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Abstract Component-based modelling is used as the basis of a number of approaches

including Enterprise Architecture and System Architecture Design. Service Oriented

Architecture (SOA) is a popular component-based approach but it has been criticised as

not being sufficiently flexible. A more flexible alternative is Event Driven Architecture

(EDA) that can support Complex Event Processing. Dynamic reconfiguration of

component behaviour is attractive because it allows an architecture to be extended and

modified in situ without being taken off-line, updated and redeployed. This article shows

how higher-order functions and reflection can support dynamic reconfiguration and how

this approach is integrated with EDA. The approach is defined as patterns expressed in a

component modelling language called LEAP and validated through a case study.
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1 Introduction

Component based software systems are organized as a collection of
hierarchically composed components each of which contains private data and
operation implementations. Components communicate by sending messages to each
other. Messages may be sent directly to another component or may be sent to an
output port that is connected to the input port of one or more target components.
A message is a structured value with a name and a collection of arbitrarily complex
data values.

Different styles of message passing lead to different types of architecture. A
Service Oriented Architecture (SOA) involves the publication of logically coherent
groups of business functionality as interfaces, that can be used by components using
synchronous or asynchronous messaging. An alternative style, argued as reducing
coupling between components and thereby increasing the scope for component reuse,
is Event Driven Architecture (EDA) whereby components are event generators and
consumers. EDA is arguably more realistic in a sophisticated, dynamic, modern
business environment, and can be viewed as a specialization of SOA where
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communication between components is performed with respect to a single generic
event interface.

There are two important differences between SOA and EDA. Firstly EDA
provides scope for Complex Event Processing (CEP) where the business processes
within a component are triggered by multiple, possibly temporally related, events.
In SOA there is no notion of relating the invocation of a single business process to a
condition holding between the data passed to a collection of calls on one of the
component’s interfaces. Secondly, EDA can support dynamic extensibility through
the introduction of new types of message both produced and consumed by a
component. In general, SOA provides static interfaces that require an architecture
to be rebuilt when new services are introduced.

Given that EDA and CEP are claimed to be more flexible than SOA, how should
we design an architecture using these concepts? Some specialized languages for CEP
exist, however they are specifically designed to efficiently process relatively simple
event streams, and do not integrate into a software component architecture. The
most widely used language for modelling systems is UML, however UML components
are based on concepts from SOA and therefore do not support EDA and CEP.

Once designed, how do we maintain such an architecture? As described in
Ref. [33] modifiability and changeability are two important characteristics affecting
the maintainability of component-based systems.The requirement for services
evolution is described in Ref. [24]. However, there has been little work on how to
design an architecture that ensures adequate provision of these characteristics.

The contribution of this paper is to identify the key characteristic features of EDA
and to show how they are represented in the architectural modelling language LEAP
whose features allow EDA to be expressed as patterns that can be included in new
component definitions. In particular we show how EDA with higher-order functions[32]

and reflection[18] can facilitate dynamic reconfiguration of an architecture that would
not be possible with an SOA based approach.

2 Background

2.1 Service oriented architecture

Service Oriented Architecture (SOA) organizes a system in terms of components
that communicate via operations or services. Components publish services that they
implement as business processes. Interaction amongst components is achieved through
orchestration at a local level or choreography at a global level.

Its proponents argue that SOA provides loose coupling, location transparency
and protocol independence[4] when compared to more traditional implementation
techniques. The organization of systems into coherent interfaces has been argued[36]

as having disadvantages in terms of: extensions; accommodating new business
functions; associating single business processes with complex multi-component
interactions.

2.2 Enterprise architecture

Enterprise Architecture (EA) aims to capture the essentials of a business, its
IT and its evolution, and to support analysis of this information: ‘[it is] a coherent
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whole of principles, methods, and models that are used in the design and realization
of an enterprise’s organizational structure, business processes, information systems
and infrastructure.’[21].

A key objective of EA is being able to provide a holistic understanding of all
aspects of a business, connecting the business drivers and the surrounding business
environment, through the business processes, organizational units, roles and
responsibilities, to the underlying IT systems that the business relies on. In addition
to presenting a coherent explanation of the what, why and how of a business, EA
aims to support specific types of business analysis including[6, 14, 17, 27, 30]:
alignment between business functions and IT systems; business change describing
the current state of a business (as-is) and a desired state of a business (to-be);
maintenance the de-installation and disposal, upgrading, procurement and
integration of systems including the prioritization of maintenance needs; acquisition
and mergers describing the alignment of businesses and the changes that occur on
both when they merge.

EA has its origins in Zachman’s original EA framework[39] while other leading
examples include the Open Group Architecture Framework (TOGAF)[35] and the
framework promulgated by the Department of Defense (DoDAF)[37]. In addition to
frameworks that describe the nature of models required for EA, modelling languages
specifically designed for EA have also emerged. One leading architecture modelling
language is ArchiMate[22].

A number of commercial EA analysis and simulation tools are available [16]. Many
of these are based around industrial standards such as UML and BPMN. However
they are generally very complex and lack a precisely defined semantics.

2.3 Event driven architecture

As described in Ref. [26] and Ref. [34], complex events can be the basis for a
style of EA design. Event Driven Architecture (EDA) replaces thick interfaces with
events that trigger organizational activities. This creates the flexibility necessary to
adapt to changing circumstances and makes it possible to generate new processes by a
sequence of events[28]. Whilst a complex event based approach to architectural design
must take efficiency concerns into account, the primary concern is how to capture,
represent and analyse architectural information as an enterprise design.

EDA and SOA are closely related since events are one way of viewing the
communications between system components. The relationship between event driven
SOA and EA is described in Ref. [2] where a framework is proposed that allows
enterprise architects to formulate and analyse research questions including ‘how to
model and plan EA-evolution to SOA-style in a holistic way’ and ‘how to model the
enterprise on a formal basis so that further research for automation can be done.’

2.4 Complex event processing

Complex Event Processing (CEP)[12] can be used to process events that are
generated from implementation-level systems by aggregation and transformation in
order to discover the business level, actionable information behind all these data.
It has evolved into the paradigm of choice for the development of monitoring and
reactive applications[7].
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CEP can be viewed as a specialization of SOA where components are decoupled
from multiple interfaces and where each component implements a single generic event
interface. Components both raise and handle events in terms of this interface and
therefore it is more flexible in terms of extension and maintenance. In addition,
CEP implements events in terms of business rules compared to SOA that implements
operations using business processes. Typically, a business rule can depend on multiple,
possibly temporally related, events, whereas a business process is invoked on receipt
of a single operation request. Therefore, SOA can implement CEP by enforcing a
single operation interface across an architecture and by providing special machinery
to aggregate multiple operation calls.

There are various proposals for how complex events can be used efficiently to
process streams of data such as those generated in applications including hotel
booking systems, banking on-line credit systems, business activity monitoring
(BAM), real-time stock analysis, and real-time security analysis. Most proposals
aim to address efficiency issues related to the scale and frequency of the information
that is generated[1]. The current state of the art is described in Ref. [31] where the
key features of an event driven architecture (EDA) are outlined as including an
architecture diagram showing the processes of the system and their interconnections,
a behaviour specification including the rules used to process events and to control
data, and the specification of inter-process communications.

