
Int J Software Informatics, Volume 6, Issue 3 (2012), pp. 419–434 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2012 by ISCAS. All rights reserved. Tel: +86-10-62661040

Measuring Software Requirements Evolution

Caused by Inconsistency

Kedian Mu1, Zhi Jin2,3, and Ruqian Lu4

1 (School of Mathematical Sciences, Peking University, Beijing 100871, P.R.China)

2 (Key Laboratory of High Confidence Software Technologies (Peking University),

Ministry of Education, Beijing 100871, P.R.China)

3 (School of Electronics Engineering and Computer Science, Peking University,

Beijing 100871, P.R. China)

4 (Academy of Mathematics and System Sciences, Chinese Academy of Sciences,

Beijing 100190, P.R.China)

Email: mukedian@math.pku.edu.cn, zhijin@sei.pku.edu.cn, rqlu@math.ac.cn

Abstract It has been widely recognized that requirements evolution is unavoidable in any

sizeable software project. Moreover, if the requirement evolution is not managed properly, it

may result in many troublesome problems during the process of software development. For

example, poor management of requirements evolution may lead to inconsistencies in require-

ments and incomparability between requirements and other work products. Repairing these

problems can lead to extra consumption of development resources. However, inconsistency

is considered as one of the concerns of requirements evolution. In this paper, we propose

a family of logic-based measures to evaluating software requirements evolution caused by

inconsistency handling. Each of these measurements provides a distinctive perspective of

quantitative description for the requirements evolution. At first, we provide a syntax-based

measure for the change in requirements statements during the requirements evolution. Then

we provide a semantics-based approach to measuring the change in the expression ability

of requirements specification during the process of evolution. Finally, we characterize three

special kinds of requirements evolution based on these measurements, including the evolved

requirements specification with minimal change, the evolved requirements specification with

minimal significance change, and the evolved requirements specification with maximal plau-

sibility.

Key words: requirements evolution; inconsistency; requirements change; measurements

Mu KD, Jin Z, Lu RQ. Measuring software requirements evolution caused by inconsis-

tency. Int J Software Informatics, Vol.6, No.3 (2012): 419–434. http://www.ijsi.org/1673-

7288/6/i135.htm

1 Introduction

This work is sponsored by the National Natural Science Foundation of China under Grant No.

61170300, the National Basic Research 973 Program of China under Grant No. 2009CB320701, and
the Key Project of National Natural Science Foundation of China under Grant No. 90818026.

Corresponding author: Kedian Mu, Email: mukedian@math.pku.edu.cn

Received 2011-11-14; Revised 2012-05-04; Accepted 2012-08-21; Published online 2012-09-25.

420 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

It has been widely recognized that requirements evolution is inevitable for any
proposed software development project. Stakeholders change their minds for many
reasons, including commercial strategies updating, marketplace changes, policies and
legislation changes, identifying a defect in proposed requirements, and missing some
requirements. Suitable requirements changes may boost satisfactions of some stake-
holders to the system-to-be and enhance the quality of software requirements specifi-
cation and subsequent artifacts during the software development life cycle.

But if the requirement evolution is not managed properly, it may result in many
troublesome problems during the process of software development. For example,
poor management of requirements evolution may lead to incomparability between
requirements and other work products. Repairing these problems can lead to extra
consumption of development resources. Moreover, uncontrolled consumption of de-
velopment resources such as time, funds, and human resources during requirements
evolution may lead to delay in delivery of the software product, overburden on devel-
opers, difficulties in funds, and some other undetectable defects that can degrade the
quality of the software product[1]. However, it has been also recognized that managing
requirements evolution is often difficult for a big software project in practice[2].

Inconsistency is considered as one of the concerns of requirements evolution.
As a life cycle wide process, requirements evolution must make sure that the whole
software requirements specification keeps consistent, and the other work products
such as design decisions and test cases accord with the requirements specification[2].
On the other hand, inconsistency has been considered as a main class of defects in
requirements specifications[3]. Moreover, it has been widely recognized that inconsis-
tencies in a requirements specification is a signal that the requirements specification
should be changed[4]. Therefore, inconsistency implies requirements evolution. That
is, resolving inconsistency in a requirements specification will lead to the evolution of
requirements.

In this paper, we focus on the requirements evolution caused by resolving in-
consistency in requirements. However, resolving inconsistency in requirements is a
hard but important issue in requirements engineering[4]. One of the most important
aspects for choosing appropriate actions for resolving an inconsistency is that devel-
opers need to assess the impact the actions will have on the development project and
to assess the risk of resolving the inconsistency by taking the actions[5]. This makes
measuring requirements evolution more necessary during the process of inconsistency
handling.

With regard to inconsistency in requirements engineering, it has been increasingly
recognized that it is effective to use logics to formulate management of inconsistent
requirements specifications[3]. Various logic-based approaches to handling inconsis-
tencies in requirements specications have recently been proposed[1,3−4,6−7]. Roughly
speaking, these logic-based approaches formulate a software requirements specifica-
tion as a knowledge base (i.e., a set of logical formulas) within the context of some
appropriate logic. Then the problem of managing inconsistent software requirements
can be transformed into the problem of inconsistency handling in a knowledge base.
Along this line, the problem of requirements evolution may be formulated as a problem
of knowledge bases evolution within some logic framework.

