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Abstract Organizations and businesses, including financial institutions and healthcare

providers, are increasingly collecting and disseminating information about individuals in the

form of transactions. A transaction associates an individual with a set of items, each repre-

senting a potentially confidential activity, such as the purchase of a stock or the diagnosis

of a disease. Thus, transaction data need to be shared in a way that preserves individuals’

privacy, while remaining useful in intended tasks. While algorithms for anonymizing trans-

action data have been developed, the issue of how to achieve a “desired” balance between

disclosure risk and data utility has not been investigated. In this paper, we assess the bal-

ance offered by popular algorithms using the R-U confidentiality map. Our analysis and

experiments shed light on how the joint impact on disclosure risk and data utility can be

examined, which allows the production of high-quality anonymization solutions.
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1 Introduction

Privacy has long been held as a basic human value that needs protection[60].
In recent years, however, protection for privacy is becoming increasingly threatened,
mainly as a result of widespread use of computer and communication technologies.
An increasing amount of sensitive data about individuals is entering into computer
systems everyday, either out of necessity (e.g. in healthcare) or through lack of careful
control (e.g. on social networks). It is important therefore that we consider how
sensitive and personal information is protected in today’s data collection, management
and sharing activities.

Protecting data privacy requires us to ensure (i) security - stored data are not
lost or accessed by unauthorized users; (ii) secrecy - no one is able to eavesdrop
the data while they are transmitted between authorized users; and (iii) anonymity
- private and sensitive information about individuals is not disclosed when data are
released. Note that in many cases, releasing data about individuals is not an option,
but a necessity. For example, data relating to drug side effects may be collected from
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Name Diagnosis codes

Anne a b c d e f

Greg a b e g

Jack a e

Tom b f g

Mary a b

Jim c f

(a)

Diagnosis codes

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(b)

Figure 1. (a) Original dataset, and (b) output of AA

patients through General Practitioners, and such data will need to be released to drug
researchers for analysis.

In this paper we consider privacy protection through data anonymity. More
specifically, we consider the protection of transaction data which are increasingly
collected by and shared among organizations and businesses to support a variety
of applications, including e-commerce[73] and biomedicine[40]. These datasets are
comprised of records, called transactions, which consist of sets of items (also called
itemsets), such as the products purchased by customers from a supermarket, or the
diagnosis codes contained in patients’ electronic medical records. For example, the
table in Fig. 1(a) shows a set of medical records (transactions), each containing the
diagnosis codes (items) associated with a specific patient.

Since transaction data can contain private information about individuals, their
release and sharing need to be performed in a way that prevents re-identification (i.e.,
the association between an individual and their transaction), so that data sharing
policies and regulations are observed[3,1,15]. Note that re-identification is possible
even when no explicit identifiers are contained in the released data, as shown in the
AOL search data incident[9]. For instance, releasing the table in Fig. 1(a) after
removing individuals’ names would still allow an attacker, who knows that Anne is
diagnosed with a and c, to associate her with the first transaction in the table and
infer all of her diagnoses.

Several methods that protect transaction data by limiting the probability of
re-identification have been proposed[20,41,64]. These methods anonymize data using
item generalization (i.e., replacing items with more general/abstract ones) and/or
suppression (i.e., eliminating some items from the data), until the aforementioned
probability becomes 1

k or less, where k is a parameter that is specified by the data
publisher. The table in Fig. 1(b), for example, is produced from the table in Fig.
1(a) when the method of Ref. [64] is applied with k = 6. Observe that all diagnosis
codes are replaced by (a, b, c, d, e, f, g), which is a generalized item interpreted as
representing any non-empty subset of {a, b, c, d, e, f, g}, and that the probability of
re-identifying an individual, using the table in Fig. 1(b), is no more than 1

6 .

Protecting transaction data through anonymity has a penalty to pay: the anony-
mized data will incur some information loss, thereby affecting the utility of the
anonymized data. For example, using the table in Fig. 1(b), we will no longer be
able to answer accurately how many patients have diagnosis codes a, b and c. Unfor-
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tunately, achieving both maximum privacy protection and utility of anonymized data
is not feasible[41], and these two properties can only be traded-off. This is because
making data more anonymous (better protection) often means that data will be less
useful (worse utility) in analytic studies[45]. Thus, it is important to consider how a
“desired” balance may be achieved in transaction data anonymization. The level of
protection and utility that an anonymized transaction dataset will have, depends on
which specific method is used to anonymize the data, and within that method, how
certain parameters are configured. For example, for the method used to produce the
table in Fig. 1(b), setting k = 4 could result in an anonymous dataset that has quite
different protection and utility properties from those of the table shown in Fig. 1(b).
In addition, anonymization methods are based on heuristics, which do not guarantee
maximizing data utility.