As described in Ref. [40] events can be extracted from services, databases, RFID
and activities. The events are processed by rules that detect relationships between
event properties and the times at which the events occur. Each rule matches against
multiple events that occur from a variety of sources and, when all required events
have been matched, the rule performs a business action. In Ref. [40] the authors
describe the implementation of a complex event processing architecture that involves
attaching an extractor to event sources and compiling event processing rules into
complex event recognition tables. The language does not address modularity issues
and how the complex event architecture maps onto modern approaches to EA. Wu
et al[38] describe a language called SASE for processing complex events from RFID
devices. The language is based on expressing patterns of events over events in time-
windows and the authors describe various optimizations that can be performed. The
language is general purpose but does not implement negation or offer features for
modularity.

The approach described in Ref. [29] is based on logic programming for complex
event processing and in a way is the opposite to our forward-driven approach. The
authors use Prolog-style backtracking to find solutions to goals.

2.5 Component reconfiguration

Batista et al[5] identify two types of run-time reconfiguration in component
based systems: programmed reconfiguration where changes can be foreseen at design
time and ad-hoc reconfiguration are changes that cannot be predicted. The authors
describe an ADL called Plastik that uses rules and reflection to reconfigure
component connections at run-time. The system does not support the kind of
ad-hoc reconfiguration described in this article whereby the behaviour of an existing
component can change without access to the implementation of the component.



Tony Clark, et al.: Dynamic reconfiguration of event driven architecture ... 141

The approach in Ref. [24] is based on dynamic binding for service evolution. The
approach allows an SOA-based architecture to self-configure. The approach is a design
technique based on workflows which could be simulated by the higher-order approach
described in this article.

The need for reflection in dynamically reconfigurable systems is described in
Ref. [18] where a reflective component model is used in the OpenRec framework to
allow submitted scripts to operate on the component architecture. We have chosen
to use reflection to provide access to a component’s internal data model, however the
higher-order features of LEAP could be used to implement the OpenRec approach.

Component reconfiguration is motivated by the need to evolve a component
architecture and takes a number of forms. Patterns can be used to express the
different types of reconfiguration as described in Ref. [19]. Our article addresses the
need to change the behaviour of existing components without stopping, updating
and redeploying the system. The LEAP modelling language can support other
patterns of reconfiguration such as changing the topology of the component
architecture, however these are not considered here.

The dynamic reconfiguration approach described in this article is similar to the
mixin approach of Frag[41] whereby new behaviour is introduced by adding new super-
classes and defining a method lookup mechanism. However we do not require specific
language constructs for dynamically changing class based inheritance and therefore
consider our approach to be at a finer level of granularity.

2.6 LEAP

LEAP[3, 8-11] is a technology for executable modelling of system architectures. It
addresses the requirements and design phases of system development and provides
a language for representing systems in terms of components, ports and connectors.
LEAP takes the form of a textual language and a tool that is used to construct,
execute and display aspects of the models as diagrams.

LEAP execution occurs in terms of message passing between components. A
component consumes messages from its input ports and invokes the appropriate
internal operation. An operation may change the internal state of the component
and produce output messages. Component ports are connected so that messages
sent to output ports are transferred to connected input ports.

This article uses parts of the LEAP language that address the design of
component architectures in terms of their connectivity and behaviour. The relevant
LEAP language sub-set is shown in Fig. 1 where keywords are defined in bold,
non-alpha characters are terminals except for * that denotes 0 or more occurrences,
[ and ] that denotes optionality (parentheses are occasionally used for grouping
where the context should be clear). The non-terminals o, (initial lower-case letter)
name, (initial upper-case letter) Name and const are assumed. The LEAP concrete
syntax uses separators ; and , to separate elements in sequences (such as arguments
and record fields) however these are omitted from the definition of the syntax. The
key aspects of the language are:

components Component syntax is defined by cmp. A component may have parent
components whose definitions are included into the child. Each port defined by
a component declares an interface of messages that it can process.
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information A component defines a model in terms of classes and associations.
Each class has a collection of fields. The state of a component is a list of terms
that must conform to its declared model. The state of a component is updated
using the new, delete and replace commands. A component can define a
collection of invariants that are conditions that its state must satisfy. A
component contains a state clause that can be used to create a starting state.

snoisserpxe=::pxe

component cmp components

| fun(arg*) exp functions

| exp(exp*) applications

selbairaveman|

sloob,srts,stnitsnoc|

| exp.name field ref

| exp o exp binary exp

| state local data

| self reference

| { exp* } blocks

| { (name -> exp)* } records

| [ exp | qual* ] lists

| new term extension

smretmret|

| delete term deletion

| if exp then exp else exp conditional

| replace pattern with exp else exp

| find pattern in exp when exp else exp

| case exp* { arm* } matching

| let bind* in exp local defs

| letrec bind* in exp rec defs

| for pattern in exp { exp } loops

| forall pattern in exp { exp } universal

| exists pattern in exp { exp } exists

| exp <- name(exp*) async message

| exp.name(exp*) sync message

term ::= Name(exp*) data

arm ::= pattern* -> exp case clause

bind ::= bindings

name = exp variables

name(name*) exp functions

| component name cmp components

qual ::= qualifiers

pattern <- exp selection

sdraugpxe?|

sepyt=::epyt

int integers

| str strings

| bool booleans

| void nothing

| any anything

| [ type ] lists

| Name(type*) terms

sravepyteman|

| fun(type):type functions

cmp ::= components

extends exp* { parents

iop* i/o ports

[spec { opspec* } ] operation specs

[model { element* }] data models

[state { term* }] local data

[invariants { inv* }] always hold

[operations { op* }] message handlers

[rules { rule* }] data monitors

[init { exp* }] initialization

(name = exp)* bindings

}

iop ::= port name[(in|out)]: inter

inter ::= interface { idef* }

idef ::= name(name:type*):type

opspec ::= idef {

pre pattern

post pattern

messages exp <- name(exp*)

}

element ::=

class name { (name:type)* }

| assoc name { name type name type }

pattern ::=

selbairavrav

| Name(pattern*) term patterns

sloob,srts,stnimota|

| name = pattern pattern binding

| [pattern*] lists

| pattern:pattern cons pairs

etaciderppxe?|

| {pattern} singleton sets

| pattern U pattern set union

op ::= name(arg*) { exp* }

rule ::= name : pattern* { exp* }

Figure 1. LEAP language

lists Lists are used extensively in LEAP to structure data. As in Lisp, a list is
constructed from a head and a tail since this facilitates recursive processing
of structured data. List processing is supported by list comprehensions, for
example:
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[ x + y | x <- [1,2], y <- [3,4]] is the list [4,5,5,6]. Guards can be used:
[ x + y | x <- [1,2], ? odd(x), y <- [3,4], ?even(y)] is the list [5].

functions LEAP supports higher-order functions. Functions can be dynamically
created and passed as argument to other functions. In particular, a component
contains a collection of operations that are named functions invoked when
messages are processed.

pattern matching LEAP supports pattern matching in many language constructs.
In particular there are a number of expressions such as for and exists that
use pattern matching to process lists of terms. This is particularly useful when
processing the list of terms that is a component’s state.

execution LEAP execution occurs by passing messages. A message is synchronous or
asynchronous (although we will use only asynchronous messages in this article).
In addition, a component contains state monitoring rules that match patterns
against the current state of a component. The rules run each time the state
changes.

