as well as the event handling mechanism. Hernández et

al.[3], in another effort, explain an approach toward defining a meta-model for the

definition of the conceptual aspects of web 2.0 as a venue for social networking. The

authors elaborate a model-driven overture to social networking that includes modeling

elements such as actors, objects and activities and their relationship.

Table 1 lists some important factors to compare the existing models using our

requirements. Following is a description of each row of Table 1:

• Data Access Operations, this indicates if the meta-model supports opera-

tions for data handling at an abstract level.

• Platform-Independence, this refers to the fact that a model is abstract and

also if the model has been validated against at least two different specific platforms.

• Non Name-based Dependencies, this means the model does not depend

on the name-based analysis rules to interrelate elements of different viewpoints.

• UML-Compliant, which refers to the fact that the model extends UML.

• Web-Specific Features, this means the model supports web-specific features

in opposition to abstract-web features.

• Web 2.0, this verifies if the model explicitly supports Web 2.0. For example,

in WebML, one may use script units for inserting Ajax code to support some Web 2.0

capabilities but this is only a work-around. We rather look into a model that allows

every element to be searchable, to accept feedback and to be updatable independently.

• Requirements as Input, this row indicates if the model integrates require-

ments with lower-level models.

• Abstract UI Model, this suggests that the model presents the elements



132 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

required to model an abstract UI model.

• Availability of Details, this verifies if the details of the meta-model are

available. With regard to MDD techniques, such details are necessary for extending

the model as well as creating the transformations that map the model to other models,

languages and tools.

• Coverage of UI Components, by this, we point to the fact that a meta-

model has elements for modeling specific UI components such as tables, buttons and

input controls.

• Integration of UI Components and the Meta-Model, which means if

the supported UI components are integrated with behavioral and navigation aspects

of the meta-model using meaningful associations.

• Separation of Concerns that is if the model addresses different viewpoints

and suggests their proper integration.

As Table 1 shows, Botterweck’s model scores higher in terms of support of the

above elements. It is worth noting that Botterweck’s model is a general UI model not

restricted to web applications. An advantage of this model compared to web modeling

languages such as WebML is that it is based on the UML, recent efforts have however

focused on complying WebML to the UML[44]. It is also worth mentioning that

Botterweck’s model provides support for advanced UI elements such as multimedia

contents unlike most other models. Table 1 also draws attention to the fact that

none of the studied models are grounded based on requirements as an input along

with models of UI, data and expected operations that satisfy those requirements.

We selected Botterweck’s model as basis for our model but, as indicated in Table 1,

Botterweck’s model needs to be extended in order to address items 3, 5, 6 and 7.

More details are found in Ref. [48].

Table 1 Comparative study of existing abstract models

Despite the plurality of related work, there is still a need for a new abstract web



Ali Fatolahi, et al.: A meta-model for model-driven Web development 133

model for model-driven web engineering for the following reasons.

1. The existing models including the ones addressing data-centric or information-

based web applications - such as the ones suggested by Ceri et al.[1], Nikolaidou and

Anagnostopoulos[5] and Baresi et al.[19] do not tend to cover the data access layer;

rather they focus on the presentation and navigation required to present this data

and information at the hypermedia level; WebML is an exception.

2. Most of the existing models are usually defined toward a PSM. Exceptions

such as UWA[41] and Sakowicz et al.[42] end up with models that are very general and

too abstract. As a result, most of the research leads to approaches that are either

hard to map to specific platforms or hard to adapt with other specific platforms.

3. As described by Cicchetti and Di Ruscio[43], most of the existing models

are affected by the name-based mapping rules that prevent effective model-driven

transformations be developed.

4. Traditional web modeling languages including WebML are not based on

UML/MOF according to Brambilla et al.[44]. There have been a number of efforts

to adapt WebML with MDA/MOF/UML family by Brambilla et al.[44], Moreno et

al.[45−16] and Schauerhuber et al.[47]. These suggest that it is an advantage to design

a model that is UML-based.

5. Only some of the existing models such as those found in Refs. [3, 39-40] provide

partial support to Web 2.0.

6. Finally, despite several approaches to incorporating requirements in the web

engineering process[73−80], the existing models still show little integrity with higher-

level requirements.

As a concluding note, it is worth mentioning that WebML-based approaches

present the most comprehensive way of data modeling for web applications. Further,

WebRatio[9] a WebML-based tool, generates fully executable code. Thus, it is critical

to distinguish our work from WebML. A major difference with WebML is the way

we treat Web 2.0. While WebRatio enables script units, where Ajax code for Web

2.0 support can be injected, our approach has a built-in support of Web 2.0. This

means, using WebML, one needs to manually create the Web 2.0 features required for

every component of the web; using our meta-model, however, Web 2.0 features such

as search, feedback and update are automatically assigned to all elements. It is also

worth remembering that despite the efforts[44−47], WebML has remained a non-UML

language and WebRatio has chosen not to support UML export/import[99]. Finally,

WebML is specifically designed for building web applications. Therefore, it may not

be used for specifying applications at a level that is web-independent. A subset of our

meta-model is web-independent and is used for PIM level specifications. This enables

a minimal input language that is easier to use and is mapped to our meta-model using

a set of automated transformations as described in Section 6.1.

4 The Meta-Model

We have created a meta-model that supports all the requirements listed in Sec-

tion 2.1. This meta-model extends the Botterweck model[17]. The structure and

components of the UI model as well as the relationship between the UI model and

data of the Botterweck model have been retained in our model. The parts concerning

aspects related to behaviour have been customized. We will revisit the Botterweck



134 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

model in Section 4.4 in order to summarize a list of enhancements our meta-model

suggests comparing to the Botterweck model.

Figure 1 shows the general structure of the application in our model. An appli-

cation has several use cases, a number of these use cases may be startup use cases.

A number of user interfaces may be defined for every application. For web-based

applications, it is necessary to recognize different views for different users; this is

realized using the association of actors and user interfaces. The meta-model is sup-

plied with a default login use case. This use case includes another default use case,

Show Homepage; and is extended by use case, Lock Account. Login use case allows a

certain number of login attempts that are modelled through an element of type Page

Variable. The behaviour of use cases is modeled through state machines.

Figure 1. The meta-model of Web information systems, general structure

Figure 2 presents the meta-model of state machines in our approach. Most of the

elements in this picture are imported from the UML specification. We added some

associations to explicitly connect use cases to state machines. States are associated

with use cases; this will be understood as either an inclusion or extension depending on

the situation. Also for navigation, such as for instance, a situation where a successful

completion of a task leads to another web page, it is necessary to indicate that a

given use case sequentially follows another use case. This sequencing of use cases

is indicated by attaching use cases to final states. When processing flows from use

case uc1 to use case uc2, the final state of the state machine description of uc1 is

associated with uc2. This technique for sequencing is also used to forward processing

to predefined state machines that describe re-occurring functions.



Ali Fatolahi, et al.: A meta-model for model-driven Web development 135

Figure 2. The meta-model of Web information systems, use cases and state machines

Figure 3 shows how our meta-model supports the presentation and data in one

model. States may be associated with presentations; we refer to such states as “pre-

sentation states”. A presentation is a special UI Composite, which means it could

contain other UI Components. UI Components may be associated through a Field-

Operation. This allows client-side operations to be defined. Examples of such actions

are given in the enumeration type ActionType. A UI component is associated with

a data composite in order to model the data support required. Data composites are

composed of data entities. A data composite can also participate in an association

with another data composite, where one data composite is used as basis for data

selection from another data composite. For example, such an association would be

created to model a situation where selecting a country in a component affects a list

of provinces in another component.