To address these issues, in this paper, we propose a logic-based approach to

Kedian Mu, et al.: Measuring software requirements evolution caused by ... 421

measuring requirements evolution caused by inconsistency. Informally speaking, we
formulate requirements specifications as knowledge bases within an appropriate logic
framework. Then we propose two kinds of measures to capture the evolution from an
inconsistent requirements specification to a consistent requirements specification by
resolving inconsistency in that specification. Following this, we characterize some spe-
cial kinds of requirements evolution processes based on these measurements. Finally,
we use a small but explanatory example to illustrate our approach.

The rest of this paper is organized as follows. Section 2 gives a brief introduction
to the logical representation of requirements. We propose approaches to measuring
requirements evolution caused by inconsistency in Section 3. We use a small but ex-
planatory example to illustrate application of our approach in Section 4. We compare
our approach with related work in Section 5. We conclude the paper in Section 6.

2 Preliminaries

We use classical logic-based language to represent requirements in this paper.
First order logic may be considered as a promising tool to represent requirements,
since most tools and notations for representing requirements could be translated into
formulas of first order logic[4]. Moreover, in a logic-based framework for representing
requirements, consistency checking is always associated with certain scenarios with
regard to the requirements specification[4], or some specific domain knowledge. That
is, we must add further relevant facts (e.g., domain knowledge) to model each sce-
nario. Then reasoning about requirements is always based on these certain facts. It
implies that checking the consistency of requirements considers only ground formulas.
Furthermore, if we assume a universally quantified formula is just an abbreviation for
the conjunction of formulas that can be formed by systematically instantiating the
variables of the quantified formula with the constants in the language, then we may
restrict the first order language to the propositional case[4]. It will render consistency
checking decidable. This gives some computational advantages. However, restrict-
ing first order logic to propositional logic in some way is a useful and practical way
of balancing the computational advantages of propositional logic against its limited
expressive power in requirements engineering as well as software engineering[3]. For
these reasons, we assume a classical first order language without function symbols
and existential quantifiers. This classical first order logic is the most convenient to
illustrate our approach, as will be shown in the rest of the paper.

Let P be a set of predicate symbols, V be a set of variable symbols, and C a
set of constant symbols. We call A = {p(q1, · · · , qn)|p ∈ P and q1, · · · , qn ∈ V ∪C }
the set of atoms. Let F be the set of classical formulas formed from a set of atoms
A and logical connectives {∨,∧,¬,→}. In particular, we call p(q1, · · · , qn) a ground
atom if and only if q1, · · · , qn are all constant symbols. Let A0 be a set of ground
atoms. Let F0 be the set of classical formulas formed from a set of atoms A0 and
logical connectives {∨,∧,¬,→}. Let G be the set of formulas formed from F , where
if α ∈ F , and X1, · · · , Xn are the free variables of α, then ∀X1, · · · ,∀Xnα ∈ G .
Essentially, the set G contains only universally quantified formulas (in which the
quantifiers are outermost) and ground formulas[4].

A classical knowledge base K is a finite set of formulas in F0. K is inconsistent if
there is a formula α in F0 such that K ` α and K ` ¬α. We abbreviate α∧¬α as ⊥

422 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

if there is no confusion. Then an inconsistent knowledge base K is denoted by K ` ⊥.
Moreover, an inconsistent knowledge base K is called a minimal inconsistent set if
none of its proper subset is inconsistent. If K ′ ⊆ K and K ′ is a minimal inconsistent
set, then we call K ′ a minimal inconsistent subset of K.

Let MI(K) be the set of all the minimal inconsistent subsets of K, i.e.,

MI(K) = {K ′ ⊆ K|K ′ ` ⊥ and ∀K ′′ ⊂ K ′,K ′′ 6` ⊥}.
The minimal inconsistent subsets can be considered as the purest form of inconsis-
tency for conflict resolution where the syntactic representation of the information is
important, since removing one formula from each minimal inconsistent subset would
be sufficient to resolve the inconsistency[8]. In contrast, a free formula of a knowledge
base K is referred to as a formula of K that does not belong to any minimal incon-
sistent subset of K. In this paper, we use FREE(K) to denote the set of free formulas
of K.

Example 2.1. Consider K1 = {a,¬a,¬a∨ b,¬b, c}. Then MI(K1) = {{a,¬a},
{a,¬a ∨ b,¬b}} and FREE(K1) = {c}.

A consistent subset of K is called a maximal consistent subset of K if there is no
consistent subset of K that can subsume it. Let MC(K) be the set of all the maximal
consistent subsets of K, i.e.,

MC(K) = {∅ ⊂ K ′ ⊆ K|K ′ 6` ⊥ and ∀K ′′ ⊃ K ′,K ′′ ` ⊥}.
The maximal consistent subsets of a knowledge base can be considered as plausible
perspectives of the base.

Example 2.2. Consider K2 = {a,¬a, b}. Then MC(K2) = {{a, b}, {¬a, b}}.
We can use formulas in G to formulate requirements expressed in natural lan-

guage. For example, we can represent a requirement,“ if an authorized user requests
to borrow a book and the book is available, then the user can borrow the book”, as

∀User∀Book (auth(User) ∧ requ(User,Book) ∧ avai(Book) → borr(User,Book)).

However, to check inconsistency of requirements collections, the universally quan-
tified formulas are always instantiated by the constants in certain scenarios. For
example, given the following facts: “Alice is an authorized user, and she applies to
borrow the book of software engineering ; The book of software engineering is avail-
able”. Then we use the following ground formula as a substitute for the universally
quantified formula above:

auth(Alice) ∧ requ(Alice,Soft eng) ∧ avai(Soft eng) → borr(Alice,Soft eng)

Generally, if ground formulas α1, α2, · · · , αn are the instantiations of the universally
quantified formula α by using different facts in a scenario, then we may use α1 ∧α2 ∧
· · ·∧αn as a substitute for α in the scenario. Thus, we concentrate on the instantiated
requirements in the rest of this paper. That is, we assume that an individual set of
requirements can be formulated by a classical knowledge base. With this, we restrict
the first order logical representation of requirements to the propositional case.