LEAP models execute by processing messages. Each component has a collection of
input ports containing a queue of messages. Each system cycle, an input message is
removed from one of the input queues for each component. The message is processed
by invoking the appropriate operation defined by the component. The operation has
access to the state of the component represented as a list of terms. The operation
may update the state by adding or removing terms. The operation may call other
operations and also produce messages that are added to the queue of named output
ports on the component. Once the operation has completed, a component’s rules are
checked against its current state. A rule is enabled if its patterns match the state.
At most one enabled rule is selected to run. The body of a rule can perform the
same actions as an operation. Finally, once all components have consumed a single
message, output queues are flushed by transferring messages using the connectors
from output ports to input ports.

2.7 Case study

Our case study for evaluating our approach to dynamic component
configuration based on EDA and CEP is drawn from a UK higher education (HE)
context. In the UK, EA and in particular the use of shared services has become an
increasingly important strategic driver. Our approach presents one possible
technology for addressing some of the issues currently prevalent in this sector. A
recent report into the use of IT in HE[13] examines how successful UK HE has been
at exploiting the opportunities offered by ICT. It argues that there is little
high-level strategic impetus behind the integration and that the sector is struggling
to get systems to talk to each other. The associated JISC report∗ describes the
public sector support for SOA in HE with the intention of leading to shared services
across the sector. It argues that EA can address problems relating to data silos,
information flow, regulatory compliance, strategic integration, institutional agility
reduction in duplication and reporting to senior management.

http://www.jisc.ac.uk/media/documents/techwatch/jisc_ea_pilot_study.pdf
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EA can be applied within an organization in order to determine how to comply
with externally applied regulations. Architecture models can answer questions about
the reuse of existing components, the locality of regulatory information and to identify
the need for new information sources. This section describes a case study which is
typical of current issues facing the UK HE sector. We describe the case study and
then the rest of the article describes how EDA can provide a basis for a flexible
dynamically extensible system architecture.

The UK Borders Agency requires all Higher Education institutions to produce a
report that details the number of points of contact between the institution and any
student that has been issued with a student visa. This regulation places a requirement
on the institution to ensure that the information is gathered at the appropriate points
of contact. Furthermore, there is a business imperative for each institution to be able
to detect students that may be likely to fail to record the required number of contact
points in order to take remedial action and thereby avoid paying penalties with respect
to trusted status whereby visas are granted via a lightweight process.

The University of Middle England (UME) decides to construct an EA model in
order to determine the components, data stores and interactions that are required to
comply with the regulations. The model will be exercised through simulation and will
be the basis of an as-is and to-be analysis in order to plan how to proceed. The first
step is to construct a model of the components that will be required. New components
can be designed as part of the model, however reuse of existing components is preferred
to keep costs down.

UME performs an analysis of existing systems and processes, whether manual
or automated, in order to comply with the regulations. New systems are designed in
order to ensure that all possible contact points with students are recorded. The list
of systems is as follows:

registry A student must register for a course before they can start studying. This
in itself does not constitute a point of contact because a student must have also
paid for the course before they become a UME legal citizen.

finance A student must pay for their studies. The UK government has recently
introduced a new fee structure and students must pay 9K. Since both payment
and registration must occur in any order, this constitutes an opportunity for
CEP to help.

library When a student has registered and paid for their studies, they may use the
library facilities. Activities such as borrowing and returning a book constitute a
point of contact. After the proposed system has been implemented, UME notices
that it could also be used to detect problem students who have not presented
sufficient points of contact and who have a fine outstanding in the library. This
situation requires a system reconfiguration and provides an opportunity for us
to show EDA with higher-order functions and reflection can support dynamic
architecture reconfiguration without a static rebuild.

department Each course of study includes coursework with associated deadlines.
When a student hands in coursework this constitutes a point of contact. After
installation of the proposed system UME notices that students who miss
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coursework deadlines could also be monitored by the system. Again, this
presents an opportunity to show how EDA with higher-order functions can
support dynamic reconfiguration.

monitor The proposed system includes a new IT system that collects points of
contact for students. The monitor will also provide support for registering a
student as a problem citizen.

3 Problem and Contribution

Most languages for component architectures and EA modelling are based on SOA
which leads to a system model that can be checked statically before deployment.
However this makes dynamic reconfiguration difficult since typically the system must
be taken off-line, reconfigured statically, and then re-deployed.

EDA based systems provide a more flexible approach since they reduce multiple
messages into a single type of event by reifying the message name and arguments as
data. In principle, this allows dynamic reconfiguration because there is essentially
only a single message data type: Event.

However, the introduction of new events requires two additional extensions: the
conditions under which the event is raised and the behaviour that is used to handle the
event when it is received. Our approach to address this issue is to propose that EDA
based systems should include higher-order functions. This addition allows handlers
to be registered with components for raising new types of event and for handling
them. Higher-order functions have been shown elsewhere to support a wide diversity
of dynamic execution patterns, and as such can encode more structured approaches
such as mixins.

The addition of higher-order functions to EDA raises a question of how to
extend a third party component that provides an extension interface but does not
expose its internal data representations. Our proposal is to introduce data reflection
so that a component can be requested to produce a meta-representation of its
internal state. New event producer and consumer functions can be defined to work
on this representation without further knowledge of the internals of the component
they extend.

Finally, we acknowledge that the EDA approach forces components to be
dynamically typed since messages are reduced to a single data type: Event. This
can be criticised as undesirable since a system cannot be statically determined to be
type safe. Our approach allows both SOA and EDA to co-exist and we envisage it
being deployed in a way that allows short-term EDA-based dynamic
reconfigurations to be assimilated into statically checked SOA-based messages at
regular medium-term system upgrades.

This section describes our overall approach and includes the key features of our
contribution. Section 3.1 shows how SOA-based message passing can be specified in
LEAP and how pre and post-conditions can also be used to specify events. Section
3.2 shows how LEAP supports CEP. Section 3.3 shows how our proposal for dynamic
reconfiguration using higher-order functions is implemented in LEAP. Section 3.4
shows how reflection works in LEAP and its relationship to dynamic reconfiguration.



146 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

3.1 Specification and messages

Both SOA and EDA based systems rely on messages being sent between
components using named ports. LEAP directly supports components, ports and
connectors for this purpose. Operations that are defined by an LEAP component c
are invoked when a corresponding message is consumed from the head of an input
queue owned by c. The operation is performed and may result in a number of
messages being sent to output ports defined by c. Where an output port is
connected to an input port, messages are transferred and the output ordering is
preserved.

Modelling component behaviour is supported by operation specifications defined
in terms of pre and post conditions. The pre-condition and post-condition are both
boolean expressions defined in terms of the component’s state. A pre-condition defines
a predicate over the state of the component before the operation is performed and the
post-condition defines a predicate over the state both before and after the operation
has been performed.

