
Int J Software Informatics, Volume 7, Issue 2 (2013), pp. 309–330 Tel: +86-10-62661040

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2013 by ISCAS. All rights reserved. Email: ijsi@iscas.ac.cn, ijsi2007@gmail.com

Web Service Choreography: Unanimous Handling

of Control and Data

Syed Adeel Ali1, Partha Roop1 and Ian Warren2

1(Department of Electrical and Computer Engineering, The University of Auckland, New Zealand)
2(Department of Computer Science, The University of Auckland, New Zealand)

Abstract To provide an effective service-oriented solution for a given business problem,

it is necessary to explore all available options for providing the required functionality while

ensuring a flawless data transfer within the composed services. Existing service

composition approaches fall short of this ideal, as functional requirements and data

mediation are not considered in a unified framework. We propose a service composition

framework that addresses both of these aspects by integrating existing techniques in formal

methods, service oriented computing and data mediation. Our framework guarantees the

correct interaction of services in a composition by verifying certain behavioral constraints,

and resolving data mismatches at semantic, syntactic and structural levels, in a unified

manner. A tableau based algorithm is used to generate and explore compositions in a

goal-directed fashion that proves or disproves the existence of a service choreographer.

Data models, to detect and resolve data mismatches, are generated using WSDL

documents and regular expressions. We also apply our framework to examples adapted

from the existing service composition literature that provide strong testimony that the

approach can be effectively applied in practical settings.

Key words: web service composition; choreography; web service control flow; data

mismatches in web services

Ali SA, Roop P, Warren I. Web service choreography: Unanimous handling of control

and data. Int J Software Informatics, Vol.7, No.2 (2013): 309–330. http://www.ijsi.org/

1673-7288/7/i159.htm

1 Introduction

Services are the fundamental units of service oriented computing (SOC), and exist
as software programs with design attributes specific to the requirements of a service-
oriented architecture. A service is a network and platform independent operation to
be invoked by other services or clients, and needs to overtly define its properties in a
standard format to operate in a service oriented environment. For this purpose, SOC
provides three native facilities: description, discovery, and communication[22].

The areas of active research in SOC include service publishing, service discovery,
service selection, service composition, service execution and service monitoring. Out
of these, this research work is focused on service composition which addresses the
problem of efficient and effective integration of heterogeneously developed services to

Corresponding author: Syed Adeel Ali, Email: sali080@aucklanduni.ac.nz

Received 2012-10-12; Revised 2013-02-09; Accepted 2013-04-19.

310 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

produce new desired services. Service composition offers application development on
top of SOC’s native facilities[22]. Salient features of such applications include rapid
deployment, reuse possibilities and seamless access for users to a variety of complex
services. Service composition is desired in the scenarios when there is no capable
service available to fulfill the given requirement, but the requirement can be met by
selecting and integrating (composing) multiple services.

With the growth in SOC popularity, the number of available services have been
increased rapidly, and it has become a necessity to automate (or semi-automate)
their composition. Since the automated composition process involves several
independent services talking to each other, the correct interaction among the
participating services becomes vital. This correct interaction can be guaranteed by
controlling the message sequence and data flow while composing the services
together. Other important characteristics that a composition approach should aim
to support are connectivity, quality of service and scalability[22]. Industrial
standards like BPEL and WS-CDL offer support to connectivity, QoS and
scalability, but do not provide any direct solution for the correctness i.e.,
design-time verification of web service compositions. This is the reason behind the
introduction of formal methods in the field of web service composition[37].

Traditional web services are XML-based, and are termed as syntactic web services
while another class of web services that are ontology-based are called semantic web
services. Consequently, the composition approaches can be classified as syntactic
and semantic web service compositions. Orchestration and Choreography are the two
main approaches in the area of syntactic web service composition[37]. The control flow
among services in a service oriented architecture can be seen from a global perspective
via choreography, or from the view of a single participant (or a central coordinator)
using orchestration. This research work deals with the composition of syntactic web
services, where the desired functionality is realized by synthesizing a choreographer.

1.1 The driving problem

The calling of web services by web services - instead of humans - in an automated
web service composition raises exciting prospects and various challenges. One of the
prime challenges is to guarantee the correct interaction of independent services since
this interaction, due to its message-passing nature, may lead to many subtle errors like
deadlocks and incompatible behaviors. According to a survey[37], the lack of capability
of the industrial approaches, for the design time verification of service compositions,
welcomes formal methods in this domain.