Figure 3. The meta-model of Web information systems, presentation vs. data



136 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Figure 4 presents the part of the model, where events and operations are handled.

A controller class is used to control an application according to the behavior defined

in a use case based on the use-case controller pattern[13]. In addition to controller

classes, one or more service classes are used to perform operations required for data

access. Various specific platforms may use different mechanisms for concrete controller

and data access service classes. For instance, one class equivalent to each controller

and service would be created for AndroMDA, while for WebRatio, controller and

service operations are distributed amongst different operation units. At the code

level, different strategies are typically used for implementing controllers such as Java

servlets or .Net front-controllers. Similarly, services can be compared to DAL files in

.Net or Entity Beans in Java.

A service is associated to a data composite. Service operations are basically

Create-Read-Update-Delete (CRUD) operations for data composites but the meta-

model allows the addition of more complex CRUD operations as well. Such operations

must be defined as a new literal added to the enumerative type QueryType (Fig. 3).

Attribute crudNature of the class Operation specifies the type of service operation and

is used for code generation. An association from class Operation to itself models the

call structure from controller operations to service operations. A special UI composite,

OperationTrigger, is used to represent information submitted to the server side, for

example, as part of a web form. Operation trigger may cause either an included use

case or a controller operation to be triggered.

Figure 4. The meta-model of Web information systems, events and operations

Finally, Figure 5 presents the fact that content oriented UI elements, including

text, image and video, may have a feedback, which could be another content oriented

UI element; that is a feedback may receive feedback as well. Feedback is defined

as an interface to allow target specific platforms implementing their own specific

strategy. This feature plus the fact that UI composites can recursively contain other

UI composites - shown in Fig. 3 - help support Web 2.0 applications. The class

ContentOrientedUIElement is an abstract class.



Ali Fatolahi, et al.: A meta-model for model-driven Web development 137

Figure 5. Making the content interactive

4.1 A data-driven case

Figure 6 shows a model for a shopping cart application. The ShoppingCartCon-

troller handles the operation trigger Make Payment submitted from a web page. The

makePaymentOperation performs several tasks among which are an update of the

inventory and a record of payment. This is modelled by having makePaymentOpera-

tion associated to two operations from ProductService and PaymentService as caller.

These operations accomplish the required CRUD operations.

Figure 6. A shopping cart example: make payment operation

4.2 A multi-layered model

The meta-model does not limit the number of layers. For example, the presen-

tation layer could be divided to more than one layer because the UI is a type of UI

Composite, which may contain other UI Composites. Both the top-level UI com-

posite and the included ones can be associated with data. Therefore, the top-level

presentation layer includes several sub-layers of data, presentation and controllers.



138 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

As an example, consider an online tutorial that concerns an application. In such a

case, a section of the tutorial is created for each of the application features, and a

link is provided from each section in the tutorial to its corresponding feature in the

application. Thus, every feature may be invoked from the application place or within

the tutorial. A tutorial in this example could be seen as a scenario-level use case, as

defined by Cockburn[67]. Figure 7 shows how our abstract meta-model can model this

example as two interacting layers.

Figure 7. Using the abstract model for modeling an application in multiple layers

4.3 A visual input language

We propose a visual language for describing web application in accordance with

our meta-model. The goal of this language is to provide a more abstract and conve-

nient way of defining models based on our meta-model. The complete details of the

language are described by Fatolahi[50]. Table 2 contains some of symbols needed to

understand the examples in this paper. In addition to the elements in Table 2, we

also use the visual notation of UML state machines for application flow description.

Figure 8. The abstract PIM meta-model



Ali Fatolahi, et al.: A meta-model for model-driven Web development 139

Figure 8 shows the subset of the meta-model used to specify the visual input

language. Comparing to the meta-model as the APSM, the model of Fig. 8 serves as

the PIM. The figure uses abbreviated package names as follows:

• BW: Elements borrowed from the Botterweck Model

• APSM: Elements added by our meta-model

• BSM: Elements from the UML package, Behaviour State Machines

• UC: Elements from the UML package, Use Cases

• COM: Elements from the UML package, Communications

Table 2 A graphical input language

Symbol Description

A Submit Button

Create Data Query or Add Data to UI Com-

posite

Data Composite

Date Display Component

Hyperlink

Load All Query or All Data from a UI Com-

posite

Filtered Version of the above

Page/Session variable

Password Input

Plain Text Input

A Table Column

A UI Composite, i.e. Table, Presentation,
Trigger

Update Data Query or All Data to a UI

Composite



140 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

4.4 Extending the botterweck model

Certain parts of the Botterweck model remain intact in our meta-model. These

are mainly the elements that build the contents of the web application such as the

input or multimedia elements. Other parts require changes. For example, the connec-

tion of data and UI elements is only provided for elements such as Select components

in Botterweck’s model while we require more freedom in this area. Several elements

other than Select components on a web page may be populated by data supplied

from a data source; some examples are text descriptions of items in a shop, pictures,

feedback on textual posts and radio buttons. Thus, we choose to assign data to all UI

components not only the select ones. This, however, does not eliminate other com-

mon features of web applications; as asserted before all features may be developed

using the meta-model, the extra specific features are provided as optional add-ons

for supplying the automation of the methods. For more detailed specification of the

Botterweck model and our extension mechanism see Appendix A.

Compared to the Botterweck model, our meta-model facilitates the data access

mechanism by associating UI components to data composites. Also, the data service

types are suggested as an association class, which provides an easier way for assigning

the proper data service to each UI element. Other changes are performed for sup-

porting specific use cases such as Login and Startup. Another important alteration is

to unify the definition of a presentation state with the element state as an association

attribute. Finally, certain structures are added to support specific features of web

information systems such as frequently asked questions and shopping carts. More

changes are as follows:

1. Data Associations: A new concept is added to the UI model to support the

required data for UI components. The developer is required to know what data are

associated with each component. Alternatively the developer may choose to man-

ually add modeling elements required to support a component. This feature is not

supported in the original abstract model to the required extent. Some data features

can be associated with input fields such as select lists but not to other elements. We

require the possibility to associate data elements to other elements such as operation

triggers in order to be able to automate the process of generating data-related opera-

tions and services. In our meta-model, a UI component could have a data composite

associated with it. This association is attributed with the query type, which could be

one of the five operation types.

2. Operation Triggers: Triggers need to be associated with data composites in

order to enable the automated development of required data services and processes.

However, the original model considers operation triggers as UI elements as shown in

Fig. 5, which makes it impossible to project this aspect. We change this by having

operation triggers inherited from UIComposite. This is reasonable because in practice

a web operation trigger, when submitted, is wrapped with the parameters equivalent

to the UI elements within the submit form. In the original model, a Trigger was

a UIElement, which is changed to a UIComposite in the current model. Note that

since a UIComposite is a special kind of a UIComponent, the meta-model still allows

designing a Trigger as a plain component with no other components wrapped in its

model. Another change was required to denote the order of events on a presentation

unit. Presentation units could hold several kinds of events that are not necessarily



Ali Fatolahi, et al.: A meta-model for model-driven Web development 141

operation triggers (i.e. submit button). For example, drop-down select components

can cause a selection event that affects the contents of other components. In order to

enable the description of such behaviors, we have added a new association between

DataComposite and UIComponent elements. The eventHolder can be attributed with

an order property. This property is only used to specify the order of such events when

more than one component can cause a page to call a controller operation.