The state of an LEAP component is a list of terms state whose types are given by
models in the component definition. Additionally, in the post-condition, state@pre
is used to refer to the state before the operation completes. Therefore, it is possible
to use pre- and post-conditions to define a requirement for a particular state change
when an operation is performed without having to express the mechanism by which
the change happens.

In addition, an operation may produce messages, therefore an operation
specification includes a clause that defines a predicate over the component’s output
ports in terms of the messages that have been produced.

The standard language for modelling operation specifications is the Object
Constraint Language (OCL) defined as part of UML. OCL is used to specify class
operations and consequently can define predicates over the state of instances of the
class and those instances that can be reached by traversing links from the object.
OCL also includes a mechanism for expressing predicates over messages sent and
received by an object[15]. The language for message specification is more expressive
than that in LEAP, however they address different aims which makes LEAP more
appropriate to SOA and EDA. OCL is class-based and LEAP is component-based.
UML classes have a single input and output port whereas, SOA requires multiple
named ports as provided by LEAP. A UML class corresponds to a database table
and its instances correspond to rows in that table, therefore OCL expresses
conditions in terms of rows (although allInstances can be used to range over all
rows in a table). LEAP components define models containing multiple classes and a
component’s state contains all the contents of all tables making it easier to express
predicates that range over multiple tables.

In EDA each component produces and consumes events, so for example when
a student registers for a course this event is made available to all components that
are listening for it. Each operation must include along with the specification of any
required state change, the conditions under which the registers event is raised.
The following example shows how specifications and implementations are defined
separately in LEAP:
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1 component table {

2 model {

3 class X { id:int; ys:[Y] }

4 class Y { id:int }

5 }

6 port messages[in]: interface { register(x_id:int,y_id:int):void }

7 port events[out]: interface { registered(x_id:int,y_id:int):void }

8 spec {

9 register(x_id:int,y_id:int):void {

10 pre ?not(exists X(x_id,{Y(y_id)} U _))

11 post ?exists X(x_id,{Y(y_id)} U _)

12 messages events <- registered(x_id,y_id)

13 }

14 }

15 operations {

16 register(x_id,y_id) {

17 find X(x_id,ys) {

18 find Y(y_id) in ys { } else {

19 replace X(x_id,ys) with X(x_id,Y(y_id):ys) else {};

20 events <- registered(x_id,y_id)

21 }

22 } else {

23 new X(x_id,[Y(y_id)]);

24 events <- registered(x_id,y_id)

25 }

26 }

27 }

28 }

The component table is used to manage associations between X’s and Y’s. Each
X is associated with several Y’s and they both have identifiers (lines 2-5). Messages
to register a Y against an X are received as register(x id,y id) (line 6). An event
registered is generated when a successful registration is completed (line 7).

The specification for registration is given in lines 8-14. This is defined
independently of the implementation and a component may contain one or the
other, or both. The pre-condition (line 10) uses pattern matching to check that no
association exists. The pattern X(x id,p) matches any X in the state with the given
identifier and whose list of Y’s matches the pattern p.

A set pattern {p} U q is a useful device to match any element of a list against
p such that the rest of the list matches q. In the case of line 10 this is used to check
to see that there is no X that already contains a Y with the supplied identifier (the
pattern means don’t care).

The post-condition (line 11) requires the registration to have taken place and line
12 requires the registration event to have been produced on the output port.

The implementation for register is given in lines 16-26. In this case the find
expression is used twice, the first time to extract an X with the supplied identifier and
the second time to extract a Y. In both cases suitable actions are taken if the find
fails to locate a matching term.

3.2 Complex event processing

SOA-based architectures cannot easily support CEP that involves detecting
patterns in multiple events that can occur at different times. Figure 2 shows the
simplest CEP architecture. Components a and b both produce independent events
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that must be processed by merge. In general, an event contains arbitrarily complex
data and merge must detect corresponding pairs of events. In the simple example,
each event contains an identifier and merge must match events with corresponding
identifiers. The LEAP definition of a is as follows (b is an equivalent definition):

component a {

port events[out]: interface { a(id:int):void }

}

The definition above declares that a has a single output port named events that
produces messages of the form a(i) where i is an integer.

Figure 2. Complex event processing

An SOA approach to the definition of merge will require an internal database that
manages all the incoming messages. When a new message is received, the database
must be searched for a previous message whose data matches. Since, in general, an
activity may depend on any number of incoming messages this can lead to a significant
combinatorial overhead.

CEP abstracts from the housekeeping details necessary to manage the incoming
messages within merge and uses declarative rules over a simple internal database as
shown in the following LEAP definition:

1 model {

2 class A { a:int }

3 class B { b:int }

4 }

5 port monitor[in]: interface {

6 a(id:int):void;

7 b(id:int):void

8 }

9 port events[out]: interface { merged(id:int):void }

10 operations {

11 a(id) { new A(id) }

12 b(id) { new B(id) }

13 }

14 rules {

15 merge: A(id) B(id) {

16 events <- merged(id)

17 }

18 }

19 }

The database is defined in lines 2-5 and consists of two types of term. Line 3
defines a class of terms of the form A(i) and line 4 defines a class of terms of the form
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B(i). The port named monitor is declared to process messages named a and b, and
the port events is declared to produce messages of the form merged(i).

The operations on lines 11 and 12 are invoked each time the corresponding
messages are received at the monitor input port. They simply update the database
with a new term of the appropriate type.

The rule defined on line 15 is called merge and has a pattern on line 15 that
matches against the current state of the database. The repeated use of the variable
id in the rule must be consistently matched against terms in the database. Therefore,
for the rule to be satisfied, it must match against two terms of different types and
which agree on the identifier value. The rule will be matched against all possible
matching pairs, but any given pair will only match once. The body of the rule on line
16 sends a merged message to the events port.

The definition of the merge component above uses rules to abstract away from
the housekeeping details that would otherwise be necessary if an SOA approach was
used to match corresponding input messages.

3.3 Dynamic reconfiguration

SOA based architectures are based on ports with pre-defined interfaces describing
the messages produced and consumed at each port. When connectors are used to
associate an output port with an input port, the interfaces must match otherwise the
system runs the risk of a run-time error where a message cannot be associated with
an operation that handles it.

This approach makes a system type-safe and is appropriate for system
architectures where the functionality is known in advance. However, there may be
occasions where system functionality must be extended. In an SOA based approach,
this requires the system to be shut down, new interfaces defined and the system to
be rebuilt and redeployed. Such a process will guarantee type safety, but may not
always be possible. For example, not all components in a system may be under local
control in which case they cannot be shut down. Furthermore, locally controlled
components may be relied on by external components and shutting them down may
not be an option.

In such situations EDA is a more attractive approach because the interfaces used
to produce and consume messages are fixed and new types of message can easily be
introduced because message types are represented in data. Having introduced a new
message type, the operation that handles it by a component must be provided. Again,
an SOA based approach would require static system reconfiguration offline. However
an EDA approach together with higher-order functions allows dynamic reconfiguration
by registering event handlers via messages.

