
Int J Software Informatics, Volume 6, Issue 2 (2012), pp. 307–325 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2012 by ISCAS. All rights reserved. Tel: +86-10-62661040

Towards True Dynamic Workflow for Emergency

Response

William Tepfenhart and Jiacun Wang

(Department of Computer Science and Software Engineering, Monmouth University,

West Long Branch, NJ 07728, USA)

Abstract Emergency management is a process by which all individuals, groups, and

communities manage hazards in an effort to avoid or ameliorate the impact of disasters

resulting from the hazards. Emergency response workflow is dynamic because there are lots

of uncertainties with the course of hazard development and rescue effort. Existing dynamic

workflow modeling technologies are not sufficient to describe the complex emergency response

processes which are context aware and data-driven. In this paper, we propose an intelligent

agent based approach to supporting the emergency response process management. The

approach integrates BDI (Belief-Desire-Intention) agents with WIFA workflow model, which

was developed in our previous work, to a powerful tool for truly dynamic workflow modeling

and enactment. A BDI agent is an intelligent agent. Beliefs represent the informational

state of the agent - in other words its beliefs about the world. Desires (or goals) represent

the motivational state of the agent. They represent objectives or situations that the agent

would like to accomplish or bring about. Intentions represent the deliberative state of the

agent: what the agent has chosen to do. Intentions are desires to which the agent has to

some extent committed. Workflows represent sequences of actions that an agent can perform

to achieve one or more of its intentions. Based on this approach, we developed an emergency

response training tool which is customizable for individual organization use and scalable to

incident response settings from rural to urban domestically and foreign outposts for military

applications, and can operate at a holistic exercise level.

Key words: intelligent agent; BDI framework; emergency response systems; dynamical

workflow

Tepfenhart W, Wang J. Towards true dynamic workflow for emergency response. Int J

Software Informatics, Vol.6, No.2 (2012): 307–325. http://www.ijsi.org/1673-7288/6/i122.

htm

1 Introduction

Emergency management is a process by which all individuals, groups, and com-

munities manage hazards in an effort to avoid or ameliorate the impact of disasters

resulting from the hazards. It involves four phases: mitigation, preparedness, re-

sponse, and recovery. Mitigation efforts attempt to prevent hazards from developing

into disasters altogether, or to reduce the effects of disasters when they occur. In

This work is sponsored by the contract W911SR-08-C-0083 through the US Army Research, Devel-
opment and Engineering Command of the Department of Defense.
Corresponding author: William Tepfenhart, Email: btepfenh@monmouth.edu
Received 2011-03-14; Revised 2011-07-10; Accepted 2011-11-02; Published online 2012-03-19.

308 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

the preparedness phase, emergency managers develop plans of action for when the

disaster strikes and analyze and manage required resources. The response phase ex-

ecutes the action plans, which includes the mobilization of the necessary emergency

services and dispatch of first responders and other material resources in the disaster

area. The aim of the recovery phase is to restore the affected area to its previous

state. Effective emergency management relies on thorough integration of emergency

plans at all levels of government and non-government involvement.

Given the complexity of emergency incidents and emergency response process,

it is highly desirable to have a computerized tool to assist emergency managers and

first responders in taking appropriate actions in accordance with the departmental

plan effectively. A well designed and developed workflow tool could provide process

control of the emergency procedures to ensure that they are completed in the correct

order and on time. The workload, stress and chance of human error during emergency

operation may be reduced with such a tool in place[13].

One of the most important features that emergency response workflows possess

is high flexibility[12]. During the course of an emergency event, there are lots of

uncertainties which cannot be predicted before it happens. No incident and the

response to the incident would follow any predefined fixed workflow to progress. This

is totally different from normal manufacturing system workflows where, once the

workflow is established, the users just execute it repeatedly without the necessity

of frequent modification. Therefore, emergency response workflows are typical of

dynamic workflows.

On the other hand, all responding agencies manage people, equipment, facilities,

and supplies to accomplish their tasks. However, emergencies can require more spe-

cialized and larger quantity of resources than the responding agencies have available.

Resource management is a critical part of emergency management and ranges from

determining needs to finding and staging resources to meet these needs. Resource

Management does not fall under a centralized control element, but is coordinated from

the Emergency Operations Centers (EOC) during emergency operations[14]. When

an agency receives a resource request, it checks its resource availability. If the agency

cannot satisfy the requestor’s needs, then the requestor needs to send the request to

other agencies. Therefore, the workflow is data driven. The biggest issue here is the

coordination between the resource requesting and serving units. Spatial and orga-

nizational distribution of the participating emergency management agencies results

in distributed knowledge, distributed control and hence suboptimal resource usage.

This results in very complex processes with many alternative paths and sections that

cannot be planned in advance.

Current emergency response practice is predominantly based on static pre-planning

with assumptions being made about the event. This approach suffers inflexibility in

the face of novel events characterised by high urgency and the evolving operational

conditions[3]. It is impractical to assemble an exhaustive list of potential major events

and develop the corresponding response plans. One solution to this is dynamically

composing response workflow on-the-fly based on what’s happening in the field.

