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Abstract By their very nature, services are accessible only as black-boxes through their
published interfaces. It is a well known issue that lack of implementation details may reduce
service testability. In previous work, we proposed testable services as a solution to provide
third-party services with structural coverage information after a test session, yet without
revealing their internal details. However, integrators do not have enough information to
improve their test set when they get a low coverage measure because they do not know
which test requirements have not been covered. This paper proposes an approach in which
testable services are provided along with test metadata that may help integrators to get
a higher coverage. The approach is illustrated on a case study of a real system that uses
orchestrations and testable services. A formal experiment designed to compare the proposed
solution with a functional approach is also presented. The results show evidences that
subjects using the testable service approach augmented with metadata can achieve better
coverage than subjects using only a functional approach.
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1 Introduction

Service Oriented Computing is an emerging paradigm that uses interoperable
services as the building blocks to package bigger applications2%. Particularly,
Service Oriented Architecture (SOA) is an architectural style that promises rapid
and low-cost development of loosely coupled and easily integrated applications even
in heterogeneous environments?4. According to this architecture, service providers
refer to service brokers to publish their services, whereas service consumers refer to
service brokers to find suitable services to compose in their applications.

Services can come in two flavors: atomic or composed. A composed service (or
composition) is developed by integrators and may be described as an application (or
part of it) that delivers its functionality through the interaction of more services.
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Depending on the scheme of interaction, compositions form orchestrations or
choreographies'®!| and aggregate services that are possibly under the control of
different ownership domains. The broad adoption of SOA depends on the confidence
integrators have on services provided by third parties. One way to gain trust on
services, and in general in any piece of software, is by testing[" 6. However, testing
third party services is not an easy task due to their inherent low testability.

Testability has been defined as “the degree to which a system or component
facilitates the establishment of test criteria and the performance of tests to determine
whether those criteria have been met”!*8l. It is also an important quality indicator
since its measurement leads to the prospect of facilitating and improving a service
test process?® 271, Third party services generally yield a low testability for two main
reasons: the cost of the testing activity and the black box nature of services.

Testing a third party service may be expensive as costs may be associated with
its execution!'? 25 For example, there can be services to be paid per each invocation
or others that, even if free of charge, only permit a limited number of invocations in a
fixed period of time to avoid problems such as performance loss and denial of service.

Therefore, test cases should be chosen with accuracy!'? 22,

Integrators have no access to the internal details of third party services since the
latter are provided as black boxes. For them, a third party service is only an interface
providing operations that can be invoked remotely. The encapsulation of third party
services hampers establishing and tracing testing criteria based on implementation.
Integrators can only use testing techniques based on the spectification or on the
interface of the servicel??l. Such characteristic is a common issue of services and
components when it comes to testing!!5l. There could however be situations in which
interface-testing of services is not deemed sufficient and combining implementation
and specification-based testing techniques is desirable. In fact, these two techniques
are meant to find different types of failures(!] and their combined application may
provide higher confidence.

Towards this purpose, two similar approaches have been independently
proposed by Bartolini et al.l*3] and Eler et al.'4. The two proposals aim at
improving the testability of SOA applications by allowing for white-box testing of
third-party services. In both approaches, the internal details of the services are not
exposed thus preserving the encapsulation principle of SOA. The process and the
infrastructure by which this coverage information is obtained varied in the two
approaches (we refer to Refs. [1, 2] and Ref. [14] for the details). The basic idea is
however the same: they suggested that the services are created with the capability
to provide their clients with structural coverage information. Services offering such
capability have been named testable services by both approaches.

Integrators can thus test a third party testable service and get a structural
coverage analysis based on the test session carried out. The coverage analysis may
refer to both control (all-nodes, all-edges, all-paths) and data flow (all-uses) criteria.
Integrators can test the service in two different contexts: in isolation (unit testing)
or from within a composition (integration testing). In the former situation, the
integrator launches test cases to test the testable service through its interface, and
in the latter situation, the integrator launches test cases to test the composition
that uses the testable service. In both cases, the integrator can get a structural
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coverage report.

The coverage measure provided by the testable service is a feedback about the
thoroughness of the executed tests. Integrators can know how much (instructions,
data, paths) of the testable service is being executed from the context of the
composition. With such information, the integrators can decide to enhance their
test set to exercise the testable service as much as possible from the context of the
composition and prevent that untested code hides latent failures.

The testing facilities and the coverage measure provided by testable services,
however, provide the integrators with no clue of how testing could be improved in
the case the coverage score is low. The integrator does not get enough information
to decide whether the coverage achieved is good or bad, nor to understand how the
test set should be augmented to increase the coverage. Through the testable service
approach, the integrator would know, for example, that 40% of service’s control flow
nodes have not been covered yet. However, the integrator would not know which are
these nodes, because the source code or other models, such as the control flow, are
not made available. This limitation was shared by both testable service approaches.

To find a solution, proposers of the two approaches joined their effort and
introduce here an enhanced approach called More Testable Service by Test
Metadata (MTxTM), which is based on a test metadata model inspired by the
concepts of built-in testing!!® 28 and metadatal??l. MTxTM was designed to make
testable services even more testable by providing integrators with information about
the testing activity carried out by the testable service’s developers. Integrators can
use such information to evaluate the coverage reached on the testable services used
and to create new test cases to exercise instructions, paths and data which have not
been executed yet. In this paper, we expand on a previous version!!3l by providing
more insight into the motivations behind the approach and its potential
applications. We also present a more extensive validation, through an exploratory
case study and a novel experiment designed to compare MTxTM with a functional
approach and to show evidences of the benefits of using a testable service approach.

This paper is organized as follows. Section 2 presents the basic concepts and an
overview of the testable service approach. A motivating scenario in Section 3 shows
why the coverage information by itself is not sufficient, and then the proposed test
metadata model for testable services is presented in Section 4. Section 5 shows a case
study used to perform the first evaluation of the proposed approach. An experiment
designed to evaluate the MTxTM approach in comparison to a functional approach is
presented in Section 6 and results are discussed in Section 7. Section 8 presents some
related work and, finally, Section 9 presents the concluding remarks of this paper.

2 Testable Service Approaches to Allow for Structural Testing of Services

In previous work, we conceived two similar approaches to develop testable services
to improve the testability of SOA applications by making services more transparent to
external testers while maintaining the flexibility, the dynamism and the loose coupling
of SOA. These services have been called testable services, because they are inspired by
the concept of testable components'®. The approach proposed by Bartolini et al.[? 3]
is called SOCT, while the approach proposed by Eler et al. is called BISTWS[!4].

A testable service has been defined as a web service instrumented to collect
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coverage information (instructions, data and paths exercised) and accessible through
a WSDL interface that includes basic operations to enable the collection of testing
data. The instrumentation of a service to transform it to a testable service is made
by the developer of the service. This process can be manually done by the
developers (SOCT) or fully automated by a tool or a testing service (BISTWS).
During the instrumentation, probes are inserted into the service’s code. Probes can
be defined as additional instructions inserted at targeted locations to enable
coverage data collection according to a specific coverage criterion. The coverage
data collected by the probes are stored locally or sent to a service designed to collect
these information and calculate the coverage measure when it is required.

The instrumentation of a testable service also adds operations to provide clients
with structural testing facilities. These operations are used to define the boundaries
of a test session and to retrieve coverage information regarding a specific test session,
which has to be uniquely identified. A test session is thus a bounded set of interactions
between the tester and the testable service during which coverage information is
collected. The operations to set the boundaries of a test session and to get coverage
information have been called startTest, stopTest and coverageMeasure in SOCT
and startTrace, stopTrace and getCoverage in BISTWS.