3. Cross-Referencing State Machines: UML allows states to enclose other state

machines. This capability could be used to fulfill a variety of motivations. A state

enclosing another state machine can be used as an indication of an extend/include

relationship; that is the use case represented by the enclosed state machine is either

an extension to the use case of the original state machine or is included within the

original use case. The relationship between State and StateMachine is borrowed

from UML but the relationship from FinalState to StateMachine is specific to our

meta-model to support the sequence of flows. An operation trigger may also accept a

reference to another use case as a denotation of an included use case. This is called the

includedUseCase. The sequencing of state machines is indicated by the attachment of

the final state to the use case corresponding to the state machine activated afterward;

this is performed for navigation reasons – such as situations that successful submission

of a task results in navigating to another web page – or to supply the possibility of

forwarding the process to an automatically added state machine such as Login/Logout

state machines.

4. Page/Session Variables: Page variables are session/page parameters that carry

information either to be shown or processed in a web page, or regarding controller

operations. We add page variables to operations aimed at a presentation state in the

circumstances such as the followings:

• To carry a default error message when the outgoing transition from a choice

is labeled false.

• For every login-required presentation state, we make it mandatory for all

incoming and outgoing transitions/events as well as regular states before and

ahead to accept a page variable carrying a username. One must note that

this is by no means an authentication technique that must be used as such in

the implementation. It is rather an abstract indication of the use of a session

variable for authentication. Different concrete implementation procedures are

used by different specific platforms.

• A page variable named loginAttempts is created when a login-required state

is bound to a maximum number of login attempts.

5. Hidden Components: It is considered that UI components may be hidden.

To this end, the class UIComponent is equipped with an attribute “visible” of type

Boolean. There is no functional difference between page variables and hidden com-

ponents, but more a design decision the developers will take. It is important to note

that page variables are only used to pass parameters from one presentation unit to

another one; they may not be shown to the User but UI components are created on

the target page – of a transition - and may or may not be shown to the User.

6. Security Features: Certain aspects of web applications require secure at-

tributes that prevent insecure access to the data, presentation and operations. The



142 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

implementation of this feature may vary in each specific platform. Our meta-model

defines an interface named SecureItem in order to support items that may require

secure access. By default, the three elements, UIComponent, DataComposite and

ControllerClass implement this feature, which may or may not lead to explicit usage

of security features by the developer according to the requirements and platform-based

decisions.

7. Web-Specific Features: Specific features such as Frequently Asked Questions

(FAQ), Search, Shopping Carts, Login/Logout, Site Maps and Feedbacks are added

to the Botterweck model.

8. Other Changes that are noteworthy are as follows:

a. A concrete association between a data composite and the corresponding

service class that includes the type of data operation is required to support

data storage, retrieval and processing tasks of web information systems.

b. Every application requires one main use case to launch the process. We

refer to this as the startup use case.

c. The behaviour of use cases is handled by use case controllers. The model

needs a simple change to handle use case controllers.

5 Examples

The first example is chosen from a case study that is a Web 2.0 application,

Dilmaj [49]. Dilmaj is a web-based, collaborative, multilingual project about language

and language development supported by a group of developers. Many domestic lan-

guages are challenged in modern times. The goal of Dilmaj is to offer a central place

where users can contribute to the development of a chosen language, and its relation to

other languages. Users may join, suggest terms, and comment on others’ suggestions

or rank entries. Figure 9 shows a use case diagram that includes several use cases of

Dilmaj. The diagram contains main use cases that represent pivotal functionalities of

the application. The three main actors are User, Member, i.e. a registered User and

Admin.

Figure 10 shows the input model of use case Add Comment defined using the

language of Section 4.3. A complete compilation of this application using the APSM

meta-model is presented in Ref. [50].

Figure 11 shows an object model instantiated from our meta-model and corre-

sponding to the input model in Fig. 10. Transitions are not included for the sake

of clarity. The model involves three of the application use cases: Add Comment,

View Comments and View Dilmaj. Use case View Comments is attached to the state

Add Comment of state machine to realize the inclusion relation shown in Fig. 10.

Use case View Dilmaj sequentially follows use case View Comments as expressed by

the attachment of use case View Dilmaj to the final state of use case Add Comment

state model. Note that there is a concrete link between every pair of name-dependent

objects. This addresses issue 3 in Section 2.1 about name-based dependencies. The

object model also shows that the input from Add Term, the table Terms Table and

the button Close are all considered independent parts of the presentation to ensure

compatibility with web 2.0.



Ali Fatolahi, et al.: A meta-model for model-driven Web development 143

The more important aspect of the model is to express the behavioural features

of the web application. Figure 12 shows an object model containing the modelling

elements that handle the behaviour of the application. AddCommentController is

dependent to both TermService and CommentService. It calls three operations, ad-

dComment to create a new comment and to attach it to the selected term, close to

hide the popped up comments window, and populateCommentsTable to load existing

comments.

Figure 9. Main use cases of Dilmaj

As the second example, we review two use cases from another case study, an

account management system (AMS)[94]. This time, we focus on the support the

APSM provides to the relationships between two use cases using a session variable.

The first use case, View Bills specifies browsing through the list of previous bills while

the second one, View a Bill shows a selected bill. Figure 13 shows the UI model of

use case View Bills while Figure 14 shows the UI model of View a Bill. Figures 15

and 16 show the APSM model automatically generated for these two use cases. The

page variable selectedBill plays a key role in the model. It is set at the last step of

the state machine View Bills, and used as shown in Fig. 16, in the first step of the

state machine corresponding to View a Bill to populate the bill display panel. The

gap between the models of Figs. 13-14 and the ones of Figs. 15-16 is spanned using

the mappings described in Section 6.



144 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

6 Using the Meta-Model along with Model-Driven Transformations

In order to evaluate the meta-model for specifying an abstract web application

in a model-driven context, we have developed four sets of mappings:

1. PIM-to-APSM: This set maps the input model such as the one in Figs. 12-13

to the web model such as the ones of Figs. 15-16. Since an objective of model-driven

development is to automate parts of the software engineering process, it is important

to show it is possible to derive the full specification of an application from a minimum

set of descriptions.

2. APSM-to-AndroMDA: This mapping creates a fully detailed AndroMDA

model, which may be transformed to code using AndroMDA.

3. APSM-to-WebML: The target in this mapping is a specific configuration of

the WebML-based tool, WebRatio.

Figure 10. The PIM of the use case, add comment



Ali Fatolahi, et al.: A meta-model for model-driven Web development 145

Figure 11. The object model of Fig. 10

Figure 12. The object model of behavioural features of Fig. 10

Figure 13. The PIM of the use case, view bills of the AMS

4. APSM-to-GWT: maps the APSM to a specific platform, based on Google Web

Toolkit. This allows us to evaluate the Web 2.0 modeling capabilities of the abstract

meta-model.