Intelligent Agents have traditionally been applied to the control and optimization

of industrial transport and production processes. In contrary to that, research on

workflow management and agents in business contexts is more involved with human

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 309

processes, typically in the domain of administration and services[2]. In this paper,

we introduce the design of an intelligent agent based emergency response workflow

model. BDIw (Belief-Desire-Intention-Workflow) agents are used to simulate various

types of emergency responding agencies, while a trainee only needs to interact with

these simulated agencies in the process of emergency response. A BDIw agent is an

intelligent agent. Beliefs represent the informational state of the agent - in other

words its beliefs about the world. Desires (or goals) represent the motivational state

of the agent. They represent objectives or situations that the agent would like to

accomplish or bring about. Intentions represent the deliberative state of the agent:

what the agent has chosen to do. Intentions are desires to which the agent has to

some extent committed. Workflows represent sequences of actions that an agent can

perform to achieve one or more of its intentions. Messages exchanged between agents

and the responders are coded in the standard XML format. The intelligent based

workflow framework helps achieve a truly dynamic workflow modeling and execution

by making on-the-fly decisions on the paths to proceed with based on real-time data

and events.

The BDI framework offers a few distinguished advantages which help address

the challenges that we have mentioned above. For example, the BDI paradigm is

based on folk psychology, where the core concepts of the paradigm map easily to

the language people use to describe their reasoning and actions in everyday life [9].

Besides, the BDI paradigm is a relatively mature framework and has been successfully

used in a number of medium to large scale software systems. In Ref. [11], Shendarkar

et al. applied an extended BDI framework to simulate crowd evacuation from an

area under a terrorist bomb attack. As part of on-going research into optimizing

the response to large-scale emergencies, an agent-based simulation system developed

to evaluate different rescue plans is presented in Ref. [5]. In Ref. [8], agent-based

flood evacuation simulation of life-threatening conditions using vitae system model

is discussed. The authors of Ref. [3] introduced an integrated framework aimed at

adaptive co-ordination of emergency response to dynamic, fast evolving and novel

events on a large-scale. The proposed framework consists of a decision-support system

and an agent-based simulation of emergency response to large-scale events occurring in

real geographical locations. In Ref. [4], Gonzalez presented a crisis response simulation

model architecture combining a discrete-event simulation environment for a crisis

scenario with an agent-based model of the response organization. There are also

other efforts in intelligent agent based emergency response reported, but we didn’t

find any work that combines the advantage of both workflow technology and software

agents in achieving dynamic workflow to emergency response.

Based on the BDIw approach, we developed a training tool which allows EOCs to

train their personnel. Traditionally, emergency responders are trained through exer-

cises. There are three major types of exercises: table top exercises, functional exercises

and full scales exercises. All these training approaches require significant amount of

planning time and are very costly in execution. Therefore, it is of paramount urgent

to design and develop a computer-based training tool which allows users to easily

construct training scenarios at scales they want to get trained, and conduct the train-

ing at the convenience of their desktops. Out tool has many distinguished features,

including: (1) It is customizable for individual organization use. (2) It is scalable to

310 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

incident response settings from rural to urban domestically and foreign outposts for

military applications. (3) It operates at a holistic exercise level.

An appropriate control structures allows the agents to function based on data

rather than explicit procedural instructions. With this in mind, our agents are devel-

oped such that they are extensible without requiring additional programming. This

is to be compared to the JACK BDI programming extension in which all capabilities

are explicitly programmed[6]. Effective incident management presents a number of

challenges to the responsible agencies[7].

The rest of the paper is organized as follows: BDI agents and WIFA workflow

model are briefly introduced in Section II. BDIw framework, its components and its

application to emergency response workflow modeling is presented in Section III. An

example that shows how the system handles a resource request from an emergency

management center step-by-step is given in Section IV. Section V summarizes the

contribution of the paper.

2 BDI Agents and WFIA Workflow

The BDIw agent integrates the concepts of a BDI agent and the WIFA workflow

model. We briefly describe these two BDIw components in this section.

2.1 BDI agent overview

The belief-desire-intention (BDI) agent architecture is a prominent architecture

in agent-oriented software engineering. It is intended for agents that are carrying

out “practical reasoning”, which covers many real-world applications such as logistics

and manufacturing. This is based on the work of the philosopher Michael Bratman[1].

Practical reasoning is defined as reasoning toward actions, as opposed to theoretical

reasoning, which is reasoning about beliefs. Practical reasoning can be broken down

further into two activities: deliberation (deciding what goals to achieve) and means-

end reasoning (how to achieve a goal)[15].

Beliefs represent the informational state of the agent - in other words its beliefs

about the world (including itself and other agents). Beliefs can also include inference

rules, allowing forward chaining to lead to new beliefs. Typically, this information

will be stored in a database (sometimes called a belief base), although that is an

implementation decision. Desires (or goals) represent the motivational state of the

agent. They represent objectives or situations that the agent would like to accomplish

or bring about. Examples of desires might be: find the best price, go to the party or

become rich. Intentions represent the deliberative state of the agent: what the agent

has chosen to do. Intentions are desires to which the agent has to some extent

committed (in implemented systems, this means the agent has begun executing a

plan). Plans are sequences of actions that an agent can perform to achieve one or

more of its intentions.