Integrators can use a testable service to compose their orchestrations or
choreographies and take advantage of its structural testing during testing activities.
They can test either the provided operations of the testable service in isolation
(similar to unit testing) or the testable service from the context of the composition.
In both cases, the integrators can use the testable service operations to start a test
session, launch a set of test cases, stop the test session and then can get a coverage
measure report on structural testing criteria (control and data-flow). This report is
a feedback about the thoroughness of the executed tests.

In Fig. 1, we present an abstract sequence diagram to illustrate an integrator
using a testable service in the context of an orchestration. The integrator invokes the
testable service that composes the orchestration to start a test session. Next, a test
set designed to test the orchestration is executed. The orchestration interacts with
the testable service and the testable service collects coverage data when executed.
After executing the test set, the integrator invokes the testable service to stop the
test session and then asks for a coverage analysis, which is produced by the testable
service. In this diagram, we hide away details of how the coverage information is
eventually achieved by the testable service, because it does not matter from the point
of view of the integrator.

Despite the small differences between the approaches of Ref. [3] and Ref. [14], they
are very similar and follow basically the same process and governance framework'%.
In both approaches the developer has to provide the testable service. The integrator
has to start a testing session, execute a test set, stop the test session and ask for
a coverage measure. Then, the coverage analysis is performed by a specific service
(TCov or TestingWs).

From the point of view of the integrator, there is no difference between the two
testable approaches mentioned before, in the sense that the integrator is ultimately
interested in getting the coverage measure. They do not need to worry about code
instrumentation and how the coverage information is stored or calculated, because
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this is done by a tool that is accessed by them as a service. Therefore, from now on,
in this paper we will not distinguish anymore between the two approaches. The case
study and the experiment presented in this paper, however, will use the infrastructure
provided by BISTWSH4,

sd TestSession J

: Inte?rator T T
|

—

Orchestration I |TestabIeSeMce |

| 1. startTestSession(ID)

loop : testset l

—

2: executeTestCase(testData)

|
P+ 2.1 invokeOp(testData) PL 2.1.1: collectCoverageData()

3: stopTestSession(ID)

I 4: getCoverage(ID)

‘ 1
Coverage Analysis
g 20X rage Analysis _ _ _ _ _ : __________

Figure 1. Sequence Diagram of a generic test session of a testable service

The integrators may be worried instead about how reliable or trustworthy is the
coverage measure obtained. In fact, they have no way of knowing if the
instrumentation introduced by the developer can correctly measure the coverage
score or even that it was not manipulated to developer’s advantage, since it was
introduced by the developers themselves. Addressing this issue is a matter of
governance, as discussed in Ref. [10], and several solutions could be taken for a
real-world implementation. One could be a service agreement contract between the
integrator and the developer (the confidence on the coverage would be the same
attributed to the service) or the instrumentation and coverage tool could be certified
by an independent certifier. The coverage tool could also be developed and operated
by a third party trusted company. We do not expand further on governance aspects
beyond our approach: the problem is important but is out of scope for this paper.

3 The BroadLeaf Commerce Test Scenario

We use the BroadLeaf Commerce framework as an illustrative scenario to present
our proposed approach. It is an open source E-Commerce framework!'* composed
by several services, each providing a specific feature such as customer and catalog
management, shopping cart, order, shipping and payment processes. The developers
provide a complete instantiation of the framework and its source code, including the

! http://www.broadleafcommerce.org
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test cases for almost all services. We use this software to illustrate and motivate our
approach. For this purpose, we selected a service called RegisterService, which
uses several services, among which a single service called CustomerService. Figure
2 shows an illustration of this scenario.

festISRegte— (0 {RegisterService

Integrator

teSt(TS'C“Stomerbc/é {CustomerService

Developer

Figure 2. Test scenario of RegisterService and CustomerService

The developer of CustomerService designed a test set to test the seven
operations of its interface. We call this test set TS-Customer. We transformed
CustomerService into a testable service by instrumentation and executed
TS-Customer in the context of a test session. The coverage analysis obtained with
this execution is presented in Table 1. The coverage measure is given for the whole
service and for each operation. The coverage for the whole service is given by the
formula T'Rcov /TR, where TR is the sum of all test requirements of the service (for
all operations) and T'Rcov is the sum of the test requirements that were covered.
We can notice that the coverage is quite high, since the test cases have been created
by the developers, who have access to the source code of the service.

Table 1 Structural coverage reached when testing CustomerService

as a single service

Service all-nodes all-edges all-uses
CustomerService 97% 93% 87%
By operation all-nodes all-edges all-uses
createFromld 90% 92% 72%
registerCustomer 100% 100% 100%
saveCustomer 90% 86% 84%
readByld 100% 100% 100%
readByUsername 100% 100% 100%
read ByEmail 100% 100% 100%
changePassword 100% 100% 80%

The integrator who created RegisterService designed a test set to test the two
operations of its interface (TS-Register). We executed TS-Register to check how
much of much of CustomerService would be exercised from within RegisterService.
The coverage analysis generated after this test session is presented in Table 2. Notice
that the coverage is now relatively low. This probably happened because TS-Register
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was meant to test RegisterService without taking into account how much of the
CustomerService was being executed in that context.

Table 2 Structural coverage reached when testing CustomerService in the
context of the orchestration RegisterService

Service all-nodes all-edges all-uses
CustomerService 50% 34% 34%
By operation all-nodes all-edges all-uses
createFromlId 54% 35% 25%
registerCustomer 100% 66% 65%
saveCustomer 54% 33% 33%
readByld 0% 0% 0%
readByUsername 100% 100% 100%
read ByEmail 0% 0% 0%
changePassword 0% 0% 0%

By using the testable version of CustomerService, the integrator can see now
that its coverage is low when tested from the perspective of RegisterService. This
coverage report by itself is a valuable information to the integrator, however, it does
not help to analyze the reasons why the coverage is low or, even better, how it could
be improved. This issue can be mitigated by the metadata model we designed for
testable services, which provides integrators with information to evaluate the quality
of the test set of the orchestration and to create more test cases to increase the
coverage.

4 The MTxTM Approach: Testable Services Even More Testable

Testable services provide the integrator with detailed feedback about how much a
service is exercised during its validation or the validation of the composition in which
it is integrated. This advance on service testing is already a great advantage brought
by testable services, but there is still room for improvement. As said, the coverage
measure provided by the testable service is a feedback about the thoroughness of
the executed tests, but integrators do not know whether the coverage achieved is
satisfactory or how to improve their test set to reach a better coverage. When the
coverage achieved is high, the test set of the service or the orchestration is probably
good, but when the coverage is low, it does not necessarily mean that the test set is
bad. Indeed, coverage of a service could be low for two different reasons®!:

1. Insufficient test cases: The most obvious reason for low coverage, especially
at the beginning of testing, is that the test set is weak: in devising the test
cases, the tester has probably neglected to consider some interesting behaviors.
In traditional white box testing, by inspecting the source code and looking at
the parts that have not been covered, the tester can usually identify new
significant test cases. In service testing, however, it is not possible, even

2 The coverage could of course be lower than 100% also because of infeasible requirements
(unreachable paths). This issue, however, is not peculiar to services, and should be handled by
the developers of the service.
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considering testable services, because the source code is not available. It
requires extra information to help integrators discovering which instructions,
paths and/or data were not exercised yet to create new meaningful test cases.
It is difficult to create new test cases based only on interfaces or specifications.

2. Relative coverage: Different customers may use different operations of a
service or even use the same operations in different contexts. A car shop, a
real estate agent and a university, for example, may use the same bank service
to take loans to their customers. The car shop may use short time duration
loans, while the real estate agent uses long time duration loans and student
loans can start to be paid after many years. If we consider a test session of the
car shop, for example, the coverage measured over the whole bank service code
would be low and not realistic, because the other two types of loan would
never be used from that context. We call irrelevant the test requirements
covered by functionalities not used within a specific context.