146 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

These mappings are expressed using QVT relations[51] and are listed very briefly

in this section. The complete listing of the QVT relations for the above four sets of

mappings is provided in Ref. [52].

6.1 PIM-to-APSM

This set creates a full web application from an input model in the visual lan-

guage defined in Section 4.3. These mappings ensure that the elements of the meta-

model, which are used to define the usability and data requirements, are properly

integrated with the ones specifying the behaviour and data access mechanisms. Fig-

ure 17 presents a summary of the information used from the PIM as well as those

created at the APSM level.

• Data objects and navigation paths through data objects are created based on

data associations found within the UI model.

Figure 14. The PIM of the use case, view a bill of the AMS



Ali Fatolahi, et al.: A meta-model for model-driven Web development 147

Figure 15. The APSM of the use case, view bills of the AMS

Figure 16. The APSM of the use case, view bill of the AMS



148 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Figure 17. Summary of PIM-to-APSM mappings

• The contents and structure of web pages are determined by the contents of the

presentation states and transition flows.

• Transitions and states from the input model are also used to create events and

operations used for the generation of the behaviour and controllers of the application.

The generated behavior and controllers are used in turn to build the data access

services in combination with data associations from presentation states. It is also

used to map parameters to attributes within the data model.

An example of such mappings was given in Section 4. The object model of Fig.

11 is a result of applying the PIM-to-APSM mappings to the object model of Fig. 10.

6.2 APSM-to-AndroMDA

AndroMDA is a model-driven development framework that allows automatic code

generation for web applications. AndroMDA accepts UML models enclosing transfor-

mation tags and modelling stereotypes. An AndroMDA application is composed of

several use cases. The behaviour of use cases is modelled using state machines. States

of state machine may represent presentation or behavioural features of use cases. Ev-

ery use case is controlled by a controller, where events of states and transitions defer

operations to. Controllers forward calls to service classes that are associated with data

elements. A special type of data objects, Value Object is used to transfer information

between services, controllers and the front-end. We briefly describe a mapping to an

AndroMDA-specific platform. Following are some definitions regarding this platform:

• A deferrable event is an event that invokes a controller operation. Deferrable

events are used to assign call events to operations with states.



Ali Fatolahi, et al.: A meta-model for model-driven Web development 149

• A value object is an object that carries information between domain objects

and the presentation or data access layer.

• FrontEndView is a state stereotype used for states that represent web pages.

• A signal event is an event that is usually carried by an incoming transition to

a front-end state. A signal event carries output fields to be shown.

The following rules apply to all models:

1) There must be one controller class per use case.

2) There must be a service class per data object.

3) Controller classes must be dependent on their objects’ service classes.

These additional rules are specific mapping rules for an APSM model to an

AndroMDA-specific PSM:

4) Every presentation state is mapped to a state stereotyped as FrontEndView.

5) For each operation trigger:

a) A signal event is created on the outgoing transition.

b) A deferrable event is created on the next state. If the next state is a choice

then the deferrable event is created on the transition ending to the choice.

c) A controller operation is generated to be called by the generated deferrable

event.

d) The set of input parameters for the signal/deferrable events as well as the

controller operation are created based on the UI components belonging to the

operation trigger.

e) For every domain object referred to by a component of an operation trigger

an entity domain object and a value object are created. If the domain object

requires one of operations update, delete, or insert then the tag Manageable is

added to the target object, to force AndroMDA to generate the corresponding

operations. Also:

i) A dependency from every entity domain object to the relevant value

object is created.

ii) An operation is added to the service class to perform the correspond-

ing CRUD operation.

iii) A call is added to the controller operation to call the service.

iv) A dependency is added from the service class to the domain object

so that the service class can access the instances of the domain object.

6) Every UI component not owned by a trigger becomes a parameter in the set

of parameters on a signal event belonging to the incoming transition.

7) Every choice in the state machine results in the creation of a controller oper-

ation that returns a value, based on which the transition to be taken is decided.

More details are reported by Fatolahi et al.[53−54].

6.3 APSM-to-WebRatio

We examined the meta-model through non-refining mappings as well; that is

mappings to non-UML-based models. A good example of a non UML-based, and yet



150 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

very popular model is WebML. We have created a set of mappings from APSM to a

specific configuration of WebRatio which is a WebML-based tool. WebML supports a

hierarchy of Site View, Area, and Sub-Areas or Pages recursively. Modeling units are

either content units that are devoted to contain hypertext content or operation units

that facilitate the controlling operation and data-related operations. Pages could be

categorized as:

• Homepage: the default page of a website

• Default Page: the default page of each area

• Landmark Page: pages that are accessible from every other page such as quick

links

The following is a summary of the APSM-to-WebRatio mapping:

1) Site View: Actors are mapped to site views.

a) For every site view, a default homepage is created named after the view

name following by the term ‘Home’

b) For every use case related to the actor

i) For every state machine of the use case

(1) A page is created named after the first presentation state of the state

machine

(2) A link from the default homepage to the page created in previous

step is occupied

2) Entry Units: For every signal event found on a transition exiting a presentation

state an entry unit is inserted within the page equivalent to the presentation state

a) For every data operation associated with the signal event, the entry unit

would be paired with an operation unit. The type of the operation unit depends

on the type of the data operation. For example, a data create operation would

be mapped to a create unit.

3) Operation Units: For every pair of a signal-event/call-event found in the state

machine, the map of the signal event, i.e. the operation unit needs to be supplied by

the followings:

a) Fields that are created based on the call event parameters

b) An OK link that leads the flow toward a target page in case the operation

is successful. The target page could be the mapping of 1) another presentation

state, 2) the homepage of the view or 3) the first presentation state of another

state machine based on the following:

i) The first case is taken when the transition guarded with a true condition

exiting the choice after the call event leads to a presentation state.

ii) The second case is selected if the transition ends at the final state.

iii) The third case is chosen when the transition ends at the final state and

the final state is associated with another use case



Ali Fatolahi, et al.: A meta-model for model-driven Web development 151

c) A KO link that leads the flow towards an error page or message in case the

operation fails.

6.4 APSM-to-GWT

Google Web Toolkit (GWT) is a development framework mainly for client-side de-

sign of Web 2.0 applications using an asynchronous service-based architecture. GWT

extends Java and supports easy design and installation of UI components. The GWT

itself does not support the Java Database Connectivity (JDBC)[56] but it is possible

to use JDBC to connect an RDBMS. We have, however, chosen to use the Java Data

Objects (JDO)[57] mechanism to support data-related features of the platform. As a

result, the application is fully deployable on the Google web server. A typical GWT

application has a server and client package as well as a shared package. The client

package includes the definition of the page UI components while the server side im-

plements the services. Our configuration allows one service for each data composite.

Although it is possible to develop Web 2.0 applications using our two other specific

platforms, the mapping to GWT provides a more convincing evaluation regarding

Web 2.0. The following is a summary of the APSM-to-GWT mapping:

1. Data entities are mapped to Java Persistent Objects. These are only used for

storing data or retrieving them from the server

2. Data Composites are mapped to serialized classes within the shared package,

data composites are used to transfer data as parameters of the service operations.