In particular, we call a knowledge base R a (partial) requirements specification
if each formula of R represents a requirement. If there is no confusion we make no

Kedian Mu, et al.: Measuring software requirements evolution caused by ... 423

distinction between a classical knowledge base and a requirements specification in the
rest of this paper.

3 Measuring the Evolution of Inconsistent Requirements

From a syntax sensitive perspective of inconsistency handling, each minimal in-
consistent subset of a requirements specification can be considered as a potential
requirements sets to be changed for restoring consistency. In contrast, each maximal
consistent subset of that requirements specification may be considered as a plausi-
ble perspective that describing the stakeholders’ demands. We assume that evolving
requirements driven by resolving inconsistency in a requirements specification is per-
formed by revising some requirements (at least one requirement) in each minimal
inconsistent subset of that requirements specification. Therefore the evolution of
requirements driven by inconsistency handling is exactly a process of enlarging or
contracting the consistent perspective of the original requirements specification. Just
for simplicity of discussion, we assume that there is at least one maximal consistent
subset for any requirement specification in this paper, i.e., MC(R) 6= ∅ for each R.

Definition 3.1. Let R be a requirements specification. Then the requirements
specification Rc is called a requirements specification evolved from R by inconsistency
handling, if

(a1) Rc 6` ⊥;

(a2) FREE(R) ⊆ Rc;

(a3) ∀r ∈ R \Rc, there exists M ∈ MI(R) such that r ∈ M .

Obviously, if R is consistent, then Rc = R. Note that (a1) states that Rc should
be a consistent requirements specification. (a2) makes sure that the requirements free
from inconsistency should not be changed during the process of evolution. In contrast,
(a3) states that only requirements in minimal inconsistent subsets are considered as
requirements to be changed for resolving inconsistency in R. However, how to change
the chosen requirements is a context-sensitive issue. For example, deletion, weakening,
and splitting are considered as three actions for the stepwise inconsistency resolution
process[10].

Example 3.1. Consider R1 = {a,¬a, b}. R1 is inconsistent because R1 ` a

and R1 ` ¬a. Then

MI(R1) = {{a,¬a}}, and FREE(R1) = {b}.

Evidently, each of the following requirements specifications can be considered as a
requirements specification evolved from R1:

• {b}, {a, b}, {¬a, b};

• {a,¬a ∨ c, b}, {a ∨ c,¬a, b};

• {a ∨ c,¬a ∨ d, b}.

424 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

But neither of {a} and {¬a} is the requirements specification evolved from R1.
The evolution of requirements due to inconsistency handling is essentially a pro-

cess of enlarging some consistent perspectives reflected by the original one in some
sense. To address this, we focus on assessing how far the evolved requirements spec-
ification is from maximal consistent subsets of the specification. Note that any two
maximal consistent subsets of a knowledge base may convey different information
reflected by the base. This makes more necessary to consider only the closest maxi-
mal inconsistent subsets to the base in the case of knowledge bases merging or belief
revision[16]. However, in requirements engineering, how to revise requirements for
inconsistency resolving is rather a context sensitive issue. It is not always that the
requirements of one of the closest maximal consistent subsets remain unchanged. Any
maximal consistent subset has a chance to be enlarged during the evolution. So, we
are concentrated on the problem of an evolved requirements specification is closest to
which maximal consistent subset and how far from the subset the evolved specification
is. That is, we are more interested in the distance between the evolved specification
and the maximal consistent subsets rather than that between the original specifi-
cation and the maximal consistent subsets. This distinguishes the role of maximal
consistent subsets in our measures below from that in knowledge base merging and
belief changes such as Ref. [16].

3.1 Syntax-Based approach to measuring evolution

Intuitively, the evolution can be captured by comparing the maximal consistent
perspectives of the original requirements and the revised requirements. Then we can
define a drastic measure for the degree of evolution as follows:

Definition 3.2 (Degree of Evolution DE). Let R be a requirements speci-
fication and Rc the consistent evolution of R. Then the degree of evolution Rc w.r.t.
R, denoted DE(Rc|R), is defined as

DE(Rc|R) = min
R′∈MC(R)

|Rc|
|R′| .

Note that DE(Rc|R) captures the degree of enlargement of the maximal con-
sistent perspective of R when R evolves to Rc. Evidently, if R is consistent, then
Rc = R and

DE(Rc|R) =
|Rc|
|R| = 1.

Generally, if DE(Rc|R) > 1, then the requirements specification evolved from
R provides a bigger consistent perspective of requirements about the system-to-be.
In contrast, if DE(Rc|R) 6 1, then the perspective reflected by the revised require-
ments is not bigger than the maximal plausible perspective reflected by the original
requirements.

Example 3.2. Consider R1 = {a,¬a, b} again. Then

• DE({b}|R1) = 1
2 ,

• DE({a, b}|R1) = DE({¬a, b}|R1) = 1,

• DE({a,¬a ∨ c, b}|R1) = DE({a ∨ c,¬a, b}|R1) = 3
2 ,

Kedian Mu, et al.: Measuring software requirements evolution caused by ... 425

• DE({a ∨ c,¬a ∨ d, b}|R1) = 3
2 .