The correctness constraint of a composition depends upon the control flow and
data mismatches among independent, communicating software pieces. Control flow
is very much related to the functionality i.e., the sequencing of service calls in a
specified manner to obtain a new service with desired behavior. This can be done
by synthesizing an orchestrator or a choreographer that could guide the services to
invoke each other in a manner that ensures the desired behavior.

Data mismatches occur when the input-output entities of interacting services do
not match. For example, one service may require the surname of a person while
the record keeping service returns the family-name upon request. Data mismatches
can be classified as systematic, syntactic, structural, and semantic[31]. Along with

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 311

the control flow, the data transferred among the participating web services for a
composition are clearly very important for correct composition. Nevertheless, most
of the existing approaches either neglect data, or need very small ranges to be related
to the data types.

Figure 1. Shaded boxes present the adopted techniques among the existing ones

1.2 Our solution and contributions

We develop a web service composition solution that guarantees a correct-by-
construction composition by managing the control and data flow among web-services.
Our formal approach is based on model checking, where web services are represented
as Synchronous Kripke Structures[35], while the desired functional behavior or control
flow is specified with the help of CTL[12] properties. A model verification algorithm[36]

has been extended to generate and explore compositions in a goal-directed fashion that
proves or disproves the existence of a choreographer. We use WSDL documents[29]

of web services along with regular expression to generate data models to detect and
resolve data mismatches during choreographer synthesis.

In a previous attempt[1], we adopted a two-phased composition methodology.
The first phase, named as Control Phase, was actually responsible for the composition
synthesis via CTL model checking, while in the second step, termed as Data Phase,
the composition path was traversed to check for any data mismatches. The major
drawback was to check for the data mismatches after obtaining a composition path,
as encountering an unresolvable mismatch in the obtained path would terminate the
process, nullifying the outcome of the model checking step. This drawback is resolved
in the proposed approach by performing the data matching while constructing the
synchronous product of the services in the first phase.

312 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

Another advancement has been made for the input of regular expressions.
Previously, the required regular expressions were provided by the service vendors,
which imposes the limit of using only those services whose vendors are in contract to
provide regular expressions, if needed. In the current framework, the input of
regular expressions has been made a feature for the service users, and is described in
section 4. The major contributions can be summarized as:

• Much improved (compared to Ref. [1]) formally verified service composition
framework with unified management for control flow and data mismatches (at
semantic, structural and syntactic levels) among web services.

• The technique is goal-directed, and only generates (making the approach on-the-
fly) and investigates parts of possible composite behaviors that are needed to verify
the specified properties and the existence of a corresponding choreographer.

• Preliminary experimental evaluation via variety of composition problems provides
strong testimony of the effectiveness of the technique.

1.3 Paper organization

After reviewing the state-of-the-art in section 2, an illustrative example is
presented in section 3 to exploit the problems addressed in this paper. Section 4
elucidates the fundamental concepts and specifications used, while the composition
framework is presented in section 5. Section 6 discusses the obtained results.
Finally, we conclude with some future directions of research in Section 7.

2 Related Work

The three primary domains of research related to this work are: formal
methods, service oriented computing (SOC), and data mediation. For the proposed
solution, we combine model checking from formal methods, web service composition
from SOC and schema matching from the domain of data mediation. Moreover, our
solution addresses the correctness of composition as the desired characteristic of
service composition. This section presents an overview of the overlapped approaches
in these domains while, Fig. 1 depicts the derivation of our solution from the
existing techniques in the aforementioned domains.

Web service composition

Traditional web services are XML-based, and are termed as syntactic web services
while another class of web services that are ontology-based are called semantic web
services. Therefore, the composition approaches can be classified as syntactic and
semantic web service composition.

Syntactic web service composition

Orchestration and Choreography are the two main approaches in the area of
syntactic web services composition. The control flow (also known as work-flow)
among services in a service oriented architecture can be seen from a global
perspective via choreography or from the view of a single participant using
orchestration . Defining a centralized process for communicating and integrating

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 313

heterogeneous web services is a fundamental task in the orchestration of web
services [10]. In contrast, the fundamental tasks of web service choreography is to
check that messages are transferred in a specific sequence as well as according to an
interface description[10].