3. For every data composite a service will be created, the service interface and its

asynchronous map are defined at the client side while the implementation is defined

at the server.

4. Only one page is defined but every presentation state will be mapped to a

panel. This is also true about different actors’ views

5. Every signal event is mapped to a click handler and a key handler. These will

forward signal events to functions defined in a controller class. This controller class

decides which services to refer to for the accomplishment of the tasks. This will form

the mapping of call events.

6. A one-to-one mapping between UI components of APSM and the widgets of

GWT is defined.

7. A one-to-one mapping is also defined between data types. Arrays are mapped

to Java List type and these Lists are instantiated as - ArrayLists whenever required.

Figure 18 shows a high-level visualization of the mapping in this section. As

this figure shows, a panel is assigned to every actor. This supports the definition of

different views for different actors. All other pages and forms are defined as sub-panels

of these panels.



152 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Figure 18. APSM-GWT mapping: a high-level viewpoint

7 Evaluation

Our meta-model successfully satisfies the requirements discussed in Section 2:

• Unlike the existing models, we provide operational support from presentation

layer to data-access layer facilitated by controllers that dispatch triggers throughout

different data services. The transmission of data between layers is supported by data

composites while the data itself is modeled using data entities. As shown in Section

4.2, our model supports a multi-layered MVC architecture.

• Our model remains at the APSM level and is yet adaptable to other SPSMs;

this ensures platform-independence. Our mappings to specific platforms show that

the meta-model can map to multiple platforms. The tested platforms belong to

three different categories. We were able to support specific platforms with different

features than the common selected ones using our transformations. For example,

WebRatio and GWT do not specifically support the controller pattern common; yet

our transformations were able to reformat the controller scheme of the APSM to

WebRatio (as distributed operation units), as well as to GWT (as controller operations

accessed through entry points).

• We use concrete associations between different elements to ensure the required

traceability by MDD transformations independent of naming. For example, the con-

crete association instance between a UIComponent and a DataComposite in Fig. 3

provides the same type of support as suggested by Cichetti and Di Ruscio [82] in terms

of an association from DataCompositionWLink and CompositionWElement.

• Our model is an extension to another UML-based model[17], which has been

designed following the UML extension mechanism.

• Our model pays specific attention to several features of web information systems

such as authentication and session mechanisms, which are not widely handled in other

approaches.

• Another contribution is the consideration of elements that help developing ap-

plications that embody Web 2.0 features. Two main features of our model that help

support Web 2.0 are 1) a presentation state may be composed of several presenta-

tion units, which allows independent update of different units within the same page;

and 2) content-oriented UI elements accept interactions such as comments, feedback



Ali Fatolahi, et al.: A meta-model for model-driven Web development 153

and ranks, as required by Web 2.0. Furthermore, content-oriented UI elements are

attached with search interfaces that imply a fully searchable content.

• Our approach closely relates requirements to lower-level models and hence

increases the chance of developing applications in accordance with requirements.

◦ Use cases, and their behaviour, are modeled using state machines. Several fea-

tures are provided to suggest mappings from different use case structures such

as inclusion/extension, use case steps and scenarios directly to state machines.

The resultant APSM state machines inherit the same type of relationships that

exist among use cases.

◦ We consider UI prototype as a requirement that should be defined as an

input while some other approaches try to generate the UI as an output, e.g.

Wu et al.[7]. Our position is that the desired UI model should be seen as a

requirement – particularly for web-based information systems.

◦ We also include information elements within the description of UI prototypes

as well as the query marks used to elaborate the relationships between a UI

element and associated information elements that are used for the automated

generation of data-related operations.

The transformations were implemented using MediniQVT[60]. In order to do

this, we needed models in the form of ECORE[61]. Thus, the Eclipse Modeling

Framework[61] was used to generate the meta-models. In order to define the input,

an open-source designer, yEd [62] was used. A utility to transform the yEd files to

EMF was created. Once the transformations are executed in MediniQVT, the output

EMFs may be transformed to specific platforms using other utilities that perform file

conversion transformations. The implemented approach is named MODEWIS, which

stands for Model-Driven Development of Web Information Systems. Figure 19 shows

how MODEWIS interacts with other components in this implementation.

A utility, MODEWIS PIM Generator transforms the yEd files to EMF[63]. Once

the transformations are executed in MediniQVT, the output EMFs may be trans-

formed to specific platforms using other utilities that perform file conversion transfor-

mations such as MODEWIS GWT Generator [64]. A VBA module, MODEWIS Proof-

Read [65] has been implemented under Microsoft Visio[66] to visualize the results of

transformations and hence to verify their correctness and validity. A typical scenario

for working with MODEWIS – e.g. targeting GWT - is as follows:

1. Create the PIM according to the meta-model of Fig. 8 using yEd [62]. A useful

set of symbols for defining the PIM using a visual language is available online[95].

2. Transform the yEd file to EMF using MODEWIS PIM Generator [63].

3. Map the resultant PIM to APSM using PIM APSM QVT relations[52].

4. (Optional) Check the validity of the APSM using the APSM tab of MOD-

EWIS ProofRead [65].

5. Map the resultant APSM to GWT using APSM GWT QVT relations[52].

6. (Optional) Check the validity of the GWT model using the GWT tab of

MODEWIS ProofRead [65].

7. Transform the GWT model to GWT code using MODEWIS GWT Generator [64].



154 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Figure 19. The architecture of MODEWIS

The meta-model have been applied to various case studies beside Dilmaj. Exam-

ples include the Election Management System (EMS)[58], a Team Management System

(TMS)[59], and an Account Management System (AMS)[94] that is a project foreseen

by a waste/water management company to replace an existing non-web system. Case

studies have been selected based on several parameters such as the complexity of

CRUD operations, number of use cases, complexity of the use case model in terms of

number of inclusion/extensions and the nature of the domain. For example, a case

study that implements a web-based version of a cash/points card for restaurant re-

tailers was recently added. This case study covers fewer use cases compared to our

other case studies but implements several situations where an operation involves more

than one instance of one entity in the same page.

We have compared an automatically generated TMS application with students’

projects delivered as part of their course projects. The comparison shows that in most

cases the generated application is equal to what students have manually developed

in terms of functionality. Another evaluation was conducted with the AMS. This

evaluation is different because there is an existing system in use. The developers were

gathered in a workshop. They were provided with a brief introduction of the approach

as well as samples outputs. Then they were asked to evaluate how much extra work

would be required to complete a system automatically generated using MODEWIS.

The result was up to 20% in terms of extra lines-of-code would have to be added

after generation. However, most of the extra-code concerns the page design. Finally,

the evaluation of MODEWIS in case of Dilmaj was formed as a group development

work. The experience resulted in a complete application modeled and coded using

MODEWIS except for style sheets. The Dilmaj code is made available online[96].

In summary, results show that applications developed using our meta-model sup-

port the functional requirements, the UI and navigation requirements as well as classes

required to model services, data and the application logic[48]. In some cases, extra

coding work might be required to improve the efficiency, enhance the UI and apply

more complicated logical behaviours. Other manual interventions might be required

to justify the load balancing of data services. Results also show that input models for



Ali Fatolahi, et al.: A meta-model for model-driven Web development 155

Web 2.0 applications are generally composed of more sophisticated UI models while

the state machines describing use cases are often simple and small. On the contrary,

input models for conventional web applications contain relatively more complicated

state machines and simpler UI models for presentations. The development of all case

studies, using MODEWIS, was completed in up to one month depending on the com-

plexity of the application as well as the difficulty of designing mappings from the

APSM to the target specific platforms.