Note that {b} is a revised result by deleting the two requirements involved in
minimal inconsistent subsets of R1. Only the requirement b remains. Actually, it is
the smallest requirements specification evolved from R1. Both {a, b} and {¬a, b} are
the revised results by deleting as few as possible requirements involved in minimal
inconsistent subsets of R1. In contrast, {a,¬a ∨ c, b}, {a ∨ c,¬a, b}, and {a ∨ c,¬a ∨
d, b} are the revised results by weakening some requirements involved in minimal
inconsistent subsets of R1, respectively. Each of them indeed enlarge the consistent
perspective of the original requirements. In this sense, the values of DE accord with
intuition.

However, DE(Rc|R) focuses on only the ratio of the size of Rc to that of the
biggest maximal consistent subsets of R. This makes DE(Rc|R) insufficient to cap-
ture a more fine-grained comparison between R and Rc. To illustrate this, consider
R1 again, {a ∨ c,¬a, b} is the result of weakening only one requirement involved
in inconsistency in R1, in contrast, {a ∨ c,¬a ∨ d, b} is the result of weakening
all the requirements involved in inconsistency in R2. Intuitively, {a ∨ c,¬a ∨ d, b}
should have higher level of evolution than that {a ∨ c,¬a, b} should have. But
DE({a ∨ c,¬a, b}|R1) = DE({a ∨ c,¬a ∨ d, b}|R1) = 3

2 .
To address this, we define a more fine-grained measure for the degree of evolution

as follows:
Definition 3.3 (Degree of Evolution DEf). Let R be a requirements spec-

ification and Rc the consistent evolution of R. Then the degree of evolution Rc w.r.t.
R, denoted DEf (Rc|R), is defined as

DEf (Rc|R) =

{ |R\Rc|
|⋃ MI(R)| , R ` ⊥
0, R 6` ⊥ ,

where
⋃

MI(R) = ∪R′∈MI(R)R
′.

Note that DEf (Rc|R) captures the normalized number of requirements changed
during the evolution of R.

Example 3.3. Consider R1 = {a,¬a, b} again. Then

• DEf ({b}|R1) = 1,

• DEf ({a, b}|R1) = DEf ({¬a, b}|R1) = 1
2 ,

• DEf ({a,¬a ∨ c, b}|R1) = DEf ({a ∨ c,¬a, b}|R1) = 1
2 ,

• DEf ({a ∨ c,¬a ∨ d, b}|R1) = 1.

Note that {b} and {a∨ c,¬a∨ d, b} are the revised results by deleting and weakening
all the requirements involved in inconsistency, respectively, so they have the highest
level of evolution. In contrast, each of the other requirements specifications evolved
from R keeps one requirements involved in inconsistency unchanged.

Evidently, DEf (Rc|R) satisfies the following intuitive properties:

• 0 6 DEf (Rc|R) 6 1 for all Rc.

426 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

• DEf (Rc|R) 6 DEf (Rc′ |R) if |R\Rc| 6 |R\Rc′ |, that is, the more requirements
changed, the higher the degree of evolution is.

• DEf (Rc|R) = 0 if and only if R is consistent.

• DEf (Rc|R) = 1 if and only if all the requirements involved in inconsistency
have been changed.

Based on the two measures, we can define two corresponding inconsistency han-
dling strategies or evolution processes, respectively.

Definition 3.4 (Evolved requirements specification with minimal change)
Let R be an inconsistent requirements specification and Rc a requirements specifica-
tion evolved from R. Then Rc is called an evolved requirements specification with
minimal change if

DEf (Rc|R) 6 DEf (Rc′ |R) for all Rc′ .

Roughly speaking, the evolved requirements specification with minimal change
requires that a desirable action for resolving inconsistency should make sure that the
number of requirements in minimal inconsistent subsets to be changed is the minimum
among all the possible proposals. This accords with the principle of minimal change,
and is appropriate for the case that the cost of changing requirements is expensive.
From now on, we use Rc

minc to denote the evolved requirements specification with
minimal change of R.

Example 3.4. Consider R1 = {a,¬a, b} again. Note that

MI(R1) = {{a,¬a}}.

Then
DEf (Rc|R1) ∈ {1

2
, 1}.

So, {a, b}, {¬a, b}, {a,¬a ∨ c, b}, and {a ∨ c,¬a, b} are evolved requirements specifi-
cations with minimal change. But neither of {b} and {a ∨ c,¬a ∨ d, b} is the evolved
requirements specification with minimal change.

Example 3.5. Consider R2 = {a,¬a,¬a∨ b,¬b, c}. Then MI(R2) = {{a,¬a},
{a,¬a ∨ b,¬b}} and FREE(R2) = {c}. Note that {a} = {a,¬a} ∩ {a,¬a ∨ b,¬b}.
Intuitively, if we choose a as the requirement to be changed, then both {a,¬a} and
{a,¬a ∨ b,¬b} can be eliminated. So, the evolved requirements specification of R2

with minimal change satisfies the following conditions:

• DEf (Rc
2minc

|R2) = 1
4 ;

• {¬a,¬a ∨ b,¬b, c} ⊆ Rc
2minc

;

• Rc
2minc

6` a.