Consequently, it may be difficult for data publishers to use the proposed anonymi-
zation methods effectively in practice to (i) decide which method will deliver the best
result in terms of data utility or privacy protection, or (ii) produce an anonymous
dataset that has the required or desired balance between these two properties. At
the same time, addressing this issue is important, because applying anonymization
methods is becoming a requirement in several application domains[1,2].

In this paper, we study how the disclosure risk and the data utility of an anony-
mous transaction dataset can be assessed jointly. More specifically, we show how an
R-U confidentiality map[27] can be constructed for anonymized transaction data, and
how this map can be used to examine the following:

• How the qualities of solutions produced by different methods may be compared.
We evaluate the privacy/utility trade-off offered by three popular transaction
data anonymization algorithms[20,41,64], when they are applied to e-commerce[73]

and electronic medical record datasets from the Vanderbilt University Medical
Center[55]. We show how an R-U confidentiality map can be used to compare
different anonymization methods meaningfully.

• How the parameters of a method may be configured to achieve a required trade-
off. We consider two scenarios here. In the first one, the data publisher wishes to
understand what configuration of the parameters would result in an anonymiza-
tion that has a best privacy risk and data utility trade-off. In the second sce-
nario, the publisher has an upper bound on acceptable privacy risk in mind,
and wants to select a configuration that would maximize data utility within
this bound. We show how an R-U Confidentiality map can be used to assist
data publishers in analyzing the trade-off between disclosure risk and data util-
ity in both of these cases.

Our analysis and experiments shed light on how the joint impact on disclosure
risk and data utility can be examined, thereby allowing the production of high-quality
anonymization solutions.

The remainder of the paper is organized as follows. Section 2 discusses tech-
niques for transaction data anonymization, while Section 3 provides the necessary
background for the techniques that are used in our work. Section 4 discusses the
concept of R-U confidentiality map and its use in transaction data publishing. In
Section 5, we provide experimental results and, in Section 6, we conclude the paper.
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2 Techniques for Anonymizing Transaction Data

Data about individuals need to be published to support a growing number of ap-
plications. This has led to the development of methods for anonymizing different types
of data, such as relational[7,10,30,32−34,36,43,44,46,47,52,56,68], transaction[64,69,29,41,19,20,

65,42,11], sequential[54], trajectory[4,26,25,71,31], and graph data[37,28,39]. Our work is
related to transaction data anonymization, however, it employs many concepts that
were introduced in the context of relational data anonymization. Thus, we first dis-
cuss relational data anonymization methods, in Section 2.1. Subsequently, we review
techniques for anonymizing transaction data, in Section 2.2. We note that our inten-
tion is to provide a brief overview of the relevant anonymization techniques, and not
an extensive survey of different transaction data anonymization methods. For such a
survey, we refer the reader to Ref. [17].

2.1 Relational data anonymization

Re-identification concerns via seemingly innocuous attributes were raised by
Sweeney in Ref. [62]. In her work, Sweeney showed that the publication of a relational
table that contains de-identified data about individuals still allows an attacker to as-
sociate individuals with their records. This is because publicly available datasets,
such as voter registration lists, can be linked to the published data, based on po-
tentially linkable attributes, called quasi-identifiers, such as date of birth, gender,
and zip code. A principle to prevent re-identification, called k-anonymity, was also
proposed in Ref. [62]. This principle requires each record of the published table to
contain the same values in all quasi-identifiers with at least k− 1 other records in the
table. Satisfying k-anonymity offers protection against re-identification, because the
probability of linking an individual to their true record, based on quasi-identifiers, is
no more than 1

k . The parameter k controls the level of offered privacy and is set by
data publishers.

The process of enforcing k-anonymity is called k-anonymization, and it can be
thought of as a two-step process: (i) finding groups of at least k records that minimize
the level of data transformation required to satisfy k-anonymity, and (ii) transform-
ing these records to make the table k-anonymous. The first step can be achieved
by employing various strategies, such as binary search[56], data partitioning[33], or
clustering[43,6,68], to search for a “good” anonymization, as finding a solution with
minimal information loss is NP-hard[49]. For instance, LeFevre et al.[33] proposed
Mondrian, a partitioning-based algorithm that is reminiscent of the kd-tree construc-
tion. Mondrian starts by considering the entire dataset, and then iteratively partitions
it into smaller sets of at least k records. Within each iteration, the partitioning is
performed by splitting the data across the median of the quasi-identifier with the
largest domain.

To transform the data in order to k-anonymize them, the techniques of suppres-
sion[70,67] and generalization[56,62,30] have been proposed. In the context of relational
data, suppression involves the removal of values in quasi-identifiers, while general-
ization involves the replacement of values in quasi-identifiers with more general, but
semantically consistent values. Generalization can be performed using several dif-
ferent models (also referred to as recoding models), which are classified into global
and local. Global generalization models require all records that have the same set of
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values over quasi-identifiers to be generalized in exactly the same way, whereas local
models lift this requirement. Iyengar, for example, proposed the full-subtree, global
generalization model[30]. This generalization model assumes the existence of a gener-
alization hierarchy, which organizes the different ways in which specific values may be
replaced by more general ones, and requires replacing entire subtrees of values with
their closest common ancestor in the generalization hierarchy. Local generalization
models have been shown to incur lower information loss than global models[68], but
they can cause problems for data mining algorithms to work effectively on anonymized
data[16].