The first issue can be addressed by adding more test cases. However, the
integrators cannot know which are the test requirements of the testable service that
were not executed, and why. The second issue arises because the coverage ratio is
computed over a set of test requirements that is unrealistic; this issue should be
addressed by considering a personalized coverage analysis for each context in which
a service is used.

Considering this scenario, we investigated how these issues are addressed in the
field of software components, since they share many similarities with services. Both
of them are self-contained composition units and can only be accessed through
explicit published interfaces!'5]. Built-in testing is an approach created to improve
the testability of software components. The general idea is to introduce
functionalities into the component to provide its users with better control and
observation of its internal statel!5 171,

A component developed under the built-in testing concept can also contain test
cases or the capability to generate test cases. These test cases can be used by the
testable component itself for self-testing, and by external users as well[].

Another way of improving the testability of service components is using
metadata. Metadata provide extra information about the component other than the
interface specifications and range from finite-state-machine models and QoS-related
information to plain documentation. Bundell and coauthors”) pointed that
metadata should be used to provide information to help component users on
analysis and testing activities. Thus, metadata may consist of coverage information,
test cases, abstract representations of source code or assertions about security
properties?2| for example.

To address the problem of the insufficient test cases, inspired by the concepts of
built-in testing and metadata approaches from researches on software components,
we propose publishing test metadata along with testable services to help integrators
to improve their test set!'3]. To address the problem of relative coverage, we propose
using an orchestration profile that is used by the testable service to generate coverage
analysis tailored for each context in which it is used. The overall solution we propose
is the MTxTM approach.
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In particular, the test metadata designed for testable services can come in two
flavors: a priori and on demand. A priori metadata provide information that was
previously created and is attached to the testable service when it is released. On-
demand metadata provide information calculated/generated during runtime, based
on the a priori metadata. In the next subsections, we show details of both a priori
and on demand metadata and following of the usage profile.

4.1 A priori metadata

The a priori metadata are created by the developer of the testable service and
consist of the test set used to test the service during development time (similarly to the
built-in test concept). Developers usually test their services before their publication
using available testing techniques, strategies and plans. An instance of a typical
scenario to create test cases involves the following activities:

1. The developers create test cases for each operation of the service considering its
specification. They could use, for instance, functional testing techniques, such
as category partition or boundary analysis.

2. The developers execute the test cases and get structural coverage information
to evaluate how much their test set has exercised the code of the service under
test.

3. The developers inspect the source code or use data flow models to discover which
parts of the service were not executed yet and then create test cases to cover
the uncovered test requirements (instructions, branches, data, ...).

Integrators of testable services can perfectly perform the steps 1 and 2 above,
but they cannot perform step 3 because they do not have access to the source code as
the developers do. For this reason, we believe that the developers of testable services
should pack the test cases created during development time and export them as the
a priori metadata of the testable service. The a priori metadata should also include
the reasoning performed by the developer to design each test case.

In MTxTM we assume that the a priori metadata represents the best effort of
the developer and that the coverage obtained is the highest possible. In many cases,
the structural coverage reached will not be 100% because of infeasible requirements
(like unreachable paths, for example).

Considering the example of a testing scenario of a subset of the BroadLeaf
Commerce framework presented before, the a priori metadata of CustomerService
is the test set ts-Customer. Table 3 presents a subset of ts-Customer. These test
cases have been designed to test an operation of CustomerService called
createFromID. Notice that for each test case there are the input data and a
description that represents the reason why that test case was created.
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Table 3 A subset of the a priori metadata of CustomerService

boolean createFromID (id,user,passwd,email,chAnsw1,chAnsw2,register)

TC-ID ID user pwd email chAnswl chAnsw2 register Description

tc-01 1001 cstl clpwd cl@blf.com true  Create and register

tc-02 1002 cst2 c2pwd c2@blf.com false  Create and don’t register
tc-03 1003 cst3 c3pwd c3@blf.com  Al-c3 true  Create (answer 1)

tc-04 1004 cst4d cdpwd c4@blf.com  Al-c4 A2-c4 true  Create (answer 1 and 2)
tc-05 null cstb cSpwd c5Q@blf.com true  Create (auto generated ID)
tc-06 1001 Create (existent ID)

Metadata published along with software components or services must have a pre-
defined format. In our approach, we defined an XML structure in which each test
case of the a priori metadata must be expressed. Each test case must contain the
following information: a unique identification (tc-ID); the name of the operation it
refers to; the name and the value of each input parameter; dependencies (some test
cases should be executed after the execution of other test cases); the expected result
given by an oracle; and a quick description in free text explaining why the test case
was created. The following listing shows tc-04 in a simplified XML format.

<testcase id="tc-04" description="..."
operation="createFromId" return="boolean">
<input name="ID">1004</input>
<input name="user"> cst4 </input>
<input name="passwd">c4pwd</input>
<input name="chAnswl1">A1l-c4</input>
<input name="chAnsw2">A2-c4</input>
<input name="email">c4@blf.com</input>
<input name="register"> true </input>
<input name="description"> Create (answer 1 and 2) </input>
<expected>true</expected>
</testcase>

4.2 On demand metadata

The on demand metadata is automatically generated by the testable service
during runtime, based on the a priori metadata. They consist of suggestions
provided to help integrators to improve the coverage on the testable service reached
so far.

Suppose that an integrator tested a service from the context of a composition and
achieved low coverage. He/she can request the on demand metadata of the testable
service and receive suggestions of test cases that should be executed to cover the
test requirements not executed yet. Considering that the testable service is being
executed from within a composition, the integrator must analyze the input data of
the suggested test cases and identify an integration test for the composition that
invokes the testable service with those or similar inputs. This should not be too
difficult a task, because integrators own the source code of the composition and thus
should be able to create suitable test cases for the composition to repeat the same
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test configuration implied by the on demand metadata. There can be situations in
which the suggested test cases cannot be repeated and this can be handled by usage
profiles (see next subsection).

Developers who write the a priori metadata should include enough information
in the description of each test case to help integrators understand the reason why
that particular test case was created. A good description of the test case may in fact
help integrators to create test cases to exercise the integration between composition
and testable services. One way to provide a good reason to create a test case is
using black box criteria, such as category partition and boundary values, that always
refer to the specification of the service. When the test case is created to exercise
a particular branch or use of data, the description could explicitly show which kind
of data and values should be used as input values. The developer does not have to
disclose details of branch conditions or secret business decisions, but needs to specify
which public business rules decision the test case refers to, without showing how it
was implemented.

The a priori and the on demand metadata are not meant to allow integrators
to understand the inner structure of each operation of the service. They are meant
to help integrators to reach better coverage by using test case suggestions to cover
test requirements that possibly were not covered yet. Integrators must understand
the business rules of the composition and of the testable service to be able to create
integration tests using the test cases suggested as on demand metadata.

In our approach, the order of the test cases suggested as the on demand metadata
is not chosen by chance. By applying a common greedy heuristics2!, those test cases
that cover more uncovered test requirements come first. In this way, the integrator
can try, for example, to use only a few among the first test cases to improve the
coverage of the test set, instead of using all the suggested test cases. We use such
heuristics to delimit the number of test cases.

A testable service can identify which test cases of the a priori metadata should
be provided as on demand metadata because for each implemented criterion it keeps
track of the test requirements covered by each test case of the a priori metadata.
As soon as the a priori metadata is packed within the testable service, the latter is
executed on each test case and a list of which test requirements is covered by which
test case is made. Table 4 shows an example of this list considering the test cases
for the operation createFromID of the a priori metadata of CustomerService. Note
that this list refers to the test cases that cover the test requirements generated by the
criterion all-nodes. A similar table is generated for each criterion implemented by the
testable service and for which there is a probe to collect coverage data.