Figure 2. MyHeartCare - Sequence of operations

The difference between web service choreography and orchestration can be
understood by the analogy of dance choreography and orchestration. In dance
choreography, the performers produce a combined effect by synchronously acting in
order to achieve the desired outcome without the involvement of a central conductor
or director. The overall plan or design is given to the performers, and each
performer takes responsibility for his/her own steps. On the other hand, in musical
orchestra, a central coordinator is required to direct the group of performers. The
performers independently play their instruments, and do not have any direct
interaction among them[15].

Most of the orchestration literature focuses on the development of languages to
implement service orchestrations where control as well as data flow go through a
centralized server[4]. Among the existing proposals for orchestration languages, Web
Services Business Process Execution Language (WS-BPEL), or in short BPEL[3], is
the most widely used one. BPEL is based on XML, and uses the Web Services
Description Language (WSDL)[29] for describing the web services. BPEL enables
the interactions and composition of a set of web services, and describes relationships
among multiple invocations via control and data flow links. Examples of the
existing orchestration frameworks can be found through BPEL in the Business
Process Modeling community and through Taverna[30] in life sciences community.

314 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

The second approach, web service choreography, does not rely on a central
coordinator; rather it achieves the composition by peer-to-peer communication
among the interacting web services. The Web Services Choreography Description
Language (WS-CDL)[16] is the most popular language among the emerging
choreography languages. WS-CDL is also based on XML and aims at the
composition of interoperable, peer-to-peer interactions between any type of web
services regardless of their programming models, supporting platforms or
implementation details. Various approaches for web service choreography have been
reported in literature. For example, Pathak et al.[32] addressed the issue of realizing
a composite service through a parallel composition of a subset of component
services. Mitra et al.[24] represented services and goals using I/O automata. In this
work, all possible behaviors that could be realized from the services were identified
using a simple or transducing choreographer. Synthesis of a choreographer was
inferred to be possible if the goal behavior was simulated by all possible composed
behavior. Later on, Mitra et al.[23] amended the work by developing a goal-directed
technique that only searches and generates a subset of the possible composite
behavior that is needed to prove or disprove the existence of the desired goal service
and the realizability of a corresponding choreographer. Another major advancement
was to have an optimum overhead for service composition, reported in Ref. [25],
Ref. [26] by synthesizing a distributed choreography approach.

Semantic web service composition

Traditional web service technologies only focus on the syntactic aspects of web
services, making them un-adaptable to the changing environments without human aid.
On the other hand, semantic web services[21] describe the web services using explicit
semantics that are machine-understandable. Process level description of web services
is provided by the Semantic Web[6] that helps the evolution of the domain in a logical
manner, and the domain concepts shared among web services are formalized using
ontologies. OWL (Web Ontology Language)[20] and WSMO (Web Service Modeling
Ontology)[34] are the two main approaches in the field of semantic web services. Both
approaches aim to provide standardized semantic description of web services.

Formal methods for service composition

A major problem of the industrial standard approaches, the absence of software
tools to verify the correctness of web service composition, is the main driver for using
formal methods. Particularly, formal methods and tools can be helpful to decide
whether web services and their composition satisfy specific desirable properties. If
one should discover that a web service composition does not conform to an abstract
specification, or that a main property has been violated, this can be helpful to correct
a design, or to trace bugs in a service.

In the literature, several formal approaches have been reported that guarantee
the correctness of web service compositions. Some approaches are already discussed
in the previous section (choreography approaches). Others include model
checking[13], automatic composition of finite-state machines[5], variants of automata
(I/O automata[23, 24], timed automata[2] and team automata[38]) etc. The control
part of our approach resembles the on-the-fly, goal-directed composition

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 315

approach[23], where web services and the goal (also a service) are represented using
I/O automata. The advantage of our approach is that instead of only checking the
reachabilty of the goal, it can also verify the specified behavioral constraints
en-route to the goal.

Data mediation in service composition

According to a data classification, named as the S classification[8,9], data
mismatches among information systems could possibly occur at four levels:
systemic, syntactic, structural, and semantic. Systemic level mismatches refer to the
difference in the combination of software and hardware used to implement the
applications at communicating ends. Systemic mismatches have largely been solved
by the advent of the standard underlying network protocols like IP, TCP and UDP,
as these universally agreed-upon protocols assure successful transfer of a “sequence
of bytes” regardless of the hardware or software used at both sides. This leaves us to
deal with the remaining mismatch types, that occur at syntactic, structural, and
semantic levels.