The anonymization of relational data can be performed based on several pri-
vacy principles, such as l-diversity[48], t-closeness[35] and tuple-diversity[43]. Unlike
k-anonymity, these principles do not attempt to prevent re-identification, but the as-
sociation of individuals with sensitive information. To forestall this threat, the works
of Refs. [48,35,43] model the sensitive information using a non quasi-identifier at-
tribute, called sensitive attribute, and attempt to enhance the protection of published
relational data by requiring the values of the sensitive attribute in each anonymous
group to follow a certain distribution. For instance, t-closeness[35] measures privacy
based on the distance between two distributions; the distribution of the sensitive val-
ues in an anonymous group of records in the published table, and the distribution of
all sensitive values in the table. When these two distributions are “close” to one an-
other, it is assumed that strong privacy is achieved, as no more sensitive information
will be disclosed from the group, than from the table itself. Machanavajjhala et al.[48]

and Li et al.[35] extended the Incognito k-anonymization algorithm[32] to enforce l-
diversity and t-closeness, respectively, while a bottom-up, clustering-based algorithm
for enforcing tuple-diversity has been proposed in Ref. [43].

However, transaction data cannot be anonymized using the aforementioned prin-
ciples and algorithms without incurring excessive information loss[5,69], for two rea-
sons. First, only a small number out of thousands of possible items are contained in a
transaction. Second, transactions have a varying number of items. These character-
istics of transaction data make it difficult to find values that are sufficiently similar
to allow the type of anonymization described above, with “low” information loss.

2.2 Transaction data anonymization

Guarding against re-identification in transaction data publishing has attracted
significant research interest, and several privacy principles and algorithms to achieve
this have been proposed[64,29,41,40]. The goal of the privacy principles against re-
identification is to prevent an attacker who knows all or some of the items of an
individual, from associating the individual with a “small” number of transactions.
He et al.[29], for example, assumed that attackers have knowledge of all the items
in an individual’s transaction and, to guard against such attackers, they introduced
a k-anonymity-based principle, called complete k-anonymity. This principle requires
each transaction in the published dataset to be indistinguishable from at least k − 1
other transactions in the dataset. Terrovitis et al.[64,65] considered attackers, who
know up to m items of an individual and proposed km-anonymity to protect against
them. More recently, Loukides et al.[4] introduced the principle of privacy-constrained
anonymity, which assumes that only certain items in an individual’s transaction can
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be used for re-identification. These items are specified by the data publishers, based
on their domain knowledge, or automatically, by assuming a worst-case scenario[41].
Privacy-constrained anonymity is more general than both complete k-anonymity and
km-anonymity, and it has been shown to allow the publication of patient data that
remain useful for biomedical analysis tasks[40,22].

Anonymizing data based on any of the above principles, while minimizing the
level of information loss incurred by anonymization, is NP-hard[41]. Thus, several
heuristic algorithms have been proposed. Specifically, He et al.[29] and Terrovitis et
al.[65] considered anonymization algorithms that perform local generalization, based
on the full-subtree generalization model. The latter model is similar to that of
Ref. [30], but it is applied to items and allows transactions containing the same items
to be anonymized differently. The algorithm developed by He et al.[29] is called Par-
tition and enforces complete k-anonymity. Partition starts by generalizing all items
to the most generalized item (i.e., the item lying in the root of the generalization
hierarchy) and then replaces this item with its immediate descendants in the hier-
archy, if complete k-anonymity is satisfied. Then, iteratively, it replaces generalized
items with less general items (one at a time, starting with the one that incurs the
least amount of data distortion), as long as complete k-anonymity is satisfied, or the
generalized items are replaced by leaf-level items in the hierarchy. Terrovitis et al.[65]

introduced the Local Recoding Anonymization (LRA) algorithm, which enforces km-
anonymity. LRA partitions a dataset horizontally into sets in a way that would result
in low information loss when the data is anonymized, and then generalizes items in
each set separately. Due to the local generalization models they adopt, the Partition
and LRA algorithms produce data that may not be mined effectively.