Different types of transformations are required for every target. The mappings

to AndroMDA belong to the category of Refining mappings according to Mellor et

al.[55]. Refining mappings are defined between two sets of models both defined based

on the same meta-model. Since both APSM and AndroMDA are based on UML,

the APSM-to-AndroMDA mappings are refining mappings. The mapping refines the

source model by adding more details to it or altering its existing features. Mappings

to WebRatio and GWT are more complex because the target has a different structure

than the source. These types of transformations may be called Migrating transfor-

mations – according to Mellor et al.[55]- that copy the source model to a completely

different format at the target.

The visual input language is suggested as a facilitator to enable the usage of the

meta-model using a minimal subset and to present a user-friendly way of defining ap-

plications (the PIM). Figures 10, 13 and 14 may seem to present a rather complicated

language. However, one should notice that, these figures are not directly created as

they appear. The actual implementation is made possible using several shortcuts to

facilitate the design of the UI and its presentation. For example, as Fig. 20 shows,

for defining data operations attached to an element, the user does not need to apply

the language as presented in Fig. 10. Instead, drop-down combo boxes are offered

to present existing options and to provide a more user-friendly way of defining the

operations.

Figure 20. Defining attached operations in practice

8 Conclusion

In this paper, we presented a meta-model for web information systems. This



156 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

meta-model is built upon a survey of the existing models used to discover what fea-

tures a meta-model should bear to effectively support model-driven development of

web applications. A selected model was then extended because of the need to cover

more concrete features of web information systems. Our meta-model provides ele-

ments to model different aspects of a web application at an abstract level. Models

instantiated from this meta-model will carry many of the common elements of web

applications without being dependent to any specific web platform.

Our meta-model supports abstract models of data-related features both at the

UI and service level. It also covers basic features required to specify the functionality

expected from Web 2.0 applications. The meta-model helps avoid commonly-found

inconsistencies in web models. These inconsistencies can cause ambiguities when used

in a model-driven context. Both the input models and transformation to APSMs

can be reused to reduce development time. Finally, the integration of functional,

usability and data requirements in the meta-model increases the chances of developing

applications in accordance with requirements.

Our future work is mainly devoted to developing an overarching application that

provides an integrated environment of all implemented utilities supported by a single

user-friendly interface. This suite will provide add-on utilities for the developer to

customize the meta-model and help develop and deploy platform-specific transforma-

tions.

References

[1] Ceri S, Fraternali P, Bongio A, Brambilla M, Comai S, Matera M. Designing Data-Intensive

Web Applications. Morgan Kaufmann. 2006.

[2] Fatolahi A, Somé SS, Lethbridge TC. A model-driven approach for the semi-automated gen-

eration of Web-based applications from requirements. Proc. of International Conference on

Software Engineering and Knowledge Engineering. 2008. 619–624.

[3] Hernádez C, Quintero R, Sáchez LZ. Towards the Definition of a Metamodel for the Conceptual

Specification of Web Applications Based on Social Networks. ICCSA (2) 2010: 361–369.

[4] Kavaldjian S. A model-driven approach to generating user interfaces. Proc. of the the 6th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, Doctoral Symposium. 2007. 603–606.

[5] Nikolaidou M, Anagnostopoulos D. A systematic approach for configuring Web-based informa-

tion systems. Journal of Distributed and Parallel Databases, May 2005, 17(3): 267–290.

[6] Schauerhuber A, Wimmer M, Kapsammer E, Schwinger W, Retschitzegger W. Bridging WebML

to model-driven engineering: from document type definitions to meta object facility. IET SOFT-

WARE, 1-3. 2007. 81–97.

[7] Wu JH, Shin SS, Chien JL, Chao WS, Hsieh MC. An extended MDA method for user interface

modeling and transformation. The 15th European Conference on Information Systems. 2007.

1632–1641.

[8] AndroMDA, www.andromda.org, 15-02-2007.

[9] WebRatio, www.webratio.com, 2-2-2008.

[10] Jr. Whitehead EJ, Ge G, Pan K. Automatic generation of hypertext system repositories: a

model driven approach. Hypertext 2004: 205–214.

[11] Google Web Toolit, Google Code, http://code.google.com/webtoolkit/, June 2010.

[12] OMG. MDA Guide Version 1.0.1, 12th June 2003.

[13] OMG. Unified Modeling Language: Superstructure, February 2007.

[14] Ceri S, Fraternali P, Bongio A. Web modeling language (WebML): a modeling language for

designing Web sites. Computer Networks, 2000, 33(1-6): 137–157.

[15] Kroiß C, Koch N. UWE Metamodel and Profile User Guide and Reference, Technical Report,



Ali Fatolahi, et al.: A meta-model for model-driven Web development 157

February 2008. Available from (www.pst.ifi.lmu.de/projekte/uwe).

[16] IBM – Rational Unified Process (RUP), http://www-01.ibm.com/software/awdtools/rup/, Sep-

tember 2009.

[17] Botterweck G. Multi-Front-End-Engineering - Ein modellgetriebener Ansatz zur Entwicklung

von Anwendungen mit mehreren Front-Ends[Ph.D. Thesis], Koblenz, Germany: Verlag Dietmar

Foelbach, ISBN 978-3934795716. 2007. http://www.amazon.de/Multi-Front-End-Engineering-

modellgetriebener-Entwicklung-Anwendungen-Fronts-Ends/.

[18] Muller PA, Studer P, Bézivin J. Platform Independent Web Application Modeling. “UML” -

The Unified Modeling Language. Springer Berlin / Heidelberg. 2003, 2863/2003: 220–233.

[19] Baresi L, Colazzo S, Mainetti L, Morasca S. W2000: A Modeling Notation for Complex Web

Applications. In: Mendes E, Mosley N, eds. Web Engineering: Theory and Practice of Metrics

and Measurement for Web Development. Springer, ISBN: 3-540-28196-7, 2006.

[20] Schmidt D, Stal M, Rohnert H, Buschmann F. Pattern-Oriented Software Architecture. Chich-

ester [England]. New York: Wiley, 2000-c2007.

[21] He C, Tu W, He K. Role based platform independent web application modeling. Proc. of

the Sixth International Conference on Parallel and Distributed Computing, Applications and

Technologies (PDCAT’05). 411–415.

[22] Blankenhorn K. A UML Profile for GUI Layout, Master’s Thesis, University of Applied Sciences

Furtwangen, Department of Digital Media May 23, 2004.

[23] Da Silva PP, Paton NW. Improving UML Support for User Interface Design: A Metric Assess-

ment of UMLi. ICSE Workshop on SE-HCI. 2003. 76–83.

[24] Vanderdonckt J. A MDA-compliant environment for developing user interfaces of information

systems. Advanced Information Systems Engineering. Springer Berlin/Heidelberg. 2005(3520):

16–31.

[25] Schattkowsky T, Lohmann M. Towards employing UML Model Mappingsfor Platform Indepen-

dent User Interface Design. Springer Berlin / Heidelberg. Volume 3844/2006, Satellite Events

at the MoDELS Conference. 2005. 201–209.