Figure 3. Web Services used in MyHeartCare with input and output variables

From the domain of Data Mediation, we investigate schema matching
techniques to build our solution. Schema matching techniques (see Ref. [33] for a
survey) can mainly be divided into two classes: (i) machine learning techniques[11],
where domain experts are involved at the beginning of the process to provide
information to the system, or at the end to validate the outcome; and (ii) user
guided techniques[27], which proceed with the help of human intervention in an
iterative manner throughout the process. Data heterogeneity solutions for web
services are also found in the literature, for example the semi-automatic approach
for ontology-to-ontology mediation for semantic web services[27], run-time data
adapter generation for web service orchestration[28] and data aspects modeling for
the correctness of the composition via abstraction techniques[17].

316 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

Another data-related operation, termed as data flow, is performed by routing the
data among the ports of web services. No data transformation is performed here in
case of a mismatch. An example of this is the ASTRO approach[19], where data flow
requirements are collected in a hyper-graph called a data net, which is translated into
a state transition system that becomes part of a planning domain for composition.

3 Illustrative Example

We motivate the composition approach presented in this paper using an
example (taken and modified from Refs. [18, 39]), which describes MyHeartCare - a
web service system which facilitates the post surgery monitoring of a heart patient.
MyHeartCare relies on five independently existing services namely Patient, Doctor,
CareTaker, MonitorAndRecorder, and Emergency:

• The Patient service transmits the vital signs of a patient at a regular interval. It
also sends out other information like patient’s location in case of an emergency.

• The MonitorAndRecorder service regularly receives and records the vital signs
of the patient. It also invokes the emergency service in special circumstances.

• The Emergency service is responsible to call the Doctor and CareTaker services
upon receiving a request from the MonitorAndRecorder service.

• The CareTaker service receives the patient’s ID and location, and sends back the
ID of the nearest available care taker. Care takers are local volunteers with some
basic training to provide initial assistance to the patient, and to take the patient
to the hospital if needed.

• The Doctor service also takes in the patient’s ID and address, and sends back the
ID of an available doctor at the nearest hospital. The doctor stays at the hospital,
and monitors the patient online.

Service models, depicting the input and output variables are shown in Fig. 3. A
scenario to elucidate the problem as well as to demonstrate our solution is described
next.

Scenario:

After being discharged after a heart surgery, a desired practice is to observe
the vital signs (like posture, heart rate, and breathing rate) of a patient closely and
regularly. With the advent of smart phones, it is possible to equip the patient with
a smart phone capable of recording those vital signs, and to regularly send it to a
remote monitoring system via the Patient service. The MonitorAndRecorder
service receives and records the vital signs of the patient as a normal function. In
special circumstances, for example when a particular combination of the vital signs
readings indicate an abnormal behavior, the remote medical staff should be notified
immediately. The situation can become worse if the patient is alone, or is away
from home. In those cases, the Emergency service is responsible to notify both
the Doctor and CareTaker services. Upon receiving the emergency signal, the
CareTaker service immediately determines the nearest available care taker using the

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 317

location information provided by the Patient service (via GPS of the smart phone),
while the Doctor service determines a doctor on service at the nearest hospital.
The selected care taker goes to attend the patient immediately, while the nominated
doctor at hospital monitors the vital signs of the patient remotely. Upon reaching to
the patient, the care taker determines if his assistance would be enough, or the patient
should be taken to the hospital. The sequence diagram (Fig. 2) show the sequence of
operations/service invocations in the above scenario.

Control flow:

In our scenario, there are certain conditions to be met for the desired
compositional behavior. For example, the doctor service should only be sent a
patient’s information when there is an emergency situation i.e., the communication
between the doctor and the patient services should be disabled until the emergency
service sends out the emergency signal. In other words, services taking part in the
composition should only call other services in a desired sequence. This desired
sequencing of service calls is termed as the control flow, and managing the correct
control flow is a major goal of the choreographer. Control flow conditions for our
scenario are specified in the next section.

Figure 4. Data Mismatches: (a) and (b) or (c) shows Semantic Mismatch; (b) and (c)

presents Structural Mismatch; and (a) and (b) or (c) depicts Syntactical Mismatch.