Thus, in this work, we consider anonymization algorithms that employ global
generalization[64,41,20]. These algorithms employ different privacy models and are
based on different heuristics. Consequently, it is not straightforward for data pub-
lishers to use these algorithms to construct anonymizations with a desired trade-off
between data utility and privacy protection. Our approach attempts to address this
specific issue. The first algorithm we consider is called Apriori Anonymization (AA)
and has been proposed by Terrovitis et al.[64] to enforce km-anonymity. AA works
in an iterative, bottom-up fashion. Since an itemset appears in no more transactions
than any of its subsets does, it is possible for itemsets that need protection to be
examined in a progressive fashion; from single items to sets of m items. Thus, AA
generalizes larger itemsets, based on the way their subsets have been generalized.
Generalization is performed by traversing the generalization hierarchy in a bottom-
up, breadth-first way, using the full-subtree, global generalization model that was
proposed by Iyengar[30]. The replacement of the items in an itemset with more gen-
eral items can increase its support. This helps the enforcement of km-anonymity, but
increases the level of information loss. Thus, AA starts from leaf-level nodes in the
hierarchy and then examines the immediate ascendants of these items, one at a time.
This is reminiscent to the strategy followed by the Apriori association rule mining
algorithm[8].

Loukides et al.[41] developed COnstraint-based Anonymization of Transactions
(COAT), a greedy, bottom-up algorithm to enforce privacy-constrained anonymity.
COAT employs a set-based, global generalization model, which allows any set of items
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to be generalized together and does not require generalization hierarchies. The choice
of the items generalized by COAT is governed by utility constraints, which are spec-
ified by data publishers. These constraints correspond to the most generalized items
that can be used to replace a set of items, thus they limit the generalizations to
those that are acceptable for intended applications. Specifically, given a set of utility
constraints, COAT attempts to construct a generalized item that is not more general
than its corresponding utility constraint. When such an item is not found, COAT
selectively suppresses a minimum number of items from the corresponding privacy
constraint to ensure that privacy-constrained anonymity is satisfied.

Recently, the Privacy-constrained Clustering-based Transaction Anonymization
(PCTA) algorithm was proposed by Gkoulalas-Divanis et al.[20]. This algorithm aims
to satisfy the privacy-constrained anonymity principle and employs the set-based,
global generalization model[41]. PCTA adopts a bottom-up approach that iteratively
merges clusters formed by the items of the original dataset. Each original item ini-
tially forms a singleton cluster and, subsequently, singleton clusters are merged, in a
way that is reminiscent of hierarchical agglomerative clustering algorithms, to satisfy
privacy constraints with low information loss.

Another privacy threat in transaction data publishing is sensitive information
disclosure, which involves the association of individuals with their sensitive informa-
tion. Sensitive information disclosure has been considered in several works[69,11,42].
Xu et al.[64], for example, introduced the principle of (h, k, p)-coherence, which pre-
vents both re-identification and sensitive information disclosure. The (h, k, p)-coheren-
ce treats items that can lead to identity disclosure, called public items, similarly to
km-anonymity (the function of parameter p is the same as m in km-anonymity), while
limiting the probability an attacker infers any non-public item using a threshold h.
The authors of Ref. [64] also developed Greedy, a suppression-based algorithm to
enforce (h, k, p)-coherence. Greedy works by discovering all unprotected itemsets of
minimal size and protects them by iteratively suppressing the item contained in the
greatest number of those itemsets. In another line of work, Cao et al.[11] introduced a
novel privacy principle against sensitive information disclosure, called ρ-uncertainty.
This principle guards against attackers who can use any combination of items, ei-
ther public or non-public, to infer an individual’s sensitive information, and it can
be enforced by an algorithm that first iteratively suppresses non-public itemsets, and
then generalizes public items using the full-subtree, global generalization model[30].
Loukides et al.[42] proposed a model that prevents both re-identification and the in-
ference of sensitive information, while allowing detailed privacy requirements to be
specified and enforced by anonymization. In Ref. [42], the privacy requirements are
expressed using implications, called PS-rules, each between a set of public items and
a set of sensitive items (i.e., items that model the sensitive information of an individ-
ual). In this work, we examine anonymization methods that prevent re-identification
and leave a study of methods that prevent the disclosure of sensitive information for
future work.

Last, we note that there are methods for preventing the inference of sensitive
knowledge patterns, which are specified by data publishers, when transaction data
are mined after their release. This threat is beyond re-identification and can be ad-
dressed by knowledge hiding methods[53,50,58,61,23,12,51,24,21]. These methods work by
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transforming the original data so that sensitive knowledge patterns cannot be mined
after their release, whereas interesting, non-sensitive patterns can still be discovered
by mining algorithms. Several methods work by hiding association rules[66] based on
heuristics[50,53,58,61] or exact techniques[23,24]. Oliveira et al.[53], for example, pro-
posed a heuristic algorithm, which allows different privacy levels to be exercised for
rules and performs hiding with a single dataset scan. Methods that focus on hid-
ing classification rules based on suppression[13] or reconstruction[51] have also been
proposed.

3 Background

In this section, we present the concepts that are used by the transaction data
anonymization algorithms we consider in our work. After introducing some nota-
tion, we discuss the data transformation techniques employed by these algorithms, in
Section 3.2. Subsequently, we define the anonymization principles that are used by
these algorithms to guard against re-identification, in Section 3.3. Last, we present
the measures that the anonymization algorithms considered in this work employ to
capture data utility, in Section 3.4.