Consider the case where the UME Library is modelled as a component. Using
SOA we might fix the Library interface so that it produces a message for student
contact each time a student borrows and returns a book. However, at some later
stage we might introduce library fines and we are interested in detecting when students
have outstanding fines because this is an indication, together with a low contact point
score, of a problem citizen. An EDA approach with higher-order functions will allow
us to dynamically add in the fine event and to add a handler to the monitoring system
without shutting either system down. At some later stage when it is safe to take the
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systems off-line, the events can be translated to SOA-style messages and operations.
Event processing is performed using a model of events. LEAP allows one

component to extend others, the extension relation occurs at definition time and
includes a copy of the parent into the child. The following component is used as a
simple basic for modelling events:

component event_model {

model {

class Event {

name:str;

args:[any]

}

}

}

The following component event consumer defines how a simple dynamically
configurable event processing component can be defined in LEAP:

1 component event_consumer extends event_model {

2 model {

3 class EventHandler {

4 name:str;

5 arity:int;

6 handler:fun(Event(str,[any])):any

7 }

8 }

9 port monitor[in]: interface { raise(event:Event(str,[any])):void }

10 port handlers[in]: interface {

11 define_handler(name:str,arity:int,handler:fun(Event(str,[any])):any):void

12 }

13 operations {

14 raise(event) {

15 case event {

16 Event(name,args) ->

17 find EventHandler(name,arity,handler) when arity = #(args) {

18 handler(event)

19 } else print(’no handler defined: ’ + state)

20 }

21 }

22 define_handler(name,arity,handler) {

23 new EventHandler(name,arity,handler)

24 }

25 }

26 }

An event handler (lines 3-8) contains the name of the event, the number of
arguments and a handler. The type of the handler (line 6) is a function that maps an
event to an LEAP value.

The event processor defines two ports. The port monitor (line 9) is used to
receive incoming events. In order to implement the EDA architecture, all
participating components must implement either an output port for messages of
type raise(Event(str,[any])) if they are an event producer, or an input port for
messages of the same type if they are an event consumer. Of course a component
may be both an event producer and consumer. In order to monitor an event
producer, an event consumer connects to the appropriate output port.
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The port named handlers (lines 10-12) provides a mechanism to dynamically
register handlers with the event consumer. The define handler message will create
a new handler (line 23).

The raise operation (lines 14-21) processes an incoming event. Pattern matching
is used to find an event handler with the appropriate name and arity (line 17). Once
found, the handler is invoked by applying it to the event (line 18). The reaction to
a missing handler will depend on the application and architectural design issues. It
may be ignored or there may be a reply mechanism contained in the event. In this
case we print a message (line 19).

3.4 Reflection

The previous section has described how dynamic reconfiguration of event
consumption can be supported if the architectural framework supports higher-order
functions and implements an EDA approach to architecture. This section describes
how reflection can be used to support dynamic reconfiguration of event production.

Each component includes a private state whose type is defined by a model. In
general, the data maintained in the state will have a variety of implementation formats
making it very difficult to introduce a monitor that generates a previous unforeseen
event based on a predicate over the hidden component state.

Although the components may have hidden private data formats, it is possible
to translate the data into a single value model that incorporates type information.
This process is called reflection and provides a universal format for processing data.
In the case of deployed systems the universal format is likely to be encoded as XML.

Reflection can be used to inject data monitors into components that conform to
the EDA architectural style so that a component can produce events in unforeseen
circumstances. For example, it may become desirable for the Library component to
raise events when a fine is imposed on a reader. In an SOA environment this will
involve static reconfiguration. Reflection translates the Library state into a universal
format and higher-order functions can be used to inject a handler that processes data
values expressed in this format.

Each LEAP component contains a state that is implemented as a list of terms.
The type of each term is given by a class defined in a model owned by the component.
The model is private to the component and therefore the data cannot be processed
by another component unless it shares the same model.

Although data types are private to LEAP models, LEAP provides a reflection
operator lift (and a corresponding inverse called intern) that can be used to
translate data values into a single universal format whose model is shared by all
components. For example, a component might define a class called Student that
allows it to manipulate terms of the form Student(’fred’). The reflection operator
transforms the term as follows: lift(Student(’fred’)) = Term(’Student’,

[Str(’fred’)]).
The following component event producer defines how state can be monitored

using reflection:

1 component event_producer extends event_model {

2 model {

3 class Monitor {

4 handler:fun([Term(str,[any])]):[Event(str,[any])]
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5 }

6 }

7 port monitors[in]: interface {

8 define_monitor(handler:fun([Term(str,[any])]):[Event(str,[any])]):void

9 }

10 port events[out]: interface {

11 raise(event:Event(str,[any])):void

12 }

13 rules {

14 change: ok {

15 process_change()

16 }

17 }

18 operations {

19 define_monitor(handler) { new Monitor(handler) }

20 process_change() {

21 let terms = [ lift(t) | t <- state ]

22 in for Monitor(m) in state {

23 for event in m(terms) {

24 self.events <- raise(event)

25 }

26 }

27 }

28 }

29 }

The component above defines a class called Monitor that is used to manage data
monitors. A monitor is a handler function that maps a sequence of terms (in universal
format) to a sequence of events. The idea of a monitor is that it receives the state
of a component, as reflected terms, when the state changes. The monitor produces
a sequence of events based on the changes. For example, if a borrowing has been
flagged as incurring a fine then the monitor should produce an appropriate event.

A new monitor is added using the monitors port (lines 7-9) and an event is
produced using the events port (lines 10-12).

Rules are used to monitor state changes in an LEAP component. A rule contains
a collection of patterns, if the patterns match the current component state then the
rule is enabled. Each execution cycle selects a rule that is ready to fire and executes
the body of the rule.

Lines 14-16 show a very simple rule. The pattern is ok which always matches,
and therefore the rule is enabled for any state change. The body of the rule calls the
local process change operation.

Each update to the component is processed by process change defined on lines
22-29. The reflection operator guarantees that the data supplied to the monitors is
in a format that the monitor function can process. Each monitor is applied to the
reflected terms (line 25) and the resulting events are raised (line 26).

4 Modelling with EDA

Our proposal is that architectural modelling is usually based on an SOA based
approach and as such message interfaces are static. This leads to difficulties when
an architecture is to be dynamically reconfigured. An EDA approach is much more
flexible because it provides a universal communication mechanism for components to
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produce and monitor events. This is achieved at the expense of a loss of static interface
checking, however the two approaches are not incompatible and it is possible to view
EDA as being used to guarantee dynamic reconfiguration where updates are translated
to SOA on each major system upgrade. This is equivalent to the ability of certain
programming languages to accommodate dynamic changes via an interpreter and
where code is incrementally compiled, for example Eiffel’s Melting Ice technology[25].

This section shows how the UME case study can be modelled in LEAP using
EDA. The models are not complete, but they exhibit the key features of the
approach. Section 4.1 shows the component architecture from two perspectives.
Firstly, components are categorized into event producers and consumers and then
the components are connected in order to monitor events.

Section 4.2 defines the components. Our intention is to show a range of LEAP
features including specification, implementation, SOA and EDA and therefore the
component definitions use a mixture of approaches.