A simple loop of execution for a BDI agent is as follows [10]:

• generate options from event queue;

• deliberate over options;

• update the intentions stack with the selected options;

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 311

• execute intentions;

• get new external events;

• drop successful attitudes;

• drop impossible attitudes.

This control flow reflects important components of practical reasoning: option

generation, deliberation, execution, and intention handling. But it does not show

how an intention is executed and how a plan is structured in general. In this paper,

we extend the BDI model by (1) using formal workflows to represent plans to fulfill

intentions, and (2) representing each task in a workflow using an adaptor, which is an

executable program. The extended BDI model is call BDIw model, where w stands

for workflows.

2.2 Basic WIFA workflow model

This section only gives a brief overview of WIFA model. A detailed description

is available in Ref. [12].

A workflow is composed of tasks that are executed according to some order

specified by precedence constraints. The preset of a task Tk is the set of all tasks that

are immediate predecessors of the task, denoted by *Tk; the postset of Tk is the set

of all tasks that are immediate successors of the tasks, denoted by Tk*. If |Tk*| > 1,

then the execution of Tk might trigger multiple tasks. Suppose {Ti, Tj} ⊆ Tk*. There

are two possibilities: (1) Ti and Tj can be executed simultaneously, and (2) only one

of them can be executed, and the execution of one will disable the other, due to the

conflict between them. We denote the former case by cij = cji = 0, and the latter

case by cij = cji = 1.

In WIFA, a workflow is defined as a 5-tuple: WF = (T , P , C, A, S0), where

1) T = {T1, T2, . . . , Tm} is a set of tasks, m > 1.

2) P = (pij)mxm is the precedence matrix of the task set. If Ti is the direct

predecessor of Tj , then pij = 1; otherwise, pij = 0.

3) C = (cij)mxm is the conflict matrix of the task set. cij ∈ {0, 1} for i= 1, 2,

. . . , m and j =1, 2, . . . , m.

4) A= (A(T1), A(T2), . . . , A(Tm)) defines pre-condition set for each task. ∀Tk ∈

T ,A(Tk): *Tk → 2∗Tk . Let set A′ ∈ A(Tk). Then Ti ∈ A′ implies pik = 1.

5) S0 ∈ {0, 1, 2, 3}m is the initial state of the workflow.

A state of a workflow describes the execution status of each task at a time. It

is denoted by S = (S(T1), S(T2), . . . , S(Tm)), where S(Ti) ∈ {0, 1, 2, 3}. S(Ti) =

0 means Ti is not executable at state S and not executed previously (by previously

we mean before state S is reached); S(Ti) = 1 means Ti is executable at state S and

not executed previously ; S(Ti) = 2 means Ti is not executable at state S and executed

previously ; and S(Ti) = 3 means Ti is executable at state S and executed previously.

At the initial state S0, for any task Ti ∈ T , if there is no Tj such that pji = 1,

then S0(Ti) = 1; otherwise S0(Ti) = 0.

A task that has no predecessor does not need to wait for any other task to execute

first. In other words, the task is executable immediately. We assume that there is one

and only one such task in a workflow, called start task. It constitutes the initial trigger

312 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

of a workflow. We also assume there is one and one task that has no successors, which

is the end task. The execution of an end task marks the completion of a workflow.

The dynamics of a WIFA workflow model are captured by state transitions. State

transitions are guided by the following two rules:

If Sa(Ti)Sb, then ∀Tj ∈ T ,

1) If Tj = Ti then Sb(Tj) = 2;

2) If Tj 6= Ti then the state value of Tj at new state Sb depends on its state value

at state Sa. We consider four cases:

Case A – Sa(Tj) = 0:

If pij = 1 and ∃A ∈ A (Tj) such that Sb(Tk) = 2 for any Tk ∈ A, then Sb(Tj) =

1; otherwise Sb(Tj) = 0.

Case B – Sa(Tj) = 1

If cij = 0 then Sb(Tj) = 1; otherwise Sb(Tj) = 0.

Case C – Sa(Tj) = 2

If pij = 1 and ∃A ∈ A (Tj) such that Sb(Tk) = 2 for any Tk ∈ A, then Sb(Tj) =

3; otherwise Sb(Tj) = 2.

Case D – Sa(Tj) = 3

If cij = 0 then Sb(Tj) = 3; otherwise Sb(Tj) = 2.

A well-formed workflow is a workflow in which there are no dangling tasks and

given any reachable state, there is always a path leading the workflow to finish. A

confusion-free workflow is a well-formed workflow such that:

1) Either all tasks triggered by the same task are in conflict, or no pair of them

is in conflict.

2) A task becomes executable either when all of its predecessor tasks are executed,

or when any one of them is executed.

From the perspective of triggering condition and relation among triggered tasks,

tasks in a confusion-free workflow can be classified into four types: AND-in-AND-

out, AND-in-XOR-out, XOR-in-AND-out, and XOR-in-XOR-out. As indicated by

the name, for example, a task belongs to this class of AND-in-AND-Out iff it is not

executable until all its direct predecessor tasks are executed, and after it is executed,

all its direct successor tasks can be executed in parallel.