3.1 Notation

Let I = {i1, ..., iM} be a finite set of literals, called items. Any subset I ⊆ I
is called an itemset over I, and is represented as the concatenation of the items it
contains. An itemset that has m items, or equivalently a size of m, is called an m-
itemset and its size is denoted with |I|. A dataset D = {T1, ..., TN} is a set of N

transactions. For instance, Fig. 1(a) illustrates a transaction dataset that contains 6
transactions, where I = {a, b, c, d, e, f, g} and ae is a 2-itemset.

Each transaction Tn, n = 1, ..., N , is associated with a unique individual and
is a pair Tn = 〈tid , I〉, where tid is a unique identifier and I is an itemset. A
transaction Tn = 〈tid , J〉 supports an itemset I, if I ⊆ J . Given an itemset I in D,
we use sup(I,D) to represent the number of transactions Tn ∈ D that support I. For
example, the itemset ae is supported by 3 transactions in the dataset shown in Fig.
1(a).

3.2 Generalization and suppression

Anonymizing transaction data against re-identification can be achieved by gen-
eralization and suppression, as mentioned in Section 2.2. These methods differ from
perturbative methods[59], such as noise addition or data swapping, in that they allow
data semantics to be preserved (i.e., an individual will not be associated with false
information). Applying suppression results in publishing an anonymized version D̃ of
D from which one or more items contained in D have been removed. On the other
hand, generalization transforms an original dataset D to an anonymized dataset D̃
by mapping items in D to generalized items[41]. Thus, generalization often incurs less
information loss than suppression40].

Suppression and generalization can be applied globally, when each occurrence
of an item i in D is suppressed or replaced by the same generalized item ĩ in D̃,
respectively, or locally, when this restriction is lifted. Global generalization is defined
as follows.
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Definition 3.1 (Global generalization). A global generalization is a par-
tition Ĩ of I in which each item i in I is mapped to a generalized item ĩ in Ĩ that
contains i, using a generalization function Φ : I → Ĩ.

Consider I = {a, b, c, d} for example. Ĩ = {(a), (b), (c, d)} is a global general-
ization of I. In this generalization, items a and b are mapped to themselves (i.e.,
Φ(a) = ĩ1 = (a) and Φ(b) = ĩ2 = (b)), while c and d are mapped to a generalized item
(i.e., Φ(c) = Φ(d) = ĩ3 = (c, d) which is interpreted as representing c or d or c and d).

3.3 Anonymization principles and algorithms

To see how generalization can be used to prevent re-identification, observe that,
given an anonymized dataset D̃, an attacker, who knows that an individual is associ-
ated with an item i that is supported by D, can link this individual to their transaction
with a probability of at most 1

sup(Φ(i),D̃)
. It is also easy to see from Definition 3.1

that in global generalization it holds that sup(i,D) 6 sup(Φ(i), D̃), because Φ(i) in
D̃ is supported by all transactions that support i in D, as well as by transactions
that support any other item in D that is mapped to Φ(i) in D̃. For example, b is
supported by 4 transactions in the original table in Fig. 1(a) and by 6 transactions
in the anonymized version of this table, shown in Fig. 1(b). Thus, generalizing i

can lead to reducing the probability of re-identifying an individual. On the other
hand, a globally suppressed item is not supported by any transactions in D̃, hence
the probability of re-identifying an individual based on this item is zero.

Suppression and generalization, however, need to be used in a principled manner,
as otherwise it is possible for either unprotected or practically useless data to be
produced[38]. Consider, for example, that the dataset shown in Fig. 1(a) is published
after suppressing all items except c and f . The published data does not prevent re-
identification, because cf will be supported by a single transaction in the published
data. Thus, an attacker who knows that Jim is associated with cf and is represented
in the published dataset, can uniquely associate Jim with his transaction.

As discussed in Section 2.1, the privacy principles that were developed for anonym-
izing relational data, such as k-anonymity[62], would cause excessive information loss
if they were applied to protect transaction data[5], and alternative privacy principles
have been developed. In what follows, we formally define the privacy principles that
are employed by the anonymization algorithms we consider. The first of these princi-
ples is km-anonymity, which has been proposed by Terrovitis et al.[64] and is defined
as follows.

Definition (km-anonymity). Given parameters k and m, a dataset D satis-
fies km-anonymity when sup(I,D) > k, for each m-itemset I in D.

A km-anonymous dataset provides protection from attackers who know up to any
m items of an individual, because it ensures that any combination of these items can-
not be used to associate this individual with less than k transactions of the published
dataset.