[26] Diamodl. http://www.idi.ntnu.no/∼hal/research/diamodl, July 19, 2008.

[27] Li J, Chen J, Chen P. Modeling web application architecture with UML . Proc. of the 36th Inter-

national Conference on Technology of Object-Oriented Languages and Systems, 2000. TOOLS

- Asia 2000. 265–274.

[28] Bogdan C, Falb J, Kaindl H, Kavaldjian S, Popp R, Horacek H, Arnautovic E, Szep A. Gen-

erating an abstract user interface from a discourse model inspired by human communication.

HICSS. 2008. 36.

[29] Costa D, Nóbrega L, Nunes NJ. An MDA approach for generating web interfaces with UML

ConcurTaskTrees and canonical abstract prototypes. Task Models and Diagrams for Users

Interface Design. 137–152.

[30] De Souza RAC, de Barros RSM. A Model-Driven Method for the Development of Web Appli-

cations User Interaction Layer. TASE 2008. 91–98.

[31] Sukaviriya N, Sinha V, Ramachandra T, Mani S. Model-Driven approach for managing human

interface design life cycle. MoDELS. 2007. 226–240.

[32] Nunes DA, Schwabe D. Rapid prototyping of web applications combining domain specific lan-

guages and model driven design. ICWE. 2006. 153–160.

[33] Freudenstein P, Nussbaumer M, Allerding F, Gaedke M. A domain-specific language for the

model-driven construction of advanced web-based dialogs. Proc. of the 17th International

conference on World Wide Web. 2008. 1069–1070.

[34] Tongrungrojana R, Lowe D. WIED: A Web Modelling Language for Modelling Architectural-

Level Information Flows. J. Digit. Inf. 2004, 5(2).

[35] Tongrungrojana R, Lowe D. WebML+: a Web modeling language for forming a bridge between

business modeling and information modeling. SEKE. 2003. 17–24.

[36] Wan J, Bieber M. GHMI: A general hypertext data model supporting integration of hypertext

and information systems. HICSS (2) 1996. 47.

[37] Wan J, Bieber M, Wang JTL, Ng PA. LHM: a logic-based hypertext data model for integrating

hypertext and information systems. HICSS (3) 1995. 350.



158 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

[38] O’Reilly T. What Is Web 2.0. O’Reilly Network. Available from: www.oreillyn- et.com/pub/a/

oreilly/tim/news/2005/09/30/what-is-web-20.html. Retrieved 2006-08-06.

[39] Valverde F, Pastor O. Facing the technological challenges of Web 2.0: A RIA model-driven

engineering approach. WISE 2009. 2009. 131–144.

[40] Fons J, Valderas P, Ruiz M, Rojas G, Pastor O. OOWS: A method to develop Web applications

from Web-oriented conceptual models. Proc. of the 7th World Multiconference on Systemics,

Cybernetics and Informatics (SCI). Orlando, FL – USA, July 2003.

[41] UWE-UML based Web Engineering. http://uwe.pst.ifi.lmu.de, 2-3-2008.

[42] Sakowicz B, Murlewski J, Labus A, Napieralski A. JWay - Model-driven J2EE application

framework. Proc. of the International Conference of Mixed Design of Integrated Circuits and

Systems. 2007. 703–706.

[43] Cicchetti A, Di Ruscio D. Decoupling web application concerns through weaving operations.

Science of Computer Programming, 2008, 70(1): 62–86.

[44] Brambilla M, Fraternali P, Tisi M. A metamodel transformation framework for the migration

of WebML models to MDA. In: Koch N, Houben GJ, Vallecillo A, eds. The 4th International

Workshop on Model-Driven Web Engineering (MDWE 2008), CEUR Proceedings. 2008, 389:

91–105.

[45] Moreno N, Fraternalli P, Vallecillo A. A UML 2.0 profile for WebML modeling. Workshop Proc.

of the Sixth International Conference on Web Engineering, Second International Workshop on

Model Driven Web Engineering (MDWE’06). 2006.

[46] Moreno N, Fraternali P, Vallecillo A. WebML modeling in UML. IET Software Journal, 2007.

[47] Schauerhuber A, Wimmer M, Kapsammer E, Schwinger W, Retschitzegger W. Bridging WebML

to model-driven engineering: from document type definitions to meta object facility. IET SOFT-

WARE, 2007, 1-3: 81–97.

[48] Fatolahi A, Somé SS, Lethbridge TC. A meta-model for model-driven development of Web appli-

cations. Technical Report, July 2010. www.site.uottawa.ca/eng/school/publications/techrep/

2010/TR-2010-04.pdf.

[49] Dilmaj. http://sokhangozaar.appspot.com/?locale=en US#, July 2010.

[50] Fatolahi A. An integrated visual language for modeling Web UIs. modewis. blogspot.com/2010/

08/integrated-visual-language-for-modeling.html.

[51] OMG. MOF QVT Final Adopted Specification, November 2005.

[52] Fatolahi A, Somé SS, Lethbridge TC. Automated generation of abstract Web models using QVT

relations. September 2010, Technical Report TR-2010-06, School of Information Technology and

Engineering, University of Ottawa. www.site.uottawa.ca/eng/ school/publications/techrep/2010.

[53] Fatolahi A, Somé SS, Lethbridge TC. Towards a semi-automated model-driven method for the

generation of Web-based applications from use cases. Proc. of the 4th Model Driven Web

Engineering Workshop (MDWE2008). MoDELS’2008. 2008. 31–45.

[54] Fatolahi A, Somé SS, Lethbridge TC. A model-driven approach for the semi-automated gen-

eration of Web-based applications from requirements. Proc. of International Conference on

Software Engineering and Knowledge Engineering. 2008. 619–624.

[55] Mellor SJ, Scott K, UHL A, Weise D. MDA Distilled: Principles of Model-Driven Architecture.

Boston: Addison-Wesley, c2004.

[56] JDBC Overview. http://java.sun.com/products/jdbc/overview.html, July 2010.

[57] Java Data Objects. http://java.sun.com/jdo/, July 2010.

[58] Lethbridge TC, Laganière R. Object-Oriented Software Engineering: Practical Software Devel-

opment using UML and Java. London : McGraw-Hill, 2001.

[59] Stéphane Sotèg Somé’s homepage. http://www.site.uottawa.ca/∼ssome/, Fall 2008.

[60] mediniQVT – Trac. http://projects.ikv.de/qvt, 3 May 2008.

[61] EMF. http://www.eclipse.org/modeling/emf/, September 2009.

[62] Yed graph Editor. http://www.yworks.com/en/products yed about.html, February 2010.

[63] MODEWIS PIM Generator. September 2010, site.uottawa.ca/∼afato092/modewis pim gener-

ator.jar.

[64] MODEWIS GWT Generator. September 2010, site.uottawa.ca/∼afato092/modewis gwt gener-

ator.jar.



Ali Fatolahi, et al.: A meta-model for model-driven Web development 159

[65] MODEWIS ProofRead. site.uottawa.ca/∼afato092/modewis-proofread.vsd, September 2010.

[66] Visio Information. visio.mvps.org, March 2010.

[67] Cockburn A. Writing Effective Use Cases. Boston: Addison-Wesley, c2001.