Figure 1 shows a six-task workflow, in which T3 and T4 are in conflict (i.e., T2 is

a AND-in-XOR-out task) and T5 is executable after either T3 or T4 is executed (i.e.,

T5 is an XOR-in-AND-out task). In WIFA notation, T = {T1, T2, T3, T4, T5, T6}. P

is a 6x6 matrix with p12 = p23 = p24 = p35 = p45 = p56=1 and all other pij=0. C is

also a 6x6 matrix with c34 = c43=1 and all other cij=0. A(T1) = ∅, A(T2) = {T1},

A(T3) = A(T4) = {T2}, A(T5) = {{T3}, {T4}}, A(T6) = {T5}. The initial state S0

= (1, 0, 0, 0, 0, 0). T1 is the only task executable at the initial state S0. When T1 is

executed, T2 is triggered, and the new state is S1 = (2, 1, 0, 0, 0, 0). The execution

of T2 will trigger both T3 and T4, and the new state after the execution is S2 = (2,

2, 1, 1, 0, 0). No we can select either T3 or T4 for execution. Suppose we execute T3

at S2, then it follows from the state transition rules that the resultant state is S3 =

(2, 2, 2, 0, 1, 0), where S3(T4) = 0, meaning T4 is no longer executable because it

conflicts with T3. Executing T5 at S3 results in S4 = (2, 2, 2, 0, 2, 1). Executing T6

at S4 results in S5 = (2, 2, 2, 0, 2, 2), and the workflow execution is finished.

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 313

Figure 1. A six-task workflow

2.3 Resource-Constrained workflow model

A resource-constrained workflow is defined as RCWF = (WF, Rc, Rp, ES0),

where

1) WFCS : The control flow as defined in Definition 1.

2) Rc = (Rc(T1), Rc(T2), . . . , Rc(Tm)) describes the quantity of each type of

resource consumption in a task execution, with Rc(Tk) = {rc
k1, r

c
k2, . . . , r

c
kn}, where

rc
kj represents the quantity of the resource of type j consumed (or held) when task

Tk is executed.

3) Rp = (Rp(T1), Rp(T2), . . . , Rp(Tm)) describes the quantity of each type of

resource production in a task execution, with Rp(Tk) = {rp
k1, r

p
k2, . . . , r

p
kn}, where r

p
kj

represents the quantity of the resource of type j produced (or released) when task Tk

is executed.

4) ES 0 = (S0, R0) is the initial state, with S0 ∈ {0, 1, 2, 3}m being the state

element of the underline basic WIFA workflow WF and R0, the value of R at the

initial state, being the element representing the availability of resources.

Task Tk at state ESi is said to be executable if and only if it meets all of the

following:

1) Control-Ready : Si(Tk) ∈ {1, 3}, which means Tk is triggered in terms of

control flow. In another words, from the control flow aspect of the workflow, the task

has to be triggered by its predecessor(s).

2) Resource-Ready : Rc(Tk) 6 Ri, a task, Tk, requires a certain amount of re-

sources in order to be executed. If the current set of resources, Ri, does not have

suficient resources required to execute the task, then the task is not executable.

Once the task is executed, the new state ESj = (Sj , Rj) will be determined

according to the following rules:

1) Sj is changed according to the state transition rules of basic WIFA workflow.

2) The resource state Rj is derived from the previous resource state Ri, resource

consumed by Tk, Rc(Tk), and resource produced by Tk, Rp(Tk), according the follow-

ing formula:

Rj = Ri − Rc(Tk) + Rp(Tk)

Notice that the resouce-constrained workflow model presented is slightly different

from the one we defined in (Wang, Tepfenhart and D. Rosca 2009), in which decision

criteria are part of the model. In BDIw model, the decision-making part of the overall

workflow is handled by BDI agents.

3 BDIw Framework

The Belief-Desire-Intention-Workflow (BDIw) Agent model is a variant of the

basic BDI model with the introduction of a workflow capability. The basic BDI

314 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

model incorporates beliefs, desires, and intentions as the primary sets of information.

In this model, the intentions are overloaded with planning and control of the execution

of those plans. In the BDIw model, the intentions are associated with plan selection

and the workflow is associated with control of the execution of those plans. In this

work, additional adaptor programs are used to interact with external data sources.

A BDIw agent can be realized core of five individual components working together

along with a suite of adaptor programs that are agent instance specific. The core

components are the belief, desire, intention, workflow, and the DBMS components.

These core components are data driven and hence will not require modifications to

support new agent functionalities. The adaptor programs allow an instantiation of

this architecture to communicate and interact with the external sources of data and

services. The adaptor components are agent instance specific although a core of basic

capabilities can be provided. A basic instantiation of this architecture is shown in

Fig. 2.

Figure 2. BDIw agent components

This architecture reflects a very definite separation of concerns in that each com-

ponent provides a very limited and specialized function within the architecture. The

development of appropriate control structures allows the agent to function based on

data rather than explicit procedural instructions. By maintaining such tight focus, it

is possible to create an agent that is extensible without requiring additional program-

ming. This is to be compared to the JACK BDI programming extension in which all

capabilities are explicitly programmed.

For examples of the basic WIFA workflow and resource-constrained work, please

see Refs. [12,14].

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 315

3.1 The brief component

The belief component is responsible for tracking changes in beliefs. All requests

to modify the beliefs held by the agent must come through the belief component.

There are three major belief changes that it can support: create, delete, and modify.