Table 4 Nodes of the operation createFromID covered by each test case of the
a priori metadata

Test case 1 2 3 4 5 6 7 8 9 10
tc-01 X X X X X X
tc-02 X X X X X
tc-03 X X X X X X X
tc-04 X X X X X X X X
tc-05 X X X X X X X
tc-06 X X
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The generation of the on demand metadata works as follow. The integrator
requests the on demand metadata using a test session identifier. The testable service
uses the test session identifier to make a list of the test requirements which were not
covered during that specific test session. Next, the testable service uses the a priori
metadata to make a list of test cases that cover the test requirements which were not
covered during the test session informed. The testable service then returns this list
to the integrator as the on demand metadata.

Suppose, for instance, that a integrator requested the on demand metadata
generated by CustomerService after a test session in which nodes 2 and 3 of
createFromID have not been covered. The testable service would use the a priori
metadata and identify that tc-05 and tc-06 cover nodes 2 and 3 and they would be
provided as suggestions to the integrator.

4.8 Incremental usage profile

The developer of a service does not know in advance which orchestrations or
choreographies it will be used in, thus when the service is tested in isolation at
development time, it is tested without considering any context. Consequently, the a
priori metadata are generic. The on demand metadata are also generic because the
testable service does not know which functionalities of the service would be or would
not be used by the integrator that requests the coverage information (see the notion
of relative coverage introduced at the beginning of this section).

To overcome this issue, we propose that the integrator who uses the testable
service within a composition should create a usage profile that identifies which
operations of the testable services are actually used. This profile also expresses
which test requirements should be excluded from the coverage measure calculation.
This information can thus be used by the testable service to calculate a customized
measure for each context and to generate specific on demand metadata based on the
operations and the test requirements that should be considered.

The usage profile of a composition must provide the following information to the
testable service used:

— An identifier for future profile updates.

— An identification of the orchestration or choreography that is using the testable
service.

— A list of the operations of the testable service that will be actually used by this
integrator. The testable service will calculate the coverage based on this list
instead of considering all operations of the service. The on demand metadata
will also be generated based only on the operations actually used and informed
in this section of the usage profile.

— A list of irrelevant or contextually infeasible test cases. More precisely, these are
the test cases in the a priori metadata that would never be executed in some
contexts. This can happen if the test case refers to a not used operation or to a
situation in which the combination of parameter values cannot be produced in
the given composition.
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We consider that a testable service may be tested in iterations. The information
in the usage profile can be used by the testable service at each iteration to refine the
calculation of coverage and revise the on demand metadata, so to suggest additional
test cases based only on operations that are really used. Integrators can provide the
testable service with updates to the usage profile information at any time.

A practical use of a usage profile is presented in the next section.

5 Exploratory Case Study

In this section, we present an exploratory case study performed as a first
assessment of the MTxTM approach. For this purpose, we reused the test scenario
of the Broad Leaf Commerce framework, in which there is an orchestration called
RegisterService that uses another service called CustomerService (as illustrated
in Fig. 2). RegisterService provides two public operations, while
CustomerService provides seven ones. Test cases are available to test both
RegisterService and CustomerService. This example is small, but genuine, since
the services and test sets were reused from a real application.

In our exploratory case study, one of the authors played the role of the
integrator that wants to test and evaluate the integration between the composition
and CustomerService. The single service was instrumented and transformed into a
testable service, thus the integrator can get a coverage report about how much of
CustomerService’s code was exercised after testing RegisterService.  The
execution of the test cases of CustomerService achieved a high coverage (see Table
1), while the execution of the test cases of the orchestration (RegisterService)
obtained a lower coverage regarding the CustomerService structure (see Table 2).

In such a context, the integrator can exploit the a priori and/or the on demand
metadata provided by the testable service to improve the test set of the composition
in order to increase the coverage achieved on the single service. The integrator can
also create a usage profile for the composition to get a customized coverage analysis.
The improvement of the composition test set is done in iterations. At each successive
iteration the integrator can augment the test set of RegisterService (TS-Register)
by using the on demand test metadata provided by CustomerService. Precisely, at
each iteration the integrator must perform the following activities (as shown in Fig.3):

1. Get the list of suggested test cases provided by the testable service as on demand
metadata.

2. Use the test cases suggested by the testable service to create new test cases (if
possible) to augment the test set of RegisterService (orchestration) and to
get a better coverage on CustomerService. The integrator cannot directly use
the suggested test cases, but must adapt the input information to create new
test cases of the orchestration, which has different operations with different
input parameters. This activity cannot be easily automated but it should be
easy to create test cases manually since the integrator has full control over the
orchestration and knows how each input parameter is handled by the
orchestration to invoke CustomerService.

3. Create or update the usage profile of the orchestration by defining the list of
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operations of the testable service that are actually used by the orchestration;
and by identifying possible irrelevant test requirements, which are indirectly
identified (as the integrator does not have direct visibility of testable service
implementation), by those test cases among the suggested ones that cannot be
executed in the context of the orchestration.

4. Execute the new test cases created to augment the test set TS-Register.

5. Get the new structural coverage analysis of CustomerService.

sd lteration J
%
. Inte?rator

|
| 1. getTestCaseSuggestions(ID) |
|

On demand metadata
| Ondemandmetadats 1

| 2 createUpdateUsageProfile(dataUP)

3: startTestSession(ID)
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| 4: executeTestCase(newtestData)

|
|
I
|
} L
I
|
|

B
P 4.1 invokeOp(newTestData) | 4.1.1: collectCoverageData()

5. stopTestSession(ID)

6: getCoverage(ID)

Coverage analysis

-——

Figure 3. Activities performed by the integrator at each iteration

This process is repeated until the integrator is satisfied with the coverage reached
or no more useful test cases are suggested.
We proposed the following research questions to guide our exploratory study:

— RQ1: Are the test metadata useful for helping integrators improve the coverage
percentage of the test set of a composition? In particular, we will assess:

— RQ1-a whether by using the on demand metadata of the testable service
the integrator can create more orchestration test cases to improve the
coverage of the testable service;

— RQ1-b whether the integrator can identify irrelevant test cases from the
test metadata; and

— RQ1-c whether the usage profile is useful to generate a more realistic
(customized) coverage analysis report.



Marcelo Medeiros Eler, et al.: Applying structural testing to services using ... 253

— RQ2 Is the MTxTM approach more effective than a random test generation
approach to improve the coverage reached? In particular, we will assess:

— RQ2-a whether by using the same number of additional test cases, the
coverage reached using MTxTM is greater than the coverage achieved using
random test cases; and

— RQ@2-b whether, when the coverage reached by MTxTM is the same or
higher than the coverage reached by random test cases, the number of
MTxTM test cases is lower than the number of random test cases.

5.1 First iteration

After executing the test set of RegisterService and getting the coverage
presented in Table 2, the integrator invoked the testable service and asked for test
case suggestions (on demand metadata). The list of test cases suggested by the
testable service is the following: tc-04, tc-03, tc-01, tc-02, tc-06, tc-08, tc-16, tc-05,
te-15, tc-09, te-11, te-12, tc-13. The detail of each test case is presented in Table 3
(Col. 5, 6 and 7).

The integrator analyzed the input data of tc-04, tc-03 and tc-01 and created new
test cases for RegisterService (these are the first ones in the list, we recall that the
test cases are ordered according to how many more uncovered test requirements they
cover). In this case study, we arbitrarily set to three the number of added test cases
at each iteration. Next, the integrator identified the operations of CustomerService
used by RegisterService and created the usage profile of the orchestration. The
integrator also identified the test cases that would never be executed in the context
of RegisterService and set the section “irrelevant”. Table 5 shows the usage profile
of RegisterService created in this iteration.