Definition 3.5 (Evolved requirements specification with maximal plau-
sibility). Let R be an inconsistent requirements specification and Rc a requirements
specification evolved from R. Then Rc is called an evolved requirements specification
with maximal plausibility if

• |Rc| = |R|;

Kedian Mu, et al.: Measuring software requirements evolution caused by ... 427

• DE(Rc|R) > DE(Rc′ |R) for all |Rc′ | 6 |R|.
Compared to the evolved requirement specification with minimal change, the

evolved requirements specification with maximal plausibility aims to elicit stakehold-
ers’ demands and to satisfy them as much as possible during the process of incon-
sistency resolving. This may boost satisfactions of some stakeholders involved in
inconsistencies to the software product. However, this kind of evolution may bring
expensive costs for changing the requirements and the other work products in the life
cycle of software development. From now on, we use Rc

maxp to denote the evolved
requirements specification with maximal plausibility of R.

Example 3.6. Consider R1 = {a,¬a, b} again. Note that

MC(R1) = {{a, b}, {¬a, b}}.

Then
DE(Rc|R1) ∈ {3

2
, 1} for |Rc| 6 |R1|.

So, {a ∨ c,¬a ∨ d, b}, {a,¬a ∨ c, b}, and {a ∨ c,¬a, b} are evolved requirements spec-
ifications with maximal plausibility. But {a, b}, {¬a, b}, and {b} are not the evolved
requirements specification with maximal plausibility.

It has been increasingly recognized that the relative importance of requirements
can help stakeholders to make some necessary trade-off decisions for resolving incon-
sistency. To address this, we need to attach a weight or qualitative priority level to
each formula that represents an individual requirement. For convenience and sim-
plicity and without losing generality, we assume that the set of priorities used in this
paper is (0, 1]. Let R be a requirements specification, then a prioritization over R is a
function PR from R to (0, 1] such that the bigger the priority value of a requirement,
the more preferred is the requirement. By this, we can use 〈R, PR〉 to formulate prior-
itized requirements specification(or a prioritized knowledge base). Note that this kind
of prioritized knowledge base is exactly Type-I prioritized knowledge base defined in
Ref. [9].

To adapt the degree of evolution to the setting that takes the priority of each
requirement into account, we define the significance of a set of requirements as follows:

Definition 3.6 (Significance of a requirements specification). Let 〈R, PR〉
be a prioritized requirements specification, then the significance of R, denoted S(R),
is defined as

S(R) =
∑

r∈R

PR(r).

Roughly speaking, S(R) describes the relative importance of R based on the
relative importance of each requirement in R. Obviously, if PR(r) = 1 for each r ∈ R,
then 〈R, PR〉 can be considered as a classical requirements specification.

Definition 3.7 (Degree of Evolution DEw). Let 〈R, PR〉 be a prioritized
requirements specification and 〈Rc, PRc〉 the consistent evolution of 〈R, PR〉. Then
the degree of evolution Rc w.r.t. R, denoted DEw(Rc|R), is defined as

DEw(Rc|R) =

{
S(R\Rc)

S(
⋃

MI(R)) , R ` ⊥
0, R 6` ⊥ ,

428 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

where
⋃

MI(R) = ∪R′∈MI(R)R
′.

Informally speaking, DEw(Rc|R) captures the normalized significance of the set
of requirements changed during the evolution of R. It takes into account the number
as well as the priority level of requirements changed for resolving inconsistency in R.

Example 3.7. Consider 〈R1, PR1〉, where R1 = {a,¬a, b} and PR1(a) = 0.8,
PR1(¬a) = 0.4, PR1(b) = 0.9 . Then

• DEw({b}|R1) = 1,

• DEw({a, b}|R1) = 1
3 ,

• DEw({¬a, b}|R1) = 2
3 ,

• DEw({a,¬a ∨ c, b}|R1) = 1
3 ,

• DEw({a ∨ c,¬a, b}|R1) = 2
3 ,

• DEw({a ∨ c,¬a ∨ d, b}|R1) = 1.

Compared to DEf , DEw({a, b}|R1) < DEw({¬a, b}|R1), although both {a, b} and
{¬a, b} are the evolved requirements specifications by deleting only one requirements
involved in inconsistency. Allowing for PR1(a) = 0.8 > PR1(¬a) = 0.4, the compari-
son result is intuitive.

Definition 3.8 (Evolved requirements specification with minimal sig-
nificance change). Let 〈R, PR〉 be an inconsistent prioritized requirements speci-
fication and 〈Rc, PRc〉 a requirements specification evolved from R. Then Rc is called
an evolved requirements specification with minimal significance change if

DEw(Rc|R) 6 DEw(Rc′ |R) for all 〈Rc′ , PRc′ 〉.
Essentially, the evolved requirements specification with minimal significance change

requires that a desirable action for resolving inconsistency should make sure that the
significance of requirements in minimal inconsistent subsets to be changed is the
minimum among all the possible proposals. Note that the evolved requirements spec-
ification with minimal change only concerns the minimal number of requirements to
be changed. In contrast, the evolved requirements specification with minimal sig-
nificance change concerns the priority of requirements to be changed as well as the
number of such requirements. From now on, we use Rc

mins to denote the evolved
requirements specification with minimal significance change of R.

Similarly, it is not difficult to adapt the measure DE and the evolved requirements
specification with maximal plausibility to prioritized requirements specifications if we
use the significance of a set of requirements instead of the number of requirements in
the set.

Example 3.8. Consider 〈R2, PR2〉, where R2 = {a,¬a,¬a ∨ b,¬b, c} and
PR2(a) = 0.9, PR2(¬a) = 0.3, PR2(¬a ∨ b) = 0.6, PR2(¬b) = 0.3, PR2(c) = 0.9.
Then MI(R2) = {{a,¬a}, {a,¬a ∨ b,¬b}} and FREE(R2) = {c}. Note that

S({a}) = 0.9 > S({¬a,¬b}) = 0.3 + 0.3 = 0.6.