Motivated by applications, including biomedical data sharing, in which the poten-
tially linkable itemsets are known, Loukides et al.[41] proposed the concept of privacy
constraint, which is defined as a set of potentially linkable items from I. Satisfying a
privacy constraint imposes a lower bound of k to the support of itemsets that need to
be protected, and thus limits the probability of re-identification based on the items
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contained in the constraint, as explained below.

Definition (Privacy constraint). A privacy constraint p = {i1, ..., ir} is a
set of potentially linkable items in I. Given a parameter k of anonymity, p is satisfied
in D̃ when either sup(p, D̃) > k or sup(p, D̃) = 0.

A set of privacy constraints is provided as input in both the COAT and PCTA
algorithms, and these algorithms ensure that all privacy constraints in the set will be
satisfied in the anonymized data produced by them.

3.4 Capturing data utility

A transaction dataset can be anonymized in many different ways, but the one that
harms data utility the least, is typically preferred. To capture data utility, the AA
algorithm[64] employs the Normalized Certainty Penalty (NCP) measure, which was
originally proposed in the context of relational data anonymization by Xu et al.[68].
Before providing the definition of the NCP measure, let us consider a generalization
hierarchy H and define a function LD, which is applied to an item i that has been
mapped to ĩ when D is anonymized to D̃. The output of LD is the fraction of the
number of leaf-level descendants of the subtree rooted at ĩ in H, over the total number
of leaves in H. Based on this definition, the NCP is computed as explained below.

Definition 3.4 (Normalized Certainty Penalty (NCP)). Given a gen-
eralization hierarchy H, and an original dataset D that has been anonymized to D̃
using generalization, the Normalized Certainty Penalty for D̃ is defined as

NCP (D̃) =
∑
∀i∈I sup(i,D)× LD(i, D̃)∑

∀i∈I sup(i,D)

Thus, NCP is expressed as the weighted average of the information loss of all
generalized items, which are penalized based on the number of leaf-level descendants
they have in the generalization hierarchy. Consider, for example, a two-level gener-
alization hierarchy that has the generalized item (a, b, c, d, e, f, g) at the root level,
and the items a to g at the leaf-level. The LD scores for all items in the anonymized
dataset shown in Fig. 1(b) are 1. This is because, all these items are mapped to
(a, b, c, d, e, f, g), and both the subtree rooted at (a, b, c, d, e, f, g) and the generaliza-
tion hierarchy have 7 leaf-level nodes. Also, a and b are supported by 4 transactions
in the original dataset shown in Fig. 1(a), e and f are supported by 3 transactions,
c and g by 2 transactions, and d by 1 transaction. Thus, the NCP score for the
anonymized dataset of Fig. 1(b) is 4×1+4×1+3×1+3×1+2×1+2×1+1×1

4+4+3+3+2+2+1 = 1.
The COAT and PCTA algorithms use the Utility Loss (UL) measure, which was

proposed in Ref. [41] and can be used to capture the information loss incurred by both
generalization and suppression. The following definitions explain the computation of
the Utility Loss (UL) measure.

Definition 3.5 (Utility loss for a generalized item). The Utility Loss
(UL) for a generalized item ĩ is defined as

UL(̃i) =
2|̃i| − 1
2|I| − 1

× w(̃i)× sup(̃i, D̃)
N

where |̃i| denotes the number of items in I that are mapped to ĩ, and w : Ĩ → [0, 1]
is a function assigning a weight according to the perceived usefulness of ĩ in analysis.
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Definition 3.6 (Utility loss for an anonymized dataset). The Utility
Loss (UL) for an anonymized dataset D̃ is defined as

UL(D̃) =
∑

∀ĩ∈Ĩ
UL(̃i) +

∑

∀suppressed item im∈I
Y(im)

where Y : I → < is a function that assigns a penalty, which is specified by data
owners, to each suppressed item.

UL quantifies information loss based on the size, weight and support of general-
ized items, imposing a “large” penalty on generalized items that are comprised of a
large number of “important” items that appear in many transactions. The denomina-
tors (2|I|−1) and N in Definition 3.5 are used for normalization purposes, so that the
scores for UL are in [0, 1]. Moreover, a weight w is used to penalize generalizations
exercised on more “important” items. This weight is specified by the data publishers,
based on the perceived importance of the items to the subsequent analysis tasks. For
instance, assuming that the weight of the generalized item (a, b, c, d, e, f, g) is 1, the
UL of the anonymized dataset shown in Fig. 1(b) is computed as 27−1

27−1 × 1× 6
6 = 1.