It forwards announcements of such changes to the desire component by identifying the

belief that changed and the type of change that was made to it. As shown in Fig. 3,

the Brief component interfaces with the Database, Desire and Adaptor components.

Figure 3. The Brief component

Within the context of the agent architecture, the belief component provides three

major capabilities:

1. Services requests from adaptor components

2. Manages the beliefs captured with the database

3. Triggers desires

Upon component startup, the belief component initializes by establishing a con-

nection to the DBMS component and starting up a listener on the input port. During

runtime operation, control over the belief component functionality is dictated as fol-

lows: When a belief request is acquired, the request is validated for structural and

semantic integrity. Then a query is generated based on the request contents and ex-

ecuted with the database. If the request was for a query against known belief then a

belief response is created sent to the adaptor, and the component returns to listening

316 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

for the next belief request; if the request was for an insert then the database is queried

to identify the item id. After that, a desire trigger is generated and sent to the desire

component; meanwhile, a belief response is created and sent to the adaptor.

3.2 The desire component

The desire component looks at changes in beliefs along with the complete set

of beliefs. It attempts to establish if there is a need to perform some activity to

drive what it believes about the world to some state that is more desired. If there is

such a need, the desire component announces that need to the intention component

by identify the desire (goal) and what triggered that goal. The Desire component

interfaces with the Belief, Database, and Intention components, as shown in Fig. 4.

Figure 4. The Desire component

The desire component has two major threads of control: receiving desire triggers

and processing desire triggers. The control flow for receiving desire triggers is rather

simple. The flow is as follows: First, a desire trigger is received. Then the trigger

is acknowledged. Then the trigger is placed in the appropriate stack. Finally any

duplicate triggers are removed.

The control flow for processing desire triggers is the more complicated thread

of control. The flow starts when the intention component has completed an existing

intention or is starting up. First, the external stack is checked for the earliest desire

trigger. If the stack contains a desire trigger it is moved over to the internal stack,

and the internal stack is checked for desire triggers. If there are desire triggers present

then the most recent desire trigger in the internal stack is selected for activation. The

desire rule database is checked for all rules that apply and have not been frustrated

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 317

previously. If no desire rule is satisfied then the desire trigger is removed from the

stack. Otherwise, an intention trigger is constructed and sent to the intention com-

ponent, and the flow waits for a response to the intention trigger from the intention

component. If the intention was not successful then a frustration is inserted into the

frustration database.

3.3 The intention component

The intention component, shown in Fig. 5, determines what workflows, if any,

can resolve that need given the current state of beliefs. This is done by using the

intention to identify all known workflows that support that goal and assessing the

resources required for each workflow. It selects the workflow based on availability of

resources. Once the intention component identifies a workflow, it invokes the workflow

component to execute that specific workflow.

Figure 5. The Intention component

It is possible that multiple workflows satisfy the same desire. A workflow has a

priority, which is one criterion that is used to select a workflow among those fulfills the

same desire. In addition, each workflow is also associated with resource requirements.

When a workflow is selected based on intention and priority, we need to further check

if resource requirements are satisfied. A detailed description of the integration of

intention components and workflow components is given in the next subsection.

3.4 The workflow component

The workflow component executes the workflow by activating adaptor programs

in the manner proscribed by the flow of tasks within the workflow. The main control

318 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

process of the workflow component is described in Table 1. This table also shows

how the intention component and workflow component are integrated, or in other

words, how an entire emergency response workflow is dynamically composed from

small individual workflows based on decisions from BDI agents.

Table 1 Main control process of workflow module

while (true) {

receive intention trigger from desire component;

if intention != NULL //intention: intention trigger

push(intention, intention_stack);

current_intention = pop(intentation_stack);

if current_intention != NULL {

query(workflow_table, current_intention); if there are returned

entries {

sort all returned entries in decreasing order of priority;

current_entry = first entry in the returned entry list;

while current_entry != NULL

if resource query is satisfied {

message workflow component to execute the workflow;

exit;

}

else

current_entry = next entry in the returned entry list;

}

if no workflow selected for lack of resource

notify_desire(current_intention, ’insufficient resource’);

}

else

notify_desire(current_intention, ’no plan matches the intention’);

}

else

sleep for X seconds; //allow other processes to run

}

A task has the following attributes:

struct Task {

name char[],

description char[],

precedingTasks Task[],

succeedingTasks Task[],

taskType {And_In_And_Out,

And_in_XOR_Out,

XOR_In_And_Out, XOR_in_XOR_Out},

resource Resource[] //Resource is defined below

application Filename

} struct Resource {

name char[],

amountRequired int,

amountReleased int

}

An external application is hooked up to task through adaptor, which will be

discussed in next section. If there is no external application associated with a task,

then the value of the application field is simply a NULL.

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 319

We didn’t consider timing constraints for tasks in the above definition, because

they will make the reasoning of BDIw agents overwhelmingly complicated. It is

more realistic to deal only with resource constrained workflows in the first version of

implementation of BDIw agents.

Executing a workflow requires resources, which are stored in belief set. There

are rules to be enforced regarding resources:

1) When a workflow is selected by the intention component, all resources required

for executing this workflow should be reserved only for this workflow. They are not

going to be used for other purpose. This avoids potential deadlock due to resource

shortages.