Intuitively, if we choose ¬a and ¬b as the requirement to be changed, then both {a,¬a}
and {a,¬a ∨ b,¬b} can be eliminated. So, the evolved requirements specification of
R2 with minimal significance change satisfies the following conditions:

Kedian Mu, et al.: Measuring software requirements evolution caused by ... 429

• DEw(Rc
2mins

|R2) = 2
7 ;

• {a,¬a ∨ b, c} ⊆ Rc
2mins

;

• Rc
2mins

6` ¬a and Rc
2mins

6` ¬b.

For example, {a,¬a ∨ d,¬a ∨ b,¬b ∨ d, c} is the evolved requirements specification of
R2 with minimal significance change.

3.2 Semantics-Based approach to measuring evolution

These measures focus on the aspect of syntax-based or syntax sensitive incon-
sistency resolving actions. They don’t take the semantics of a knowledge base into
account. However, some different evolved requirements specifications have the same
set of models. To illustrate this, consider R = {a,¬a, b}. Evidently, {a, b} and
{a,¬a ∨ b, b} are two different evolved requirements specifications from the syntax-
based perspective. But the two sets of requirements have the same model. In some
sense, ¬a ∨ b may be considered as a redundant requirement in {a,¬a ∨ b, b} since
the information conveyed by {a,¬a ∨ b, b} cannot change when ¬a ∨ b was removed.
In fact, the set of models of a knowledge base can be considered as a description of
expression ability of that base. Informally, the bigger the set of models, the lower the
expression ability of the knowledge base is.

To address this, we define the following semantics-based measures for the degree
of evolution of requirements.

Definition 3.9 (Degree of evolution DEs1). Let R be a requirements spec-
ification and Rc the consistent evolution of R. Then the degree of evolution Rc w.r.t.
R, denoted DEs1(Rc|R), is defined as

DEs1(Rc|R) = min
R′∈MC(R)

{||Mod(R′)| − |Mod(Rc)||},

where Mod(R′) is the set of models of R′.
Actually, DEs1(Rc|R) captures the extent that the models of the maximal con-

sistent perspective of R has been contracted or extended when R evolves to Rc.
Evidently, if R is consistent, then Rc = R and

DEs1(Rc|R) = |Mod(R)| − |Mod(Rc)| = 0.

Example 3.9. Consider R1 = {a,¬a, b} again. Then

• DEs1({b}|R1) = 1, since Mod({a, b}),Mod({¬a, b}) ⊂ Mod({b}).

• DEs1({a, b}|R1) = DEs({¬a, b}|R1) = 0, both {a, b} and {¬a, b} are the maxi-
mal consistent subsets of R1.

• DEs1({a,¬a ∨ b, b}|R1) = 0 because Mod({a,¬a ∨ b, b}) = Mod({a, b}). So,
¬a ∨ b could be considered as an unnecessary weakening.

• DEs1({a, c, b}|R1) = 1.

430 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

Definition 3.10 (Degree of evolution DEs2). Let R be a requirements spec-
ification and Rc the consistent evolution of R. Then the degree of evolution Rc w.r.t.
R, denoted DEs2(Rc|R), is defined as

DEs2(Rc|R) = min
R′∈MC(R)

{|Mod(R′)ªMod(Rc)|},

where Mod(R′)ªMod(Rc) is the symmetric difference of Mod(R′) and Mod(Rc).
Compared to DEs1(Rc|R), DEs2(Rc|R) captures the difference between the

evolved requirements and the original requirements in semantics in some sense.

Example 3.10. Consider R1 = {a,¬a, b} again. Then

• DEs2({b}|R1) = 1.

• DEs2({a, b}|R1) = DEs({¬a, b}|R1) = 0.

• DEs2({a, c, b}|R1) = 1.

4 A Small Case Study

We use the following small but explanatory example to illustrate some measures
presented in this paper.

Example 4.1. Consider the following requirements for updating an existing
software system. A representative of the sellers of the new system, provides the
following demands:

(a) The system-to-be should be open, that is, the system-to-be could be extended
easily.

(b) The system-to-be should be secure.

(c) The user interface of the system-to-be should be fashionable.

A representative of the users of the existing system, provides the following demands:

(d) The system-to-be should be developed based on the techniques used in the
existing system;

(e) The user interface of the system-to-be should maintain the style of the existing
system, i.e., it does not need to be fashionable.

The domain expert in requirements engineering provides the following constraint,
which is a consequence of (b) above:

(f) To guarantee the security of the system-to-be, openness (or ease of extension)
should not be considered.

With regard to the prioritization over these requirements, suppose that both (b) and
(f) are assigned to 0.9. Both (a) and (c) are assigned to 0.6, and (e) is assigned to
0.4. (d) is assigned to 0.7.

If we

Kedian Mu, et al.: Measuring software requirements evolution caused by ... 431

• use the predicate Open(sys) to denote that the system is open;

• use the predicate Fash(int f) to denote that the interface is fashionable;

• use the predicate Exis(sys) to denote that the system will be developed based
on the techniques used in the existing system;

• use the predicate Secu(sys) to denote that the system is secure.