Table 5 Differences among three dimensions models

Name RegisterService
ID OPF-RS-001
Operations createCustomerFromId

registerCustomer
saveCustomer
readByld
readByUsername

Irrelevant test cases tc-11,tc-13, tc-15,tc-16

The integrator executed the augmented test set of RegisterService (now with
seven test cases —the four original test cases plus the three new test cases) after
submitting the usage profile to CustomerService. Table 6 shows the coverage
reached after the execution of this test set. Notice that the coverage values have
increased and the operations that are not used by RegisterService does not
appear anymore in the coverage analysis. The test requirements exclusively covered
by the test cases identified in the “irrelevant” section of the usage profile are not
considered in computing the coverage ratio. In italic we show the coverage measures
of CustomerService which would be obtained without considering the usage profile.
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Table 6 Structural coverage analysis of CustomerService in the first iteration

Service all-nodes all-edges all-uses
CustomerService 84% 69% 67%
Without usage profile 67% 58% 56%

By operation all-nodes all-edges all-uses
createFromld 81% 1% 52%
registerCustomer 100% 100% 100%
saveCustomer 72% 53% 51%
readByld 66% 50% 44%
readByUsername 100% 100% 100%

5.2 Second iteration

The integrator asked again for test cases suggestions and the testable service
generated this list of test cases as on demand metadata: tc-03, tc-04, tc-06, tc-01,
tc-05, tc-09, tc-02. The curious thing about this list is that the test cases already used
in the second iteration (namely, tc-01, tc-03 and tc-04) appear again. This happens
because RegisterService does not invoke CustomerService using all the input data
used in the test case because the data is processed before invoking CustomerService.
This fact shows that despite using the same service, orchestrations handle data in
different ways and require different functionalities from a single operation. It is not
always possible to recreate the same conditions in which the CustomerService was
tested as a single service.

The integrator decided not to consider the already used test cases (tc-04, tc-03
and tc-01) suggested by CustomerService. New test cases for RegisterService were
created based on the test cases tc-06, tc-05 and tc-09. There was no need to update
the usage profile of RegisterService in this iteration.

The test set of RegisterService now contains ten test cases and obtained the
coverage measures presented in Table 7 when it was executed. Note that the coverage
achieved is further increased. The coverage obtained for the operation saveCustomer
is the same as the coverage obtained in the first iteration. This happened because the
testable service is not invoked with the same inputs as suggested by the test cases of
the on demand metadata, even when new test cases are created for the orchestration
using the suggestions of the testable service. The reason of this situation is that the
orchestration transforms the input data received from the test cases execution and
somehow invokes the testable service with a different combination of input data.

Table 7 Structural coverage analysis of CustomerService in the second iteration

Service all-nodes all-edges all-uses
CustomerService 90% 79% 78%
Without usage profile 2% 67% 65%

By operation all-nodes all-edges all-uses
createFromId 90% 92% 2%
registerCustomer 100% 100% 100%
saveCustomer 72% 53% 51%
readById 100% 100% 100%
readByUsername 100% 100% 100%
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5.3  Third iteration

The on demand metadata obtained by the integrator this time were the following;:
tc-03, tc-04, tc-01, tc-02. Of these, tc-04, tc-03 and tc-01 have been already used and
the only difference between the test cases tc-01 and tc-02 is the value of the input
parameter “register”, which is not taken as input parameter by any operation of
RegisterService. Also, the coverage reached by the test cases of the composition
was already high. Hence the integrator decides to stop test set augmentation and not
to proceed with further iterations.

5.4 Improving coverage using random test cases

The case study presented above showed a complex process to improve the
coverage of CustomerService when invoked in the context of RegisterService. A
natural question arises whether the required effort is worth, or instead the integrator
could anyway increase the coverage easily by just continuing to test. Hence, we
performed a comparison with additional random test cases as a baseline. We used
an application provided by the web site GENERATE DATAS3! to generate the
random test cases. We set the number and the type of the parameters of the
operations of RegisterService and generated 120 test cases using random data.
The number and the combination of the input parameters of each random test case
was also selected randomly.

In the first iteration of this study, we created 20 test sets using the test set
TS-Register augmented with six new random test cases. We decided to use six new
test cases in this study because it is the number of the new test cases created using the
MTxTM approach. We executed these 20 test sets and calculated the average of the
coverage reached for each operation and for the whole service. In the second iteration
we executed the original test cases of RegisterService plus 50 new random test
cases, and in the third iteration we executed the original test set of RegisterService
plus 100 new random test cases. Rows 4 to 6 of Table 8 show the coverage analysis
obtained by each iteration of this case study using random test cases.

Table 8 Summary of the results of the case study

Approach Iter. #NEW-TC all-nodes all-edges all-uses
Initial Context - - 50% 34% 34%
Random 1st 6 74% 56% 56%
Random 2nd 50 84% 68% 64%
Random 3rd 100 84% 75% 1%
MTxTM 1st 3 84% 69% 67%
MTxTM 2nd 6 90% 79% 78%

5.5  Threats to validity

To ensure construction validity, we took the case study from a real environment
and the orchestration within which the testable service has been tested is an
application that is used in practice. The way this case study was performed also

3 http://www.generatedata.com/
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represents as closely as possible a typical scenario of a testing activity in practice.
Therefore, we do not see major threats to construct validity, i.e., the case study
represents the intended concept of the MTxTM approach.

A major confounding factor of the internal validity of the case study is that its
subjects were the same proposers of the approach under evaluation. To minimize this
confounding factor we only used the test data provided on the BroadLeafCommerce
web site, we cannot however exclude its impact. The study presented in Section 6 is
a small experiment using independent subjects.

The external validity of this study case cannot be assured. The services of the
case study are real, but just one case study may not be representative and we cannot
generalize the results of this specific study for all situations or for all applications of
the domain. Further evaluation is required to generalize the results obtained with
this case study.

5.6  Answering the research questions

Considering the case study performed, we attempt to provide preliminary
answers to both RQ1 and RQ2. The integrator was able to analyze the on demand
metadata provided by CustomerService and augment the test set TS-Register
with new test cases. In fact, six new test cases have been created and this raised the
coverage of CustomerService (RQl-a). The integrator was also able to identify the
irrelevant requirements of the on demand metadata and create an usage profile for
the orchestration (RQ1-b). The testable service used the usage profile of
RegisterService and produced a coverage analysis specific for that profile,
disregarding the operations not used and the “irrelevant” test cases (RQ1-c).

Concerning RQ2, Table shows, for each approach, the number of new test cases
created for RegisterService and the coverage reached on CustomerService for each
iteration. Note that the coverage reached by the test cases created by MTxTM is
higher than the coverage achieved by the random approach (RQ2-a). MTxTM leads
to the creation of new six test cases to reach a coverage measure that is higher than the
coverage achieved by the random approach after creating new 100 test cases (RQ2-b).

RQ2-b is related to the effort to raise the coverage of TS-Register. Using
MTxTM the integrator cannot use the on demand metadata as they are. The
integrator needs to study the input values and adapt them to create test cases
suitable to the operations of the orchestration. This requires human interaction and
takes more time than using a random approach, for example, which can generate
and execute 100 test cases in a very short time. If we look at Table , the coverage
reached by the random approach after creating and executing 100 new test cases is
not so far from the coverage reached by MTxTM after creating 6 new test cases.
The time to create 6 new test cases was longer than the time to create 100 new
random test cases. In SOA testing, however, the lesser the number of test cases the
better.