2) Since executing a task may consume or release certain resources, the belief set

shall be updated each time a task is executed. The resource update may trigger new

desire, and the new desire will be inserted to the desire queue of the desire component.

3.5 The adaptor capability

The adaptor programs provide the interface for the agent to interact with external

programs and users. It can support peer-to-peer collaborations, user interfaces, or

serve as clients within encapsulating client-server enterprise architecture. There can

also be instances of adaptor program that execute full time to allow the agent to

perform in the role of a server in encapsulating client-server enterprise architecture.

An adaptor program can be a very simple single function program that is reusable by

multiple workflows.

Depending on the type of adaptor, it will either exit upon successful completion

of the task for which it was designed or remain active for use by another task. Some

adaptors are active at all times and serve as servers or peers within a larger enterprise

architecture. This allows external systems to contact the agent to perform some

service. The specific adaptor will dictate the style of interaction (e.g., call-return,

asynchronous messaging, etc).

Some examples of adaptor components include:

• User Interface Components

• User Programs

• System Interfaces

• Service Listeners

There is variety even within those basic categories. For example, user interface

components could include a message window, a query window, a display list, and

an option list that demand a handful of actions from the user. User programs might

include opening a word processor, a web browser, or a client program to some external

system. System interfaces could support CORBA, SOAP, HTTP, or other protocols

by which systems communicate.

3.6 The DBMS capability

The DBMS contains the databases and tables that contain the beliefs along with

the data to support the desire and intention capabilities of the BDIw agent. This

320 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

component allows the core engine to be tailored to address different domains and

support different behaviors.

The DBMS will manage the following tables:

• Belief Tables

• DesireRules

• Frustrations

• IntentionRules

• Plans

The contents of these tables will drive the overall behavior of the BDIw agent.

In an environment where multiple agents are active at the same time, it would make

sense for each agent to have its own database of beliefs. This is necessary so that

individual agents do not enter into conflicts over belief changes. However, each belief

can be marked with the agent for which the belief is held. This is a design decision

that has not yet been made.

The effect of the different components working together can be a surprisingly

complex set of behaviors. The agent will be able to demonstrate opportunistic prob-

lem solving in which the latest change in belief can cause the agent to adapt to new

situations. It can function in a data-driven and goal-drive manner based upon the

types of desires that are managed within it. It can support collaborative interactions

with users rather than being limited to master or slave roles with respect to the user.

An agent is extensible in the sense that new belief sets can be added by extending

the set of belief tables, new desires added to the desire table, new intentions added to

the intentions database, new workflows added to the workflow table, and new adaptor

programs made accessible to the workflow engine.

3.7 How it works?

Regardless of how complex it is, an entire dynamic emergency response workflow

of an emergency manager is always composed of a set of small and static workflows,

each of which represents a basic activity in a rescue effort, such as “request for fire

trucks”, “set no fly zone”, and “report casualties to state EOC”. How these small

workflows compose to achieve a rescue mission depends on numerous factors with

a specific incident and status of the rescue team. In the emergency response word,

individuals respond to events. When an event occurs, the individual assesses what

need to be done (establishes a desire), selects an action to take to achieve that desire

consistent with the resources available and constraints a time, and then executes

the procedure. It is well known in the emergency response world that “large plans”

(workflows) are likely to fail. Instead, individuals utilizes “small plans” to drive the

situation to some better and more manageable state at which point they assess the

situation and selects the goal to pursue. These small plans and conditions under

which they apply are well known.

We developed an emergency response training tool using this dynamic workflow

approach. In this tool, we put all related information regarding local emergency

management teams, traffic systems, police department, fire department, hospitals,

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 321

and all related resources, etc., to the Belief database. Property damages are also

inserted to the Belief table in the runtime. Rules for deciding what goals to take in

the granularity of activities are stored in the desire tables, and all workflows which

represent the basic activities and their pre-conditions are stored in intention table.

This way, when responding to an emergency call, we rely on the intelligent agent to

assess the complex situation and suggest the rescue actions in the form of workflows,

and responders follow the workflows to execute the rescue plan.

The emergency response training tool was built utilizing agents, as described

above, implemented in Java within OSGI environments. Each core agent capability

(i.e., belief, desire, intention, control, and task) was implemented as an independent

OSGI bundle that provided, on demand, the services dictated by the capability. The

database functionality was provided by an MYSQL DBMS. Individual instances

of the agent ran within separate OSGI processes to simulate individual responder

units (i.e., police cars, firetrucks, HAZMAT teams, EOCs, etc.) with an individual

database defined for each responder unit. Communication tasks included components

that enabled telephone based conversations, push-to-talk radio conversations, e-mail

exchanges, and text messaging with trainees.

4 Example

In this section, we use an example to show how the system responds to an external

resource request step by step. This example comes from the emergency response

training tool that we developed based on the presented dynamic workflow approach.

Each respondent entity has an instance of this agent to simulate its decision making

and actions. This example shows a small subset of interaction used in simulating

an Office of Emergency Management (OEM). We assume the OEM of township A

requests 3 Fire Trucks from the OEM of township B, which is running the proposed

BDIw system.