Then we have a prioritized knowledge base 〈R, PR〉 for the requirements above,
where

R = {Open(sys),Secu(sys),Fash(int f),Exis(sys),¬Fash(int f),Secu(sys) → ¬Open(sys)},

and PR : R 7→ [0, 1] such that

PR(Open(sys)) = 0.6, PP(Fash(int f)) = 0.6,PR(¬Fash(int f)) = 0.4,

PR(Exis(sys)) = 0.7, PR(Secu(sys)) = PR(Secu(sys) → ¬Open(sys)) = 0.9.

Clearly, the following inconsistencies can be identified from these requirements:

R ` Open(sys) ∧ ¬Open(sys), R ` Fash(int f) ∧ ¬Fash(int f).

And the set of minimal inconsistent subsets of K is

MI(R) = {{Open(sys),Secu(sys),Secu(sys) → ¬Open(sys)}, {Fash(int f),¬Fash(int f)}}.

The set of free formulas of K is FREE(R) = {Exis(sys)}.
Evidently, to resolve inconsistencies in R, at least two requirements should be

changed. Suppose that there are three potential actions for resolving inconsistency in
R:

(A1) abandon (a) and (e);

(A2) abandon (b) and (c);

(A3) abandon (a) and (c).

The corresponding evolved requirements are Rc
1, Rc

2, and Rc
3, respectively, where

Rc
1 = {Secu(sys),Fash(int f),Exis(sys),Secu(sys) → ¬Open(sys)},

Rc
2 = {Open(sys),Exis(sys),¬Fash(int f),Secu(sys) → ¬Open(sys)},

Rc
3 = {Secu(sys),Exis(sys),¬Fash(int f),Secu(sys) → ¬Open(sys)}.

If we use the degree of evolution DE, then

DE(Rc
1|R) = DE(Rc

2|R) = DE(Rc
3|R) = 1.

This means that the perspective reflected by each evolved requirements specification
is not bigger than the maximally plausible perspective reflected by R.

If we use the degree of evolution DEf , then

DEf (Rc
1|R) = DEf (Rc

2|R) = DEf (Rc
3|R) =

2
5
.

432 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

Moreover, each of the three evolved requirements specification can be considered as
an evolved requirements specification with minimal change.

If we take into account the priority of each requirement and use the degree of
evolution DEw, then

DEw(Rc
1|R) =

5
17

< DEw(Rc
3|R) =

6
17

< DEw(Rc
2|R) =

15
34

.

Actually, Rc
1 is an evolved requirements specification with minimal significance change.

So, action A1 is preferred. This result accords with intuition.
On the other hand, if we use DEs1 and DEs2, respectively, then

DEs1(Rc
1|R) = DEs1(Rc

2|R) = DEs1(Rc
3|R) = 0.

DEs2(Rc
1|R) = DEs2(Rc

2|R) = DEs2(Rc
3|R) = 0.

This implies that each evolved requirements specification have the same expres-
sion ability as R. That is, this evolution brings no new information about require-
ments. However, each evolved requirements specifications mentioned above is exactly
a maximal consistent subset of R.

Note that each of these measures describes the same evolution of requirements
caused by inconsistency from a distinctive aspect. Syntax-based measures such as
DE, DEf and DEw focus on counting the number and the significance of require-
ments involved in evolution, whilst semantics-based measures are concentrated on
the changes in the models due to evolution. In applications such as the case study
illustrated above, the choice of measures depends on which aspect(s) we are preferred.

5 Discussion and Comparison

Requirements evolution is a pervasive issue in requirements engineering. There
are a number of approaches to managing requirements evolution have been presented
both in general[1,11−13,15] and in particular application domains[14]. It has been in-
creasingly recognized that the use of logic is effective to manage requirements evo-
lution, especially in the presence of inconsistency[1,3,13]. For example, Zowghi et al
formulated the problem of requirements evolution in the framework of nonmonotonic
logics such as default logic and AGM belief revision[3,13], whilst Mu et al modeled the
problem of changing requirements as a negotiation-style belief revision[1]. However,
there is relatively fewer approaches to measuring or assessing the evolution of require-
ments in the software development life cycle. In this paper, we focus on a particular
kind of evolution, i.e., requirements evolution caused by inconsistency resolving. In
the following, we compare our approaches with some of closely related proposals.

The Requirements Maturity Index (RMI) presented in Ref. [11] aims to quantify
the readiness of requirements during requirements evolution. It is defined as

RMI =
RT −RC

RT
,

where RT is the number of software requirements in the current delivery; RC is
the number of software requirements in the current delivery that are added, deleted
or modified from a previous delivery[11]. Also, by taking into account the cumula-
tive number of requirements changes CRC and the average number of requirements

Kedian Mu, et al.: Measuring software requirements evolution caused by ... 433

changes ARC , they presented two refinements of RMI in Ref. [15], namely Require-
ments Stability Index RSI and Historical Requirements Maturity Index HRMI. That
is,

RSI =
RT − CRC

RT
, HRMI =

RT −ARC

RT
.

Roughly speaking, RMI captures the relative change in the number of requirements
in the current stage of evolution, whilst HRMI and RSI describe the relative change
in the number of the requirements in the whole history of evolution and how the
requirements keep stable in some sense, respectively. The syntax-based measures
presented in this paper accord with RMI in the sense of using the (relative) number
of requirements changed in evolution to measure or the evolution.