318 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

Data mismatches:

To appreciate the data mismatch problem, let’s assume that the services taken
are developed independently by different vendors. Consequently, there will be no
assurance of uniformity among the semantics, structure and syntax of the inputs and
outputs of the services. It can be observed that most of the operations in our scenario
revolve around the current locations of the entities, such as processing the location of
the patient to trace out the nearest available care-taker, or determining the address of
the nearest hospital. Making use of these location entities, the following subsections
present the different levels of mismatches that can occur while composing the services
together.

Semantic mismatch

Semantics describe the inherent meaning of the data and its interpretation. A
semantic mismatch occurs when the interacting services refer to the same piece of
information with different names or synonyms. For example, the Patient service
sends out the patient’s location via variable location (Fig. 4(c)) to the Doctor and
CareTaker services. There will not be a semantic mismatch in communicating with
the CareTaker service, as it also uses a similarly named location variable. However, it
can be seen in Fig. 4(a) that the Doctor service manipulates the location information
via a variable address rather than location, which makes both the services semantically
incompatible.

Syntactic mismatch

Syntax refers to the grammar or language rules of the data-type being used.
A syntactical mismatch happens when the sending service outputs some data but
the receiving service can not comprehend it due to the difference in the low-level
representation i.e., syntax of the sent and the received data. For example, the Patient
service uses its location data encoded in XML as depicted in Fig. 4(c), and when it
wants to provide the location information to the Doctor service, there is a syntactic
mismatch because the Doctor service uses the location information as notations of
the Semantic Web[6] (represents data using subject-predicate-object triples, where
the subject and the object act as source and destination nodes while the predicate
connects both the nodes as a labeled edge) as shown in Fig. 4(a).

Structural mismatch

Structure refers to the particular constitution of the primitives within a data-type.
A structural mismatch takes place when the receiving service finds the exchanged data
in other-than-expected shape, style or order. For example, both the Patient and the
CareTaker services use XML encoded locations for their operations. However, it can
be observed from Figs. 4(b) and (c) that both the services use different sets of XML
tags to represent their locations. There is only one tag in the location schema of the
Patient service, while location field of the CareTaker service has been divided into
several sub-tags. Another example could be having the same number of tags with
different orders and semantics.

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 319

Figure 5. Formal representations of the web services as Synchronous Kripke Structures

4 Preliminaries

Carrying out web-services composition using a formal method requires (i)
formal representation of the web services, and (ii) formal specifications of the goal,
for controlling the message flow and to resolve data mismatches.

4.1 Services representation

4.1.1 Synchronous kripke structure

For the formal representation of web-services, the notations of Synchronous
Kripke Structures[35] (SKS) has been adopted in the proposed solution.

Synchronous Kripke structure: SKS is a finite state machine represented by a
tuple (AP, S, s0, I, O, R, L) where:

• AP is a set of atomic propositions.

• S is a finite set of states.

• s0 ∈ S is the initial state.

• I is a finite set of inputs.

• O is a finite set of outputs.

• R ⊆ S × (I ∪O)× S is the deterministic transition relation between the states.

• L : S → 2AP is the state labeling function.

320 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

We use the notation s
?x−→ s′ (resp. s

!x−→ s′) to denote input (resp. output) action x

when the system moves from s to s′.
Every service is manually translated from its respective service description

(WSDL document), and represented as a Synchronous Kripke Structure in Fig. 5.
For example, the Doctor service is represented as an SKS where:

• AP = {t16, t17, t18, t19}.
• S = {s16, s17, s18, s19}.
• I = {?GetDoctor, ?PatientID, ?Address}.
• O = {!DoctorID}.

• R = {(s16
?GetDoctor−→ s17), (s17

?PatientID−→ s18), (s18
?Address−→ s19), (s19

!DoctorID−→
s16)}.

• L can be used to obtain the state-labels of any state e.g., L(s16) = t16.

Figure 6. Connected Services. Connection between the Location and the Address fields of

the Patient and the Doctor services is an example of semantic matching

4.1.2 Parallel composition of SKS

The parallel composition[36] of the services (as SKSs) describes all possible
behaviors exhibited by the services via exchange of messages (output from one is
consumed by input to another). A connection between two service ports in the
parallel composition is made after resolving the data mismatches between the ports,
if present.