Request

Request Type: ResourceRequest

Sender: Township A

Receiver:Township B

RequestDateTime: 3/1/11 T 12:00:00

Resource Type: Truck

Resource Instance: Fire

Quantity: 3

DateTimeOut:3/1/11 T 13:00:00

Destination: Oceanport OEM

The Adaptor transforms the above message into an XML message:
<beliefRequest>

<replywith>A12345</replywith>

<source>External</source>

<request>

<table>RESOURCE{_}REQUEST{_}TABLE</table>

<operation>INSERT</operation>

<field>

<fieldname>RequestType</fieldname>

<fieldvalue>ResourceRequest</fieldvalue>

<fieldtype>String</fieldtype>

</field>

322 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

<field>

<fieldname>Sender</fieldname>

<fieldvalue>Oceanport</fieldvalue>

<fieldtype>String</fieldtype>

</field>

<field>

<fieldname>Receiver</fieldname>

<fieldvalue>Middletown</fieldvalue>

<fieldtype>String</fieldtype>

</field>

<field>

<fieldname>Receiver</fieldname>

<fieldvalue>Middletown</fieldvalue>

<fieldtype>String</fieldtype>

</field>

<field>

<fieldname>RequestDateTime</fieldname>

<fieldvalue>2008-08-08T12:00:00</fieldvalue>

<fieldtype>DateTime</fieldtype>

</field>

<field>

<fieldname>ResourceType</fieldname>

<fieldvalue>Truck</fieldvalue>

<fieldtype>String</fieldtype>

</field>

<field>

<fieldname>ResourceInstance</fieldname>

<fieldvalue>Fire</fieldvalue>

<fieldtype>String</fieldtype>

</field>

<field>

<fieldname>Quantity</fieldname>

<fieldvalue>3</fieldvalue>

<fieldtype>Number</fieldtype>

</field>

<field>

<fieldname>DateTimeOut </fieldname>

<fieldvalue>2008 --08-08T13:00:00</fieldvalue>

<fieldtype>DateTime</fieldtype>

</field>

<field>

<fieldname>Destination</fieldname>

<fieldvalue>OceanportOEM</fieldvalue>

<fieldtype>String</fieldtype>

</field>

</request>

</beliefrequest>

It then sends the message to the Belief Module (BM) which inserts the brief

(the request) into table RESOURCE REQUEST TABLE in the database. If the insertion is

successful, the BM invokes the Desire Module (DM) with:
Desire.InvokeDesireTrigger(External, Insert,

RESOURCE{_}REQUEST{_}TABLE, 001)

The DM will immediately return to the BM an acknowledgement that it has

received the trigger. Then the BM generates a belief response that will be sent to the

Adaptor. If the insertion is unsuccessful, then an error message will be returned to

the BM.

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 323

In the successful case, the listener thread of the DM picks up the desire trigger

and checks the source of the trigger: whether it is an external or internal generated

event. This trigger is an external trigger; therefore the desire goes into the pending

queue.

The control thread of the DM is woken up by the desire. It checks the working

stack. If there is no trigger there, it checks the pending queue. It finds the trigger

there, and moves it to the working stack. It then starts establishing desires for the

topmost item in this working stack.

Now the DM selects the desire rules from the DESIRERULES table, in order of

their priority. The DM assumes that there is another belief table: RESOURCE, which

contains the resources available for the local agent. The DESIRERULES table and

RESOURCE table are illustrated in Table 2 and Table 3, respectively.

Table 2 DESIRERULES table

Table Condition Query Priority Desire

RESOURCE ONE Count how many 3 GRANTREQUEST

_REQUEST fire trucks

_TABLE, available in the

resource table

and compare them

with the

requester trucks.

IF available>requested

THEN grant

request

RESOURCE ONE IF 3 PARTIALGRANTR

_REQUEST, available < requested EQUEST

_TABLE, and available > 1

THEN partially

grant request

RESOURCE ONE IF available = 0 3 REJECTREQUEST

_REQUEST THEN reject

_TABLE, request

The first rule in the DESIRERULES table is selected. The belief is satisfied since it

requires only one result to be returned from the query. The frustrated desire table is

consulted to assure that this particular desire has not been unsuccessfully attempted

for this particular table entry. Since this belief has not been previously frustrated,

this thread asserts the desire GRANTREQUEST and sends an intention trigger to the

intention module (IM):
Intention.receiveTrigger (GRANTREQUEST,

RESOURCE{_}REQUEST{_}TABLE,

{001,External)}

This thread will wait until a result is returned.

The IM receives the trigger and sorts the applicable workflows according to their

priority. Let us assume that the INTENTIONS table is like Table 4.