However, all the syntax-based measures presented in this paper focus on the evo-
lution caused by inconsistency handling. These are stemmed from the specific char-
acteristics of inconsistent requirements specification, i.e., maximal consistent subsets
and minimal inconsistent subsets. That is, measures for such evolution are more inter-
ested in capturing the changes of requirements in minimal inconsistent subsets rather
than all the requirements. Moreover, some syntax-based measures such as DEw take
into account the priority of each requirement as well as the number of requirements.
In addition, we also attempt to assess the evolution by capturing the changes of the
set of models of related set of requirements. This semantics-based approach may be
more appropriate for capturing the change of expression ability of a requirements
specification.

Besides the Requirements Maturity Index, the similarity measure in information
retrieval is also introduced to requirements engineering to measuring the similarity
between requirements sentences[12]. Compared to similarity measure, the measures
presented in this paper are more interested in difference between the original inconsis-
tent requirements specification and the evolved requirements specification. Moreover,
this difference may be used to capture the impact of inconsistency handling actions
on the development project.

6 Conclusions

We have presented approaches to measuring the requirements evolution caused
by inconsistency. This paper presented the following contributions to managing re-
quirements evolution caused by inconsistency.

(a) We presented two syntax-based measures for the evolution of an inconsistent
requirements specification. One aims to capture the degree of enlargement of the
biggest maximal consistent perspective of an inconsistent requirements specification
in inconsistency handling, and another aims to capture the normalized number of
requirements involved in inconsistency to be changed for resolving inconsistency.

(b) We characterized two particular kinds of requirements evolution by using the
two syntax-based measures, respectively, i.e., evolved requirements specifications with
minimal change and evolved requirements specifications with maximal plausibility.

(c) We presented a syntax-based measure for the evolution of inconsistent prior-
itized requirements specification, which considers both the number and the priority
levels of requirements to be changed for resolving inconsistency. We also characterized
the evolved requirements specification with minimal significance change based on the

434 International Journal of Software and Informatics, Volume 6, Issue 3 (2012)

measure.
(d) We presented a semantics-based measure for the evolution of inconsistent

requirements specification, which may be more appropriate for capturing the change
of expression ability of a requirements specification.

References

[1] Mu K, Liu W, Jin Z, Hong J, Bell D. Managning software requirements changes based on

negotiation-style revsion. Journal of Computer Science and Technology, 2011, 26(5): 890–907.

[2] Lormans M. Monitoring requirements evolution using views. Proc. of the 11th European Con-

ference on Software Maintenance and Reengineering, Amsterdam, The Netherlands. March

2007. 349–352.

[3] Gervasi V, Zowghi D. Reasoning about inconsistencies in natural language requirements. ACM

Trans. on Software Engineering and Methodologies, 2005, 14(3): 277–330.

[4] Hunter A, Nuseibeh B. Managing inconsistent specification. ACM Trans. on Software Engi-

neering and Methodology, 1998, 7(4): 335–367.

[5] Nuseibeh B, Easterbrook S, Russo A. Leveraging inconsistency in software development. IEEE

Computer, 2000, 33(4): 24–29.

[6] Mu K, Jin Z, Zowghi D. A priority-based negotiations approach for handling inconsistency in

multi-perspective software requirements. Journal of Systems Science and Complexity, 2008,

21(4): 574–596.

[7] Mu K, Liu W, Jin Z, Yue A, Lu R, Bell D. Handling inconsistency in distributed software

requirements specifications based on prioritized merging. Fundamenta Informaticae, 2009, 91(3-

4): 631–670.

[8] Reiter R. A theory of diagnosis from first priniciples. Artificial Intelligence, 1987, 32(1): 57–95.

[9] Mu K, Liu W, Jin Z. Measuring the blame of each formula for inconsistent prioritized knowledge

bases. Journal of Logic and Computation, 2012, 22(3):481–516.

[10] Hunter A, Grant J. Measuring consistency gain and information loss in stepwise inconsistency

resolution. In: Liu W, ed. ECSQARU 2011, LNAI 6717. 2011. 362–373.

[11] Anderson S, Felici M. Requirements evolution from process to product oriented management.

Proc. of Profes 2001, 3rd International Conference on Product Focused Software Process Im-

provement. Kaiserslautern, Germany, September 10-13, 2001. LNCS 2188, Springer-Verlag.

2001. 27–41.

[12] Park S, Kim H, Ko Y, Seo J. Implementation of an efficient requirements-analysis supporting

system using similarity measure techniques. Information and Software Technology, 2000, 42(6):

429–438.

[13] Zowghi D, Ghose A, Peppas P. A framework for reasoning about requirements evolution. In: Foo

NY, Goebel R, eds. PRICAI’96: Topics in Artificial Intelligence, 4th Pacific Rim International

Conference on Artificial Intelligence. Cairns, Australia, August 26-30, 1996. Lecture Notes in

Computer Science 1114, Springer. 1996. 157–168.

[14] Lutz R, Mikulski I. Operational anomalies as a cause of safety-critical requirements evolution.

Journal of Systems and Software, 2003, 65(2): 155–161.

[15] Anderson S, Felici M. Quantitative aspects of requirements evolution. 26th International Com-

puter Software and Applications Conference (COMPSAC 2002). Prolonging Software Life: De-

velopment and Redevelopment, 26-29 August, 2002. Oxford, England, IEEE Computer Society.

2002. 27–32.

[16] Konieczny S. On the difference between merging knowledge bases and combining them. In:

Cohn AG, Giunchiglia F, Selman B, eds. KR 2000, Principles of Knowledge Representation and

Reasoning Proceedings of the Seventh International Conference, Breckenridge, Colorado, USA,

April 11-15, 2000. Morgan Kaufmann Publishers. 2000. 135–144.