Another way to quantify data utility is to assume that anonymized data are in-
tended for a specific task and measure how accurately they support this task compared
to the original data. Average Relative Error (ARE ) is a criterion that captures data
utility, based on the accuracy of performing query answering on anonymized data.
This criterion has been used to evaluate the AA, COAT, and PCTA algorithms, and
is also employed by our approach, as we will discuss later in the paper. Given a work-
load of queries, ARE reflects the average number of transactions that are retrieved
incorrectly as part of query answers[41]. Consider, for example, the COUNT query
illustrated in Fig. 2(a). Assuming that I = a and D is the dataset of Fig. 1(a), we can
derive an answer of 4 for this query. However, we cannot do the same when this query
is applied to the anonymized dataset shown in Fig. 1(b), and an estimated answer
needs to be derived. Based on the method of Ref. [40], for example, the estimated
answer for this query is 3, and the Relative Error is |4−3|

4 = 0.25. Given a number of
such queries, ARE is computed by averaging their Relative Error scores.

SELECT COUNT(Tn) FROM D
WHERE Tn supports I in D

(a)

SELECT COUNT(T̃n) FROM D̃
WHERE T̃n supports I in D̃

(b)

Figure 2. COUNT query applied to (a) original, and (b) anonymized data

4 R-U Confidentiality Map

As maximizing both privacy protection and utility offered by anonymized data
is not feasible, the goal of data publishers becomes to produce anonymized data with
a “desired” trade-off between these two properties. This calls for a study of the rela-
tionship between disclosure risk and data utility, which can be conducted empirically,
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based on the concept of R-U confidentiality map[27]. The R-U confidentiality map was
originally proposed for additive noise by Duncan et al.[27], but it has been applied to
different privacy-preserving techniques, such as topcoding[18], k-anonymization, and
randomization[63].

In our context, an R-U confidentiality map is used to study the effectiveness of
an anonymization method in terms of the joint impact on privacy protection and
data utility it produces, for a given set of data under different parameter settings.
This is illustrated in Fig. 3, where Utility is measured as 1

ARE and Risk is calculated
as 1/min∀p∈Psup(p, D̃), with P being the set of the specified privacy constraints,
and ARE and sup(

⋃
∀i∈p Φ(i), D̃) assumed to be non-zero. That is, the utility is a

measure of average query answering accuracy of running a workload of queries W
on an anonymized dataset D̃, and the risk is the upper bound on the probability
of re-identification occurring using D̃. Note that to demonstrate the feasibility of
using an R-U confidentiality map, we have opted for measures based on ARE and
sup(

⋃
∀i∈p Φ(i), D̃). However, an R-U confidentiality map is not limited to these. We

acknowledge the fact that data publishers may want to consider other measures, such
as NCP for Utility and top q-percentiles of Risk [63], in studying and comparing the
quality of different anonymizations.

Figure 3. An R-U confidentiality map

To construct a curve in an R-U confidentiality map, we map a set of anonymiza-
tion solutions, which are produced by applying the same method using different pa-
rameters, to a set of two-dimensional points. The x and y coordinates of each point
correspond to the level of Utility and Risk offered by the anonymization solution, re-
spectively. Using an R-U confidentiality map, data publishers are then able to select
an anonymization with a “desired” balance between data utility and privacy. For
example, as shown in Fig. 4, if the data publisher has an upper bound on risk (rep-
resented by the horizontal line) and a minimum requirement on utility (represented
by the vertical line), then only the solutions in the lower-right quadrant are accept-
able. In addition, R-U confidentiality maps enable a comparison of the effectiveness
of different anonymization algorithms, in which case multiple R-U curves will be plot-
ted in a single map, one for each method under comparison. Note that transaction
data anoanymization algorithms are designed based on different privacy principles
(e.g., AA and COAT) or optimization strategies (e.g., COAT and PCTA), so their
comparison is not straightforward. We will discuss these issues further in the next
section.
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Figure 4. Selecting desired anonymizations

5 Experimental Evaluation

To allow a direct comparison between the tested algorithms, we configured all of
them as in Ref. [20] and transformed the resultant anonymized datasets by replacing
each generalized item with the set of items it contains. In our experiments, no items
were suppressed. We used a C++ implementation of AA provided by the authors
of Ref. [64] and implemented COAT and PCTA also in C++. All methods were
executed on an Intel 2.0GHz machine with 4GB of RAM and tested using a common
framework to measure data utility.

In our experiments, we used the BMS-WebView-2 dataset (referred to as BMS2 ),
which contains click-stream data from an e-commerce site and has been used in
Refs. [64,40]. In addition, we used 2 real datasets that contain de-identified patient
records derived from the Electronic Medical Record (EMR) system of Vanderbilt Uni-
versity Medical Center[55]1). These datasets are referred to as VNEC and VNECKC

and were introduced in Ref. [40]. The datasets we used have different characteristics,
shown in Table 1. To measure Utility, we used the query workloads of Ref. [20].