324 International Journal of Software and Informatics, Volume 6, Issue 2 (2012)

Table 3 RESOURCE table

ID ResType ResInstance Condition Location Availability

001 TRUCK FIRE OK Town B Y

002 TRUCK SNOW OK Town B Y

003 TRUCK FIRE REPAIR Town B N

004 TRUCK FIRE OK Town B Y

005 TRUCK FIRE OK Town B Y

Table 4 INTENTIONS table

IntentionID DesireToken Workflow Priority Query

001 GRANTREQUEST WF001 HIGH NONE

002 PARTIALGRANTREQUEST WF002 MEDIUM NONE

003 REJECTREQUEST WF003 LOW NONE

004 NOTIFYREQUESTOR WF004 HIGH NONE

005 DELIVERRESOURCE WF005 HIGH NONE

006 TRACKRESOURCE WF006 HIGH RADIO WITHIN RANGE

007 TRACKRESOURCE WF007 MDIUM NONE

The IM finds the WF001 workflow to satisfy this desire. It checks then to see

whether the resources necessary for the workflow are available. Since we have not as-

sociated any resource with this workflow, the resource requirements are automatically

met. The IM generates a request to the workflow module (WM):
AssertTrigger(WF001,EXTERNAL,

RESOURCE{_}REQUEST{_}TABLE,001)

and waits for a response from the WM.

Upon receiving the trigger from the IM, the WM retrieves the stored workflow

from the DB and starts the execution of the workflow. Each task in the workflow

will have an attached Adaptor. For example, WF001 has three tasks, and therefore

invokes 3 adaptors:

• Query user whether to continue the process

• Select resource

• Update RESOURCE table (assumes sending a message to the BM to update the

RESOURCE table).

The last task will trigger another desire to notify the requestor, deliver the re-

source, and track the resources.

Intention IDs 006 and 007 illustrates two approaches for tracking a resource. In

Intention 006, the workflow can only be executed if the fire truck is within radio range.

If so, the OEM of town B will call the resource directly. Otherwise, the OEM of town

B must use a telephone to call the OEM of town A to get the status of the fire truck.

5 Conclusions

Emergency response workflow is distinguished by its intensive flexibility due to

uncertainties with the nature of incidents and numerous factors which could deviate

William Tepfenhart, et al.: Towards true dynamic workflow for emergency response 325

the emergency response from its path. We presented an extended BDIw framework for

emergency response workflow management. The intelligent based workflow framework

helps achieve a truly dynamic workflow modeling and execution by making on-the-

fly decisions on the paths to proceed with based on real-time data and events. The

logic behind of this approach is, regardless of how complex a real emergency response

process is, it is always composed of a set of small and static workflows, each of which

represents a basic activity in a rescue effort. How these small workflows compose

to represent a real emergency response process depends on numerous factors such

as resource availability, new events in the course of emergence response, policies of

command and control, etc, which in BDIw are modeled by BDI agents and associated

tables.

References

[1] Bratman ME. Intentions, Plans, and Practical Reason. Cambridge, MA: Harvard University

Press, 1987.

[2] Burmeiste, Birgit, Arnold M, Copaciu F, Rimassa G. BDI-Agents for agile goal-oriented busi-

ness processes. Proc. of 7th International Conference on Autonomous Agents and Multiagent

Systems. Estoril, Portugal, 2008. 37–44.

[3] Coates, Graham, Hawe G, Wilson D, Crouch R. Adaptive co-ordinated emergency response to

rapidly evolving large-scale unprecedented events (REScUE). The 8th International ISCRAM

Conference. Lisbon, Portugal, 2011. 1–5.

[4] Gonzalez, Rafael A. Crisis response simulation combining discrete-event and agent-based mod-

eling. The 6th International ISCRAM Conference. Gothenburg, Sweden, 2009.

[5] Hawe, Glenn, Coates G, Wilson D, Crouch R. Design decisions in the development of an agent-

based simulation for large-scale emergency response. The 8th International ISCRAM Confer-

ence. Lisbon, Portugal, 2011.

[6] Howden N, Rönnquist R, Hodgson A, Lucas A. JACK intelligent agents: summary of an agent

infrastructure. The 5th International Conference on Autonomous Agents. Montreal, Canada,

2001.

[7] Jain S, McLean CR. An integrated framework for modeling and simulation for incident man-

agement. Journal of Homeland Security and Emergency Management, 2006, 3(1).

[8] Liu Y, Okada N, Shen D, Li S. Agent-based flood evacuation simulation of lifethreatening.

Journal of Natural Disaster Science, 2009, 31(2): 33–41.

[9] Norling E. Folk psychology for human modeling: extending the BDI paradigm. International

Conference on Autonomous Agents and Multi Agent System. New York, 2004.

[10] Rao Anand S, Michael P Georgeff. BDI Agents: From Theory to Practice. Technical Report

56, AAII, 1995.

[11] Shendarkar A, Vasudevan K, Lee S, Son Y. Crowd simulation for emergency response using BDI

agent based on virual reality. Proc. of the 2006 Winter Simulation Conference. 2006. 546–553.

[12] Wang J, Rosca D, Tepfenhart W, Milewski A, Stoute M. Dynamic workflow modeling and

analysis in incident command systems. IEEE Trans. on Systems, Man and Cybernetics, Part

A, 2008, 38(5): 1041–1055.

[13] Wang J, Rosca D, Tepfenhart W, Milewski A. Incident command system workflow modeling

and analysis: a case study. Third International Conference on Information Systems for Crisis

Response and Management. Newark, NJ, 2006.

[14] WWang J, Tepfenhart W, Rosca D. Emergency response workflow resource requirements mod-

eling and analysis. IEEE Trans. on Systems, Man and Cybernetics, Part C, 2009, 39(3).

[15] Wooldridge M.Reasoning about rational agents. MIT Press, 2000.