[68] Larman C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development. Prentice Hall PTR. 2005.

[69] Meliá S, Gómez J, Koch N. Improving Web design methods with architecture modeling. In:

Bauknecht K, Pröll B, Werthner H, eds. The 6th International Conference on Electronic Com-

merce and Web Technologies (EC-Web 2005). Copenhagen, Denmark, LNCS 3590, Springer-

Verlag. August 2005. 53–64.

[70] The Standish Group International Report. Extreme Chaos, 2001.

[71] Verner J, Cox K, Bleistein SJ, Cerpa N. Requirements engineering and software project success:

an industrial survey in Australia and the US. Australian Journal of Information Systems, 2005,

(13): 225–238.

[72] Han WM, Huang SJ. An empirical analysis of risk components and performance on software

projects. Journal of Systems and Software, 2007, 80(1): 42–50.

[73] Molina F, Pardillo J, Ambrosio J, Álvarez T. Modelling Web-Based Systems Requirements Using

WRM. WISE Workshops 2008. 122–131.

[74] Escalona Cuaresma MJ, Aragón G. NDT. A model-driven approach for Web requirements. IEEE

Trans. on Software Engineering, 2008, 34(3): 377–390.

[75] Escalona MJ, Torres J, Meji\’as M, Reina AM. NDT-tool: A tool case to deal with requirements

in Web information systems. Proc. of the Fourth Int’l Conf. Web Eng. 2003. 212–213.

[76] Lee H, Lee C, Yoo C. A scenario-based object-oriented methodology for developing hypermedia

information systems. 31st IEEE Annual Conference on Systems Science. Sprague R, 1998.

121–138.

[77] Suh W, Lee H. A methodology for building content-oriented hypermedia systems. Journal of

System Software, 2001, 56: 115–131.

[78] Weidenhaupt K, Pohl K, Jake M, Haumer P. Scenarios in system development: current practice.

IEEE Software, 1998, 2: 34–45.

[79] Koch N, Zhang G, Escalona MJ. Model transformations from requirements to web system design.

Proc. of the 6th International Conference on Web Engineering, 2006. 281–288.

[80] Liang X, Kop C, Ginige A, Mayr HC. Turning concepts into reality - bridging requirements

engineering and model-driven generation of Web-applications. In: Filipe J, Helfert M, Shishkov

B, eds. Proc. of the Second International Conference on Software and Data Technologies

(ICSOFT 2007). INSTICC Press, Barcelona, Spain, 2007. 109–116.

[81] Selic B. Model-driven development: its essence and opportunities. Ninth IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing (ISORC). 2006. 313–319.

[82] Cicchetti A, Di Ruscio D. Decoupling Web application concerns through weaving operations.

Science of Computer Programming, 2008, 70(1): 62–86.

[83] Schmidt D, Stal M, Rohnert H, Buschmann F. Pattern-Oriented Software Architecture. Chich-

ester [England], New York: Wiley, 2000-c2007.

[84] CPPCMS. http://cppcms.sourceforge.net/wikipp/en/page/main, December 2010.

[85] Fusebox. http://www.fusebox.org/, December 2010.

[86] ASP.Net. www.asp.net, December 2010.

[87] ColdFusion. http://cfwheels.org/, December 2010.

[88] Apache Struts. http://struts.apache.org/, December 2010.

[89] JavaServer Faces Technologies. www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.

html.

[90] Seam Framework. http://seamframework.org/, December 2010.

[91] Ruby on rails. www.rubyonrails.org, December 2010.

[92] Aida/Web Smalltalk. http://www.aidaweb.si/, December 2010.

[93] Catalyst Web Framework. http://www.aidaweb.si/, December 2010.

[94] AMS APSM. http://www.site.uottawa.ca/∼afato092/AMS APSM Ali Fatolahi.zip, December

2010.

[95] MODEWIS yEd Workshop. http://www.site.uottawa.ca/∼afato092/modewis yed workshop.zip,



160 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Dec 2010.

[96] Sokhangozaar. http://code.google.com/p/sokhangozaar/, January 2010.

[97] Lowe D, Henderson-Sellers B, Gu A. Web Extensions to UML: Using the MVC Triad. ER 2002.

105–119.

[98] Gu A, Lowe D, Henderson-Sellers B. Web modelling languages: the gap between requirements

and current exemplars. Proc. of Australian World Wide Web Conference 2002.

http://ausweb.scu.edu.au/aw02/papers/refereed/lowe/paper.html.

[99] Meta-Model Discussions. Official WebRatio Forum Notes.

groups.google.com/gr- oup/webratio/browse thread/thread/1d5fe8425ea77da1?hl=en. 15 April

2011.

[100] Almeida PJ, Dijkman R, van Sinderen M, Pires LF. On the notion of abstract platform in MDA

development. Proc. of the 8th IEEE International Enterprise Distributed Object Computing

Conference (EDOC 2004). 253–263.

Appendix A – The Botterweck Model

Botterweck’s model includes the following packages - More details are provided

in Ref.[48] -

• State Machine includes the elements required to build a state machine in accor-

dance with UML state machines.

• UI Structure encloses the elements required to build the general structure of

the UI model such as pages, units and navigation links.

• UI Components includes the modeling elements for the UI components used for

communications with end users.

• Data Model follows UML’s core model for specifying classes, objects, data types

and their attributes.

• Data Components is a part of the model that relates the data model to UI

components in order to transfer data in and out of the presentation layer.

• Web Services is a part of the model that is provided to give support to web

service applications. The package can be used for regular web applications as well.

Figure A1. UI structure model from Ref. [17]



Ali Fatolahi, et al.: A meta-model for model-driven Web development 161

Figure A2. Data-oriented elements of UI components from Ref. [17]

Figure A3. Control-oriented elements of UI components from Ref. [17]

Figure A1 details the UI Structure package. According to this model, an ap-

plication can have several user interfaces. A user interface is a special kind of UI

composite, where a UI composite is a collection of UI components. UI components

are elements that the user can see and directly communicate with. A UI composite

may be a presentation, which in association with a state makes a presentation state

meaningful. This package also contains the abstract elements used by concrete UI

elements in a UI element model.

Figure A2 shows a subsection of the UI components model. These components

include: components connected to data elements, and composite elements such as

input fields, selection boxes and table views. Figure A3 presents the model for plain

hypertext, links and buttons. Triggers occurring in a presentation could be of one of

the following three types: hyperlinks, operation triggers such as submit buttons that

require an action in the controller and/or service layer and navigation trigger that

only cause a change in navigation path.

The following is a list of important associations that exist on other parts of the

abstract model that are required for better understanding of mappings and transfor-

mations:

• A transition can be associated to several Operations. This capability is used to

model controller operations (Fig. A4).



162 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

• Transitions can also be associated to several Events. This serves to model signal

events over the transitions. UI triggered events are a special type of events, which

can have operation triggers as triggers (Fig. A4).

• Data Oriented elements are associated with Data Composites that are collec-

tions of data elements. Data composites are connected with a special class called

OperationAdapter, which could be assigned one of the following roles corresponding

to CRUD operations (Fig. A5).

Figure A4. Transition in relation with events and operations from Ref. [17]

Figure A5. Data composite related to operation adapters Ref. [17]