Section 4.3 shows how the EDA mechanisms can be used to achieve dynamic
reconfiguration.

4.1 Architecture

Figure 3 shows an LEAP inheritance hierarchy for the case study components.
Each component is either an event producer or an event consumer or both. Where
the behaviour of a component is known (for example clock) it is appropriate to fix
its behaviour as a producer or consumer, however there is no reason why, in order to
future-proof the system, each component should not inherit from both
event producer and event consumer.

Figure 3. Component inheritance

Figure 4 shows how components are connected in order to monitor events. Each
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component displays a collection of ports as boxes: a white box is an input port and
a black box is an output port. The ports are named (in this case the names are
inherited from either event producer or event consumer). In an EDA architecture,
components have ports for defining monitors and handlers, a single port called events
for producing events, and a single port called monitor for receiving events.

Figure 4. Event driven architecture

As shown in the diagram, the monitor component receives and merges events.
The paid and registered component is used to perform CEP in terms of events
from registry and finance. The clock is used to inform both the library and the
department of the current time in order that the library can import fines and the
department can manage coursework deadlines.

4.2 Components

The clock component provides an example of a simple event producer:

1 component clock extends event_producer {

2 model {

3 class Time { time:int }

4 }

5 port messages[in]: interface { tick():void }

6 spec {

7 tick():void {

8 pre Time(t0)

9 post Time(t1) ?(t1=t0+1)

10 messages events <- raise(Event(’time’,[t1]))

11 }
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12 }

13 operations {

14 tick() { replace Time(n) with Time(n+1) else new Time(1) }

15 }

16 init {

17 self.monitors <- define_monitor(

18 fun(events)

19 find Term(’Time’,[Int(t)]) in events {

20 [Event(’time’,[t])] }

21 else [])

22 }

23 }

The message tick is provided via a static SOA based interface. Lines 6-12 provide
an example of how LEAP operation specifications can be used to require an event is
raised as a result of a state change. The event is raised by a monitor that is registered
in the init block in lines 16-22. Since the only change that can happen to a clock
is that time advances, the handler function (lines 18-21) expects to match a term
pattern and extract the time t and to produce a single event Event(’time’,[t]).

Of course, using a state monitor as shown above is not the only way in which
events can be produced. It is possible to generate them directly as shown in the
definition of registry below:

1 component registry extends event_producer {

2 model { class Student { name:str; course:str } }

3 port messages[in]: interface { register(s:str,c:str):void }

4 spec {

5 register(s:str,c:str):void {

6 pre Student(s,_)

7 }

8 register(s:str,c:str):void {

9 pre not(Student(s,_))

10 post Student(s,c)

11 messages events <- raise(Event(’registered’,[s,c]))

12 }

13 }

14 operations {

15 register(s,c) {

16 find Student(s,_) { }

17 else {

18 new Student(s,c);

19 events <- raise(Event(’registered’,[s,c]))

20 }

21 }

22 }

23 }

Lines 4-13 show how an operation specification is divided into multiple clauses
with different pre-conditions. In the first case (lines 5-7) a student already exists and
does not need to be registered twice. In the second case (lines 8-12) the student does
not exist and should be added to the database and an appropriate event is raised.

The definition of register shows how an event producer can simply generate
events directly without registering a handler. Of course this is less flexible since a
handler could be removed whereas the event raised by register is hard-wired into
the component.
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The finance component also hard-wires event production. It is interesting
because it does not directly translate each state change to an event since a student
may pay the fees in instalments. The event will only be generated when the student
has paid at least 9K:

1 component finance extends event_producer {

2 tuition_fee = 9000

3 model {

4 class Student { name:str; fee:int }

5 }

6 port messages[in]: interface { pay(s:str,i:int):void }

7 operations {

8 pay(s,i) {

9 find Student(s,n) when n = tuition_fee {

10 error(’student already paid: ’ + s)

11 } else find Student(s,n) when n < tuition_fee {

12 if (n + i) >= tuition_fee

13 then payment_complete(s)

14 else replace Student(s,n) with Student(s,n+i) else new Student(s,n+i)

15 } else if i >= tuition_fee

16 then payment_complete(s)

17 else new Student(s,i)

18 }

19 payment_complete(s) {

20 replace Student(s,n) with Student(s,tuition_fee) else new Student(n,tuition_fee);

21 events <- raise(Event(’paid’,[s]))

22 }

23 }

24 }

When both registry and finance produce events, the student can start to use
the facilities of UME. The detection of multiple unordered events constitutes CEP
and is provided by paid and registered:

1 component paid_and_registered extends event_consumer,

2 event_producer {

3 model {

4 class Registered { name:str; course:str }

5 class Paid { name:str }

6 }

7 rules {

8 ready: Paid(s) Registered(s,c) {

9 events <- raise(Event(’contact’,[s]));

10 events <- raise(Event(’registered’,[s,c]));

11 events <- raise(Event(’paid’,[s]))

12 }

13 }

14 init {

15 self.handlers <- define_handler(’registered’,2,fun(e) case e {

16 Event(_,[s_name,c_name]) -> new Registered(s_name,c_name)

17 });

18 self.handlers <- define_handler(’paid’,1,fun(e) case e {

19 Event(_,[s_name]) -> new Paid(s_name)

20 })

21 }

22 }

Event processing is provided by two handlers defined in lines 14-16 and 17-19
respectively. In the first case the handler detects an event of the form Event
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(’registered’, [student,course]) and in the second case an event of the form
Event(’paid’, [student]). In both cases the information is added to the local
database where the rule ready (lines 7-11) detects the changes. The rule can only
become enabled when both patterns match. When it fires the appropriate events are
produced.

The library component provides an external interface that records borrowings
(we omit the other library functions). In order to use the library, a student must have
paid their fees. In addition, the library monitors the time via clock events in order to
process fines. We leave the implementation of fine processing until section 4.3 as an
example of dynamic reconfiguration:

1 component library extends event_consumer, event_producer {

2 model {

3 class Reader { name:str; borrows:[Borrow] }

4 class Borrow { book:str; time:int }

5 class Time { time:int }

6 }

7 port messages[in]: interface {

8 borrow(r_name:str,b_name:str):void

9 }

10 operations {

11 borrow(r_name,b_name) {

12 find r=Reader(r_name,bs) {

13 replace r with Reader(r_name,Borrow(b_name,time()):bs);

14 events <- raise(Event(’contact’,[r_name]))

15 } else error(’no reader: ’ + r_name)

16 }

17 time() {

18 find Time(n) { n } else 0

19 }

20 }

21 init {

22 self.handlers <- define_handler(’paid’,1,fun(e) case e {

23 Event(_,[s_name]) -> new Reader(s_name,[])

24 });

25 self.handlers <- define_handler(’time’,1,fun(e) case e {

26 Event(_,[t]) -> replace Time(_) with Time(t) else new Time(t)

27 })

28 }

29 }

A department maintains information on its courses, the students registered for the
courses, the modules on each course and the coursework deadlines for each module.
When a student completes a coursework it is registered so that it is possible to
determine which student has coursework outstanding.