Table 1 Description of used datasets

Dataset N |I| Max. size of T Avg. size of T

BMS2 77512 3340 161 5.0

VNEC 2762 5830 25 3.1

VNECKC 1335 305 3.1 5.0

In the following, we consider two scenarios in which a desired trade-off between
disclosure risk and data utility needs to be achieved. In the first scenario, a user seeks
to find the parameters of a specific anonymization algorithm that result in the best
trade-off. This case models a practical scenario, when a data publisher has decided
to use a specific algorithm and has little technical expertise. The second scenario
we consider involves a data publisher who seeks to limit the acceptable privacy risk
by selecting a configuration of an algorithm that would maximize data utility within
this bound. This type of scenario is realistic and common, for example, in biomedical
data sharing where the typical maximum acceptable level of Risk is 0.2[14,41].

We started by considering the first scenario. We applied COAT to the VNEC
and VNECKC datasets using different k values ranging from 2 to 80 and setting all

1) These datasets are proprietary and were made available to the first author, while he was working

at Vanderbilt University.
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other parameters as in the single-visit case described in Ref. [41]. This configuration
yielded Risk values that vary from 1 (when data are published intact) to 0.0125.
The R-U confidentiality maps for VNEC and VNECKC are shown in Figs. 5(a)
and (b), respectively. Observe that, in these two graphs, both the Utility scores for
the same Risk level and the shape of the curves are different. This makes finding
a “desired” trade-off between utility and privacy difficult and justifies the need for
using an R-U confidentiality map. Using the latter, data publishers, who do not
have specific requirements for data privacy and utility, can release the anonymization
corresponding to the Knee point on the graph, i.e., the point where there exists the
most significant local change in the curve. Given the coordinates of the points of
the R-U confidentiality map, locating the knee point can be performed using various
methods[72,57]. In this paper, we used the angle-based method[72] to find the Knee
points shown in Figs. 5(a) and (b).

Observe that the knee-point in Fig. 5(a) corresponds to an anonymized dataset
that has more than 2 times better utility than the dataset with the worst utility has
(i.e., the dataset corresponding to the leftmost point in Fig. 5) and 12.5 times better
protection than the least protected dataset has (i.e., the dataset corresponding to the
rightmost point in Fig. 5). A similar observation can be made from Fig. 5(b). These
results show that the use of R-U map in transaction data publishing is extremely
beneficial in practice, as it allows data publishers to release anonymized datasets
with a desired utility/privacy trade-off.

Figure 5. R-U confidentiality maps for (a)VNEC and (b)VNEC kc

Then, we applied AA, COAT, and PCTA on BMS2 using different k values rang-
ing from 2 to 100. The R-U confidentiality maps for these algorithms are illustrated
in Figs. 6(a), (b), and (c). In this experiment, all algorithms were configured to
achieve k2-anonymity and COAT ran with a single utility constraint, effectively al-
lowing any possible item generalization. Observe that the shape of the curves for the
three algorithms differs significantly, and again the construction of R-U confidential-
ity map allows data publishers to determine which anonymization is preferred, for
example, those at Knee points would represent the anonymizations produced by each
of the algorithms with a “good” utility/privacy trade-off. These results demonstrate
the effectiveness of our approach when it is applied to many different anonymization
algorithms.
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Figure 6. R-U confidentiality maps for (a)AA, (b)COAT, and (c) PCTA (BMS2 )

Finally, we considered the second scenario, in which a data publisher has a maxi-
mum acceptable level of Risk in mind and wants to release the anonymized version of
the dataset that offers the maximum Utility within this level of Risk. So, if the data
publisher in our case was asked to use one of the AA, COAT, and PCTA algorithms
to anonymize the BMS2 dataset with an upper bound disclosure risk of 0.2, then
the R-U confidentiality map, shown in Fig. 7, would suggest that PCTA algorithm
is preferred, since within this Risk bound, it offers better Utility than either AA or
COAT does. A quantitatively similar result to the one shown in Fig. 7 was observed
when our approach was applied to the VNEC and VNECKC datasets, but it was
omitted for brevity.

Figure 7. Comparing algorithms using R-U confidentiality map for BMS2

Thus, it can be seen that our approach allows a data publisher to select the
anonymization algorithm that maximizes Utility without violating the acceptable level
of Risk. Moreover, this can be performed by simply selecting the anonymization
algorithm that produces the rightmost point below the horizontal line in the R-U
map and configuring it with the parameters corresponding to this point.
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6 Conclusions

Several transaction data anonymization methods have been developed recently,
but how they may be used to derive anonymizations with a “desired” utility/privacy
trade-off has not been considered. In this paper, we addressed this issue by applying
the concept of R-U confidentiality map. We explained how R-U maps can be con-
structed and demonstrated how they may be used in assessing the disclosure risk and
data utility trade-off offered by transaction data anonymization solutions.

Through experiments using real data, we have shown the feasibility of our pro-
posed methodology in this paper. However, some further work on this is still necessary.
In particular, different risk and utility measures need to be considered and experi-
mented, in order to fully understand how R-U confidentiality maps may be used in
assessing and balancing the quality of anonymization in more complex settings, for
example, by considering attackers’s background knowledge and data analysis require-
ments as part of Risk and Utility assessment.
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