Indeed, when testing a third-party service on line, “superfluous requests to Web
Services may bring heavy burden to the network, software, and hardware of service
providers, and even disturb service users’ normal requests”?®!. Besides, “if the service
provider allows massive vicious requests to a Web Service within a short time, the
requests may congest the network or even crash the service’s server” 29l and cause
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a denial-of-service phenomenal'?l. In fact, there are services that define the upper

limit of the number of requests that can be performed by a client. If the number of
invocation exceeds the limit, the extra requests are ignored[2. It is also important to
keep the number of test cases low if the services under test are charged on a per-use

basis!12].

6 An Experiment to Evaluate MTxTM

After the first assessment of MTxTM, we also performed a formal evaluation
of the MTxTM approach. We report here an experiment designed and executed to
measure how effective MTxTM is on supporting integrators to reach high coverage
on a single service when testing its integration with a composition. For the purpose
of this investigation, we compared MTxTM with a Functional approach.

The experiment was performed from the perspective of integrators that had to
create test cases for a composition that uses a testable service. The main purpose of
the integrator was to test the integration between the composition and the testable
service to exercise the structure of the testable service as much as possible. The
second purpose was to find failures on the testable service.

During the test activity, subjects using the Functional approach could use only
the results of the test cases and functional testing criteria to decide whether the
test cases created were enough or should be improved. Subjects of the MTxTM
approach, on the other hand, could make this decision using the functional results of
the test cases, functional testing criteria, structural coverage analysis and on demand
metadata provided by the testable service.

The designed experiment has four independent and two dependent variables.
The independent variables are the following: MTxTM; the Functional approach; the
experimental objects and the subjects experience on software testing. The dependent
variables are the following: the structural coverage obtained for the testable service
under test and the number of failures found.

6.1 Hypotheses

Two null and two alternative hypotheses were defined for the experiment,
considering the two dependent variables: the coverage achieved and the number of
failures. The null (HO) and the alternative (H1) hypotheses are the following:

— HO;y: the structural coverage obtained by the MTxTM approach is less or equal
to the coverage obtained by the functional approach, i.e, COVypr.ry <=
COVprp.

— H14: the structural coverage obtained by the MTxTM approach is greater than
the coverage obtained by the functional approach, i.e, COV ;e > COVprp.

— HO05: the number of failures found by the MTxTM approach is less or equal to
the number of failures found by the functional approach, i.e, FAIL 1.7y <=
FAIL 7.

— H1,: the number of failures found by the MTxTM approach is greater than
the number of failures found by the functional approach, i.e, FAILy;rerar >
FAILp7.
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6.2 Subjects and experimental objects

The subjects of the experiment were 12 graduate students of the Software
Engineering Laboratory of the University of Sao Paulo. The subjects were selected
by convenience, since most of them were attending an Experimental Software
Engineering course and had already taken a software testing course.

Two experimental objects were used in this experiment: WSGolfReservation
and GolfChampionship. The first experimental object is a real world service reused
from an open source web-based application$ designed for golf clubs to manage
reservations. This real service has 10 public operations and 571 LOC. The latter
experimental object is an application developed by one of the co-authors to manage
players and matches of golf championships. It uses WSGolfReservation to make
reservations of golf courses to allocate matches of the championship.  This
application has 9 operations and 230 LOC.

WSGolfReservation was transformed in a testable service using the BISTWS
approach™. A test set was created to test each operation of WSGolfReservation.
This test set reached 100% of coverage for the all-nodes, all-edges and all-uses criteria
for all operations and it was used as the a priori metadata of WSGolfReservation.

Subjects of MTxTM had access to the interface of the testable service to get
the coverage analysis and the on demand metadata, while subjects of the Functional
approach could only access the interface of the composition GolfChampionship. In
this way, the coverage reached by the subjects using the Functional approach was
calculated but was not available to them.

6.3 Preparation

The level of experience on software testing of each subject was measured using an
ordinal scale: 1-high, 2-medium and 3-low. Low level means that the subject knows
software testing from six months to one year and have never worked with software
testing. Medium level means that the subject knows software testing from one to
three years and have already applied software testing in at least one project. High
level means that the subject knows software testing from one year or more and works
with software testing in the industry or as research theme.

Coincidentally, the number of subjects for each level was even and we split
them into 6 pairs of equal experience. For each pair of subjects, we randomly
selected which one would use the MTxTM approach while the other, automatically,
would use the Functional approach. The subjects were then split in two groups with
balanced experience. Subjects using MTxTM were identified by even numbers while
subjects using the Functional approach were identified by odd numbers. Table 9
shows the distribution of subjects and approaches. Since all subjects tested the
same experimental objects (WSGolfReservation and GolfChampionship), Table 9
is also the design of the experiment.

4 http://sourceforge.net/projects/golf-reserve/
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Table 9 Design of the experiment

MTxTM Functional

Subjects Experience Subjects Experience
Subject 2 High Subject 3 High
Subject 12 High Subject 9 High
Subject 4 Medium Subject 1 Medium
Subject 6 Medium Subject 5 Medium
Subject 10 Medium Subject 7 Medium
Subject 8 Low Subject 11 Low

6.4 Operation

Before executing the activities of the experiment, the subjects received one hour
of training according to their experience and the approach used. Each subject has
also received a detailed description of the two experimental objects and a guideline
to execute each task required by the experiment.

Figure 4 shows a sequence diagram representing the testing activities performed
by subjects (integrators) using the Functional approach. The integrator executes
test cases and the only information available about the test session is the result of
each test case. The integrator then has to decide to create more test cases to the
composition based on functional testing criteria. Note that the subject has only
access to the interface of the composition. The subject may also invoke the testable
service’s operations, but may not use the testing interface to get coverage information
and/or test metadata.
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Figure 4. Sequence Diagram of the testing activities performed by subjects using the

Functional approach

Figure 5 shows a sequence diagram that represents the testing activities
performed by subjects (integrators) using MTxTM. The integrator invokes the
testable service to start a test session, executes a set of test cases and then invokes
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the testable service again to communicate that the test session is over. The
integrator then creates or updates the wusage profile of the application
GolfChampionship to inform WSGolfReservation on which operations are actually
used and which among the test cases suggested as the on demand metadata (if it is
the case) are irrelevant. Next, the integrator gets a coverage analysis to evaluate
how much of the testable service was executed regarding instructions, paths and
data. The integrator can also get the on demand metadata (test case suggestions) to
create more meaningful test cases to the composition and then achieve higher
coverage.
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Figure 5. Sequence Diagram of the testing activities performed by subjects using MTxTM

The subjects performed the activities of the experiment in pairs during two weeks
in a controlled environment. They had from 1 to 4 hours to execute their tasks and all
of them followed the schedule, the recommendations and the rules of the experiment.
Subjects using MTxTM were recommended to stop testing when no more test cases are
suggested by the testable service or when the test cases suggested were not meaningful
anymore, i.e., by using them the composition could not invoke the testable service.

After the experiment, the subjects filled in a form reporting the (i) test cases
created; (ii) the number of failures found; (iii) the structural coverage analysis (only
subjects using MTxTM); (iv) the difficulty to use the test metadata (only subjects
using MTxTM); and (v) any relevant observations. The coverage reached by subjects
using the Functional approach was not available to them, but it was anyhow collected
and calculated by us to compare it with the coverage reached by subjects of MTxTM.
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0.5 Results

The forms filled in by the subjects were validated and summarized. The results
are shown in Table 10. The coverage presented is the average of the coverage
percentage of these three criteria: all-nodes, all-edges and all-uses. The number of
failures is the number of different failures detected by the test cases.