LEAP provides a diagram format for component data models as shown in Fig.5.
The component is defined below:

1 component department extends event_consumer, event_producer {

2 model {

3 class Course { name:str; students:[Student]; modules:[Module] }

4 class Student { name:str; submitted:[Coursework] }

5 class Module { name:str; courseworks:[Coursework] }

6 class Coursework { name:str; deadline:int }

7 }

8 port messages[in]: interface { submit(name:str,cw:str):void }
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9 operations {

10 registered(name,course) {

11 find c=Course(course,students,modules) {

12 find Student(name,_) in students {

13 error(’cannot register twice: ’ + name)

14 } else replace c with Course(course,Student(name,[]):students,modules)

15 } else error(’no course: ’ + course)

16 }

17 submit(s_name,cw_name) {

18 find c=Course(c_name,

19 {Student(s_name,submitted)} U students,

20 {Module(m_name,{cw=Coursework(cw_name,deadline)} U courseworks)} U modules) {

21 replace c with Course(c_name,Student(s_name,cw:submitted):students,c.modules)

22 else error(’cannot replace’);

23 events <- raise(Event(’contact’,[s_name]))

24 } else error(’cannot submit’)

25 }

26 }

27 init {

28 handlers <- define_handler(’registered’,2,fun(e) case e {

29 Event(_,[s_name,c_name]) -> registered(s_name,c_name)

30 else {}

31 })

32 }

33 }

Figure 5. Department model

The registered event is monitored by a handler (lines 28-31) and records the
new student. The external interface called messages provides an operation for
submitting coursework. The pattern matching in lines 18-20 shows how the
appropriate student and coursework is selected from the course which is replaced
with an updated term (line 21).

The final component is the monitor that is used to collect the contact events
that are raised by the other components. The monitor component manages a count
of the contact points as required by the UKBA regulations. When a student does not
collect sufficient contact points by a given time they are considered to be a problem:

1 component monitor extends event_consumer {

2 model {

3 class Student { name:str; contacts:int; is_problem:bool }

4 }

5 init {
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6 self.handlers <- define_handler(’contact’,1,fun(e) case e {

7 Event(_,[s_name]) ->

8 replace Student(s_name,n,p)

9 with Student(s_name,n+1,p)

10 else new Student(s_name,1,false)

11 else {}

12 })

13 }

14 }

4.3 Dynamic reconfiguration

Our claim is that EDA and higher-order and reflective features support the
dynamic reconfiguration of system architectures. In particular it allows new
handlers and event generators to be added without having to have access to the
hidden type information within a component.

This section shows how dynamic configuration can be achieved for the UME
case study. The first step is to extend the monitor component with a handler for
problem student events. This allows new events to be received and to update the local
database (we shall assume knowledge of the data type in this extension and relax this
assumption in the following examples):

1 monitor.handlers <- define_handler(’problem’,1,fun(e) case e {

2 Event(_,[s_name]) ->

3 replace Student(s_name,n,_)

4 with Student(s_name,n,true)

5 else new Student(s_name,1,true)

6 })

Now consider the library component. Assuming that we cannot know the exact
representation of data within the library, but since monitors use a general purpose
reflected representation for data, the monitor can be added by sending the library
component a message:

1 library.monitors <- define_monitor(fun(terms)

2 find Term(’Time’,[Int(t)]) in terms {

3 find Term(’Reader’,[Str(r),Cons(Term(’Borrow’,[_,Int(t’)]),_) ]) in terms

4 when t > t’ + 2 {

5 [Event(’problem’,[r])]

6 } else []

7 } else [])

In the example above, we assume that fines are imposed after 2 time units have
elapsed (perhaps these are weeks) and that while there is a student with an
outstanding fine, the problem events will continue to be generated.

Note the pattern matching over the terms in lines 2 and 3 above. This shows
how the lift operator has produced a representation for terms, integers, lists and
strings. In particular, an LEAP list is reflected as follows:

lift([1,2,3]) = Cons(Int(1),Cons(Int(2),Cons(Int(3),Nil)))

A more extensive example involves extending the department component to produce
events when a coursework deadline has been missed. In this case the reflected data
representation must be processed using pattern matching by a collection of auxiliary
operations:
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1 department.monitors <- define_monitor(fun(terms)

2 find Term(’Time’,[Int(t)]) in terms {

3 for Term(’Course’,[_,students,modules]) in terms {

4 process_modules(t,modules,students)

5 }

6 } else {})

7

8 process_modules(time,modules,students) {

9 case module {

10 Cons(Term(’Module’,[_,courseworks]),tail) -> {

11 process_courseworks(time,courseworks,students);

12 process_modules(time,tail,students)

13 }

14 }

15 }

16 process_courseworks(time,courseworks,students) {

17 case courseworks {

18 Cons(c=Term(’Coursework’,[_,Int(deadline)]),tail) -> {

19 if deadline > time

20 then process_students(c,students);

21 process_courseworks(time,tail,students)

22 }

23 }

24 }

25 process_students(coursework,students) {

26 case students {

27 Cons(Term(’Student’,[Str(name),completed]),tail) -> {

28 if not(member(coursework,completed))

29 then events <- raise(Event(’problem’,[name]));

30 process_students(tail)

31 }

32 }

33 }

34 member(element,list) {

35 case list {

36 Cons(element,_) -> true;

37 Cons(_,rest) -> member(element,rest)

38 else false

39 }

40 }

5 Displays

We have shown how reflection can be used to support dynamic reconfiguration of
components and to allow hidden data types to be externalized. In addition, reflection
can be used to provide a generic way of displaying the state of a component. The basic
idea is to define a mapping from reflected data to a display model. LEAP defines a
simple display model shown in Fig. 6 when a screen is sent as a message to a GUI
component: gui.in <- display(screen), the screen is displayed. Button terms use
functions as call-backs where the functions produce new screens.

This section shows how a simple displayable component can be defined that
uses reflection to convert the state of any component into a screen. The displayable
component can be used as the parent of any LEAP component. We will then show
a series of screen shots showing the a simulation of the case study that have been
generated by an extended version of displayable.
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Figure 6. Screen model

Figure 7 shows a model that is used to encode a collection of terms as a table.
The state of a component is a list of terms in any order. We would like to display the
state as a collection of tables corresponding to the classes in the component’s model.
In order to do this we must gather terms of the same type together and to deal with
references between tables.

Figure 7. Display model

Consider the state [A(1,B(2)),A(2,B(1))]. This will be represented as a
sequence of types:
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[Type(’A’,[Row(k1,[IntVal(1),Ref(’B’,0)]),Row(k2,[IntVal(2),Ref(’B’,2)])]),

Type(’B’,[Row(k3,[IntVal(2)]),Row(k4,[IntVal(1)])])]

Each type contains a list of rows where each row is an instance of the type. A row
has a unique key (for example k1) and a sequence of values. A value is either atomic,
a list, or a reference to another instance. A reference Ref(type,index) indexes a row
in a type.