Table 10 Results of the experiment

MTxTM Functional
Experience Subject Coverage Failures Subject Coverage Failures
High 2 85% 3 3 37% 3
High 12 83% 7 9 2% 2
Medium 4 82% 3 1 74% 5
Medium 6 85% 5 5 5% 2
Medium 10 85% 6 7 81% 5
Low 8 85% 3 11 56% 2

6.6  Threats to validity

Three threats to the internal validity of our experiment were found: the
experience of the students, the experimental objects and the productivity under
evaluation. The experience of the students may impact the results, but we tried to
mitigate this threat by providing a specific training for each level of experience and
also by splitting the subjects into two balanced groups. As the results of the
experiment show, the experience was not a determinant factor in this experiment.

There were two experimental objects used in this experiment. One of them was
developed by a co-author of the MTxTM approach. The developer could have, even
unconsciously, created an application to give advantage to the metadata approach.
However, after further investigation of the results of the experiment, we realized
that the application prevents many configurations of data to be sent to the testable
approach. This indeed hampers the MTxTM approach to be much more efficient
than the Functional approach on reaching a higher coverage. If it were not the case,
probably almost all subjects would have obtained up to 100% coverage for all criteria.

Students are more productive when they are under evaluation and this could
affect the results of the experiment. In this case, although most of them were taking
the Experimental Software Engineering course, the experiment was not executed in
that context. The students were not forced to join the experiment, but most of them
did because they wanted to have an experience of participating in an experiment and
also to collaborate with an ongoing research of the Software Engineering group.

There are two threats to the external validity of the experiment. The
population of subjects is not statistically representative since it is a homogeneous
group of graduate students, and not professionals. Also, the experiment was not
conducted in a real environment. Therefore, the conclusions of this experiment
cannot be generalized for a professional environment. However, even in a limited
environment, the results obtained with the experiment is an evidence that using
testable services and test metadata helps integrators improving their test set to
reach high coverage.
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6.7 Data analysis

A descriptive analysis of the results of the experiment considering the coverage
percentage and the number of failures was performed, which are related to the first
and second hypothesis, respectively. Figure 6 shows box plots of the experiment

results.
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Figure 6. Box plots of the experiment results

Regarding the coverage percentage, MTxTM seems to reach a much better
coverage than the Functional approach. Note that the highest coverage reached by a
subject using the Functional approach is less than the lowest coverage obtained by a
subject using MTxTM. Regarding the number of failures found, MTxTM seems to
be slightly better than the Functional approach.

An analysis of the results was performed considering the experience of the
subjects disregarding the approach used. This analysis is important to check
whether the experience of the subjects have influenced the result. Figure 7 shows
the box plots of the results for each level of experience considering the structural
coverage. It seems that the experience has not influenced the results since there are
not great differences among the results for each level of experience. If the experience
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Figure 7. Box plots of the structural coverage considering the level of experience
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were a determinant factor to affect the results, the subjects with high experience would
have obtained the highest coverage while the subjects with low experience would have
reached the lowest coverage, but this was not the case. On the contrary, one of the
subjects with high experience reached the lowest coverage: 36%. Most of the subjects
of the three level of experience obtained more than 56% coverage.

Figure 8 shows the box plots of the results for each level of experience considering
the number of failures found. The experience of the subjects seems to have some
influence on the results in this case. The number of failures found by subjects with
low experience is less than the number of failures found by subjects with medium
or high experience. We cannot assure that the experience is the only determinant
factor because there were only two subjects with low experience. Note that there
are subjects with medium and high experience that have found only two failures,
which was the lowest number of failures found in this experiment. But, in general,
the subjects with medium and high experience seem to have found more failures than
the subjects with low experience. The subjects with medium experience seem to have
found the same number of failures as the subjects with high experience.

Number of failures

T T
Low Medium High

Figure 8. Box plots of the number of failures found considering each level of experience

6.8 Hypothesis testing

The unpaired T test was used for testing the hypotheses of this experiment
according to the recommendation of Wohlin et al.?’! given the design of the
experiment. There are six samples generated by the MTxTM approach (m) and six
samples produced by the Functional approach (n). According to the t-value
distribution, t1¢ (m-+n-2) is 1.812 considering a 95% confidence interval and the one
sided test. The value of ti¢ is also used to validate our hypotheses.

The first hypothesis is related to the coverage reached by each approach. The
T test was performed to compare the samples of the MTxTM and the Functional
approach and the following results were obtained. P-value is 0,02043 and t is 2.7273.
These results allow us to refute the null hypothesis HO; and accept the alternative
hypothesis H1; since p-value < 0.05 and t > tj9. Actually, the HO; can also be
refuted using a 97.5% confidence interval.

The second hypothesis is related to the number of failures obtained by each
approach. The T test was performed to compare the samples of the MTxTM and
the Functional approach and the following results were obtained. P-value is 0,09303
and t is 1,4231. These results do not allow us to refute the null hypothesis HO> and
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accept the alternative hypothesis H1y since p-value > 0.05 and t < ty19. HO3 can
be refuted and H1, accepted using a 90% confidence interval because in this case the
tyg is 1.372.

6.9 Data analysis based on the experience of the subjects

The results were also analyzed considering the experience and the approach
separately. Figures 9 and 10 show box plots created for the coverage reached by the
MTxTM and the Functional approach, respectively, according to the level of
experience of the subjects. Note that the experience has not influenced the results.
It seems that the MTxTM helped the subjects with low experience to reach the
same coverage reached by the subjects with high experience.

Structural Coverage
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Figure 9. Box plots of the coverage reached by MTxTM considering each level of

experience
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Figure 10. Box plots of the coverage reached by the Functional approach considering each
level of experience

Figures 11 and 12 show the box plots created for the number of failures found
by MTxTM and the Functional approach, respectively, according to the level of
experience of the subjects. In this case, the experience of the subjects seems to have
influenced the results. The number of failures found by the subjects with high
experience seems to be greater than the number of failures found by the subjects
with medium and low experience. Equally, the number of failures found by the
subjects with medium experience seems to be greater than the number of failures
found by the subjects with low experience.
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Figure 11. Box plots of the number of failures found by MTxTM considering each level of

experience

Number of failures

50

35 40 45

25 30

20
I

T T T
Low Medium High

Figure 12. Box plots of the number of failures found by the Functional approach

considering each level of experience

In the functional approach results, on the other hand, the experience of each

subject does not seem to have influenced the results. The number of failures found by
the subjects with medium experience seems to be greater than the number of failures
found by the subjects with high experience. Further investigation was not performed
to discover why this happened.

6.10 Failures analysis

An analysis of the failures found by integrators using both approaches was

performed. Integrators using the functional approach found 7 distinct failures while
integrators using the MTxTM approach found 11 distinct failures, which included
all the 7 failures found by the functional approach. The list of the 7 common
failures found by both approaches are the following:

1.
2.

The application allows creating two players with the same identifier.

The application allows creating matches using invalid dates (month 15)

. The application allows scheduling matches for passed dates.

The application allows a manager of a championship to cancel a match of other
championships.
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5. The application allows finishing a match that has not been started.
6. The application allows starting a match that has been already started.

7. The application allows winning a player that has not played the match.

Integrators using MTxTM approach found the 7 failures above and these 4 other
failures:

8. The application allows creating a match with only one player.
9. The application allows finishing a match already finished.
10. The application allows starting a match that have been cancelled.

11. The application allows starting, cancelling or finishing a match without checking
whether the input data user is a registered user.

Most of the failures were found by test cases created based on specifications. Some
of the failures, however, were found only by those integrators that used the MTxTM
approach. Specifically, failures numbered from 8 to 11 were found after the execution
of test cases that were based on the on demand metadata provided by the testable
version of WSGolfReservation. The suggestions used to create those test cases were
the test cases designed by the developer of WSGolfReservation to cover some specific
branches and nodes of the code. As the integrators using only the functional results
had no access to the structural coverage analysis, they did not realize that there were
parts of the code that had not been executed. Integrators using MTxTM, on the
other hand, had access to the coverage analysis and used the test cases suggestions
(on demand metadata) to raise the coverage and ended up finding four more distinct
failures.

7 Discussion

The MTxTM approach was firstly evaluated in an exploratory case study and
then in a formal experiment. The exploratory case study has shown that the
integrator was able to use the metadata information to create more test cases to test
the orchestration and consequently improve the coverage reached on the testable
service. The experiment described in this paper was intended to measure how
effective the MTxTM approach is on supporting integrators to reach better coverage
and finding failures of testable services.

The main purpose of software testing is to reveal failures of the software under
test. The MTxTM approach is not a technique specifically designed to maximize the
number of failures found, it is conceived to help integrators to create test cases to
cover the parts of the code that were not exercised yet. As for any coverage-based
approach, our assumption is that, consequently, the approach can help reveal latent
failures hidden behind untested code. In the experiment, we found that MTxTM
was not very useful to increase the number of failures found in comparison with
the Functional approach, at least in this particular context. However, although the
number of failures found by both approaches are not so different, the number of
distinct failures found by integrators using MTxTM was greater than the number of
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distinct failures found by integrators using only functional testing. This happened
because integrators using MTxTM created test cases aiming at improve the coverage
achieved so far driven by the test metadata. This is also a confirmation that functional
and structural testing are complementary and should be used together even in service
oriented contexts where the source code is not available.

Two related questions arise. The first one is whether it is realistic to expect
service developers to create these specific metadata since this requires additional
effort. The second one is whether integrators will really want to create test cases to
meet testing criteria other than those based on specification and interface, as category
partition and boundary values, for example.

Regarding the first question, we believe that for developers committed to create
services with good quality the test scaffolding activities we propose in this paper
would be straightforward. Further, if it were empirically demonstrated that
provision of testable services with metadata could enhance the quality of
orchestrations or choreographies, developers might be motivated to provide such
metadata as an optional value-added featurel®? for which they could charge a fee,
thus enhancing the value of their services.

Concerning the second question, we believe that there may be integrators who
want to use only black box testing and others that want to use both black box and
white box testing. A regular service is suitable for the first type of integrators, but
not for the former. A testable service, on the other hand, is suitable for both types of
integrators, since their structural testing facilities are only activated when operations
to start and to stop a test session are invoked.

The probes inserted by instrumentation can bring overhead to the testable
service, although the probes are only activated during a test session. We have done
a performance analysis to measure the overhead inserted by instrumentation in a
SOA architecture using testable services.

We executed a test set several times against a regular service and measured the
average response time. Next, we executed the testable version of this service against
the same test set. Regarding the testable version, we measured the average response
time of the test set execution inside and outside a test session.

As we show in Table 11, the overhead of average response time of the testable
service outside a test session is 2.65% and inside a test session is 5.26%. In general,
the response time of a testable service was greater than the response time of a regular
service. However, there were specific executions in which the response time of the
testable version execution was faster than the response time of the regular version.
This happened because in some executions the overhead due to the network was
greater than the overhead brought by the testing code.

Table 11 Analysis of the overhead brought by the instrumentation of a
testable service

Version Average response time Overhead
Non-testable 2070 0%
Testable 2125 2.65%
Testable (during a test session) 2179 5.26%

More in general, we believe that the test metadata model proposed for testable
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services could change not only the way developers and integrators technically
interact when testing compositions, but also change the business model behind SOA
orchestrations and choreographies. The structural testing capability of testable
service can already bring competition advantage to the market; we believe that the
enhanced testability of “more testable” services can aggregate even more value to
market. Presenting a business model in depth is outside the scope of this paper. In
brief, we foresee a business scenario in which many versions of a service would be
made available with varying costs depending on the testability features it provides:

— A regular service providing only its interface to its clients.
— A testable service providing its interface and structural testing capability.
— A testable service with a priori test metadata.

— A testable service with a priori and on demand test metadata.

8 Related Work

Service testing is actively researched, as can be seen in some recent
surveysl® 11 121 We focus here on testing of compositions of services that might
have been developed by independent organizations. The issues encountered in
testing a composition of services are surveyed by Bucchiarone et al.l%.

Most existing approaches to SOA testing validate the services invoked in a
composition as black-boxes. Indeed, the shared view is that for SOA integrators “a
service is just an interface, and this hinders the use of traditional white-box
coverage approaches”!'?.  The need to enhance black-box testing with coverage
information of tested services has also been recognized by Li et al.l'%. A “grey-box
testing” approach is introduced, in which, after test execution, the produced test
traces are collected and analyzed by the so-called BPELTester tool. However, the
assumption of BPELTester that the orchestrator can access and analyze service
execution traces breaks the loose coupling between service provider and service user.

The idea of leveraging service execution traces is also pursued by Benharref et
al.ll. Similarly to Ref. [3] and Ref. [14], this work extends SOA with observation
capabilities by introducing an “Observer” stakeholder into the ESOA (Extended SOA)
framework. ESOA, however, does so for a different goal than the one proposed in
this paper: while our focus is to monitor structural coverage, in ESOA services are
monitored (passive testing) against a state model.

This paper is aimed at exploiting the coverage measures obtained for testable
services for improving the test set. This is inspired by metadata and built-in testing.
Briand et al.[® presented an approach in which the developer must provide metadata
with constraints called CSPE (Constraints on Succeeding and Preceding Events). The
metadata is then used by the tester to generate test cases to cover each constraint of
the CSPE. In this approach the tester uses the constraints to generate the test set
and the coverage is given according to the constraints defined by the developer. In
our approach the metadata is provided to help testers improve the coverage of the
testable service even when it is tested in the context of an orchestration. The test
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cases suggested are presented with real input values while constraints generally refer
to generic situations.

9 Concluding Remarks

Testing services and service compositions has been described as a challenging
task, specially when integrators want to use testing techniques beyond interface
and/or specification based[® 11, 121 Services are black box by nature and their
inherent encapsulation hampers applying implementation based testing techniques.
Testable services have been proposed as a solution to address this issue.

Testable services provide their customers with testing interfaces and metadata.
The testing interface is used to invoke operations to start and to stop a test session
and then get structural coverage analysis regarding control and data flow criteria.

This paper presented a metadata model proposed to make testable services
even more testable by providing their customers with both a priori and on demand
metadata. The a priori metadata is the test set used by the developer to test the
testable services and the on demand metadata are test cases suggested to improve
the coverage measure reached so far. A priori and on demand metadata can be used
to evaluate the coverage achieved and also to create new meaningful test cases to
improve the coverage obtained. Customers of testable services can also exploit usage
profiles to get coverage analysis specialized to the context in which the testable
service is used. The proposed solution addresses the main reasons of low testability,
namely lack of control and observability; as well as the reasons why a low coverage
is obtained when testing a service: insufficient test cases and relative coverage.

This paper also presented an exploratory case study performed as a first
assessment of the MTxTM approach and a formal experiment designed to compare
MTxTM with a Functional approach. The results of the exploratory case study have
shown that MTxTM could help integrators to create new meaningful test cases to
the orchestration using a testable service and then to increase the coverage measure
that was low at the beginning. The results of the formal experiment have shown
that subjects using the MTxTM approach were able to obtain higher coverage than
subjects using only a Functional approach.

As future work, we intend to perform further experimentation using real
subjects and experimental objects. In this future experiment, we intend to seed
failures in the experimental objects to better observe the impact of MTxTM on the
number of failures found by the integrators. We believe that applying MTxTM in
real environments will produce more realistic evidences of the benefits of using
testable services in service oriented computing.
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