Given such a table of types, we can produce a screen that is suitable for displaying
on an LEAP GUI:

Screen(Table([

[Text(’A’),Text(’1’),Text(’B(0)’)],

[Text(’A’),Text(’2’),Text(’B(1)’)],

[Text(’B’),Text(’2’)],

[Text(’B’),Text(’1’)]

]))

The component displayable provides a general purpose mechanism for
translating a component state to a screen as shown above. It is partially defined
below:

1 component displayable {

2 operations {

3 display_state(gui,terms) {

4 values_to_table([lift(t) | t <- terms],[],fun(value,tables) {

5 gui.in <- display(Screen(tables_to_entry(tables)))

6 })

7 }

8 }

9 }

It provides an operation display state that can be called by any component
that extends displayable. The display state operation expects two arguments gui
a component to send a display message to, and the terms to be displayed. Each term
is reflected using lift and is supplied to an operation values to table that maps
reflected terms to a table and is defined in appendix A along with tables to entry
that maps tables to a screen entry.

The displayable component is very simple and just displays a component as
a simple table of its contents. However, the reflection mechanism and higher-order
functions allow a more general version of displayable to be defined that allows
display handlers to be dynamically added. Such an extension can be used to define
an extension to monitor for the UME case study leading to the simulation snapshots
shown in Fig. 8; each snapshot is a browser screen-shot generated after several clicks
of the Step button. Figure 8(a) shows the situation just after students have registered
for their courses and have eagerly used the library. Figure 8(b) occurs a little later
and shows that student stud13 has missed a coursework deadline. Figure 8(c) shows
the situation just before the UK BA deadline; students stud05 and stud06 are hitting
coursework deadlines, however all other students have missed at least one deadline.
Figure 8(d) shows the situation immediately after the deadline has passed. The system
has flagged all students who have had insufficient contacts with UME. Notice that
since the deadline for MCW2 has passed, student stud06 has changed status.
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(a) Student registration (b) Missing coursework

(c) Warning signs (d) Business goal in Jeopardy

Figure 8. Simulation

The buttons on the right hand side of the screen allow the administrator to
override students who are flagged as having insufficient contacts. Figure 9 screen-
shot shows the situation where students stud02 and stud04 have been contacted and
their status has been reset (although their course-works remain outstanding).

Figure 9. Manual override
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6 Conclusion

We have argued that an SOA-based approach to system architecture provides
useful static checking but that this benefit makes dynamic extensibility of component
behaviour difficult or impossible. An EDA-based approach to system architecture
has several benefits including CEP and can support dynamic reconfiguration of an
architecture topology because the interfaces are all reduced to a single type of item:
Event. However, EDA and CEP alone cannot easily support dynamic extension of
component behaviour. We have shown that higher-order functions and reflection
together with EDA and CEP can achieve this.

Such an approach gains extensibility, but loses static type verification of message
interfaces supported by SOA. This article has not provided a solution to this problem,
however it would be possible to use reflective capabilities to check that dynamically
allocated monitors and handlers matched the events and data items available at the
point of registration.

In addition the extra computational overhead of pattern matching events may
make this approach unsuitable for real-time systems. However, we would expect that
such an overhead would be minimal compared to the time taken to process messages
which is inherent in a distributed SOA-based system.

We have validated our approach using the LEAP executable modelling language
and shown that it works for a small-scale architecture. Real-time issues
notwithstanding, we see no reason why this approach would not scale effectively. An
interesting future direction is to show how LEAP models can be deployed as systems
on industrial scale component-based technology platforms.

The LEAP language supports both SOA (through statically typed ports and
connectors) and EDA (through rules and higher-order functions). As described in
Ref. [20] there are advantages and disadvantages of both these approaches; indeed
Ref. [20] claims that there a numerous benefits of having an architecture that supports
the coexistence of operations and events. Of course, neither approach is without its
flaws; those of SOA have been described in the introduction, and EDA can suffer
from performance and reliability problems. An approach that incorporates both,
could represent the best of both worlds especially if there is a migration route from
one to the other. This is an area for further work.

We have demonstrated that our approach can dynamically reconfigure services,
handlers and events. Our proposal is that higher-order functions (and components)
offer a rich language for the design and simulation of applications that require
reconfiguration. A higher-order approach support a wide variety of structural and
behavioural patterns in program-based systems, including mixins[41], which gives us
confidence that other approaches to reconfiguration can be encoded using
configurations of functions and components.

However, we have yet to investigate aspects such as consistency, availability, co-
existence and quality of service (QoS) as described in Ref. [23]. This is an area for
future work.
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Appendix A Display Operations

value_to_table(value,tables,cont) {

case value {

Str(s) -> cont(StrVal(s),tables);

Int(i) -> cont(IntVal(i),tables);

Bool(b) -> cont(BoolVal(b),tables);

Cons(h,t) -> value_to_table(h,tables,fun(h_value,tables)

value_to_table(t,tables,fun(t_value,tables)

cont(ConsVal(h_value,t_value),tables)));

Nil -> cont(NilVal,tables);

Term(type,values) -> term_to_table(type,values,tables,cont)

else error(’cannot process: ’ + value)

}

}

values_to_table(values,tables,cont) {

case values {

[] -> cont([],tables);

value:rest -> value_to_table(value,tables,fun(v,tables)

values_to_table(rest,tables,fun(vs,tables)

cont(v:vs,tables)))

}
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}

table_lookup(type,tables) {

case tables {

[] -> Type(type,[]);

Type(type,rows):_ -> Type(type,rows);

_:rest -> table_lookup(type,rest)

}

}

remove(x,l) {

case l {

x:rest -> rest;

y:rest -> y:(remove(x,rest));

[] -> []

}

}

pos(x,l) {

case l {

[] -> error(’not contained’);

x:_ -> 0;

_:l’ -> 1 + pos(x,l’)

}

}

term_to_table(type,values,tables,cont) {

let entry = table_lookup(type,tables)

in case entry {

Type(type,l=({Row(values,translated_values)} U rest)) ->

cont(Ref(type,pos(values:translated_values,l)),tables)

else

let tables = remove(entry,tables)

in case entry {

Type(type,rows) ->

let i = length(rows)

in values_to_table(values,tables,fun(translated_values,tables)

cont(Ref(type,i),Type(type,rows+[Row(values,translated_values)]):tables))

}

}

}

tables_to_entry(tables) {

Table([Text(name):row_to_entry(values) | Type(name,rows) <- tables, Row(_,values) <- rows ])

}

row_to_entry(values) {

[ Text(value_to_string(value)) | value <- values ]

}

proper_list(value) {

case value {

NilVal -> true;

ConsVal(_,t) -> proper_list(t)

else false

}

}

list_to_string(list) {

letrec elements_to_string(l) {

case l {

NilVal -> ’’;

ConsVal(x,ConsVal(y,l’)) -> (value_to_string(x)) + ’,’ + elements_to_string(ConsVal(y,l’));

ConsVal(x,NilVal) -> value_to_string(x)

}

}

in ’[’ + (elements_to_string(list)) + ’]’

}

value_to_string(value) {

case value {

StrVal(s) -> s;

IntVal(i) -> i;
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BoolVal(b) -> b;

Ref(t,i) -> t+’(’+i+’)’;

ConsVal(h,t) ->

if proper_list(value)

then list_to_string(value)

else (value_to_string(h))+’:’+(value_to_string(t));

NilVal -> ’[]’

}

}