Parallel Composition of SKS : A parallel composition is a synchronized product
of all of the individual services. Given SKS1 = (AP1, S1, s01 , I1, O1, R1, L1) and
SKS2 = (AP2, S2, s02 , I2, O2, R2, L2), their parallel composition, denoted by SKS1||2
is (AP1||2, S1||2, s01||2 , I1||2, O1||2, R1||2, L1||2), where:

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 321

• AP1||2 = AP1 ∪AP2.

• S1||2 = S1 × S2.

• s01||2 = (s01 , s02).

• I1||2 = I1 ∪ I2.

• O1||2 = O1 ∪O2.

• R1||2 ⊆ S1||2 × [τ]S1||2: (s1s2)
τ−→ (s′1s

′
2)⇐ s1

!x−→ s′1∧ s2
?x−→ s′2, where τ ∈

(I1||2 ∪O1||2)

• L(s1, s2) = L(s1) ∪ L(s2),

The notation PC[n] is used to describe the parallel composition of n services. Each
state in the parallel composition relates to one state in each web service. A transition
from states in the composition corresponds to individual synchronized transitions in
each service. As there are eight, five, three, four and four states in the Patient,
MonitorAndRecorder, Emergency, Doctor and CareTaker web services respectively,
the maximum number of states in this parallel composition for MyHeartCare can be:
PC[5] = 8× 5× 3× 4× 4 = 1920.

4.2 Goal specifications

The main objective of this is paper is to determine a choreographer that could
guide the provided services in a specific manner, as described by a number of
constraints. These constraints are related to (i) the control flow management for
obtaining the correct composition, and with (ii) resolving any mismatch while
exchanging data among the services. The following subsections will define the
specific constraints of both the categories for our scenario.

4.2.1 Control

We use a temporal logic named as Computation Tree Logic (CTL)[12] to describe
the goal and the behavioral constraints. A CTL formula φ is described over a set of
atomic propositions AP as follows:

φ → AP |¬φ|true|φ ∧ ϕ|φ ∨ ϕ|EXφ|AXφ|E(φUϕ)|A(φUϕ)|EFφ|AFφ

The semantics of a CTL formula, denoted by [[φ]], is given in terms of the sets
of states where the formula is satisfied.

• AP is satisfied in all states which are labeled with the propositions in AP .

• ¬φ is satisfied in states which do not satisfy φ.

• true is satisfied in all states.

• φ∧ϕ (resp. φ∨ϕ) is satisfied in states which satisfy both φ and ϕ (resp. φ or ϕ).

• EFφ (resp. AFφ) is satisfied in states from which there exists a path (resp. all
paths) eventually end in a state satisfying φ.

322 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

• E(φUϕ) (resp. A(φUϕ)) is satisfied in states from which there exists a path (resp.
all paths) to a state satisfying ϕ along which φ is satisfied in all states.

• EXφ (resp. AXφ) is satisfied in states from where at least one of the (resp. all of
the) next states satisfy φ.

The goal of our scenario is said to be achieved when the Patient service receives a
care-taker’s Id, in case of an emergency. This will automatically ensure that all the
previous messages are successfully communicated. The CTL property of this goal can
be written as:

A(t5 ∧ (EF (t7 ∧AX(t0))))

Recall from section 4.1 that the parallel composition contains all the possible
connections between the services. However, a particular sequence of messages on those
connections is required to achieve the desired compositional behavior. We define that
sequence with the help of CTL properties as well. For example, the Patient service is
connected to the Doctor service to send the location information, but as a requirement,
the choreographer should only take this path after the MonitorAndRecorder service
has signaled a critical status. In CTL terms:

A(¬t5U(t12 ∧AX(t8)))

Figure 7. (a) address field of the Doctor service - Left : WSDL extract, Right: Semantic

Web from Fig. 4, (b) location field of the Patient service - Left : WSDL extract, Right :

XML from Fig. 4 (c) Left : a Regular Expression for mapping the location field in (b) of

the Patient service to a structured complex XML type, shown in (c) Right

4.2.2 Data

A data mismatch between two services refers to a mismatch between the output
field of the sender service and the input field of the receiver service. All the input and

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 323

output fields along with other details such as data-types, message format, protocol
details and access methods of a web service, are encapsulated as an XML-based WSDL
(Web Services Description Language) model[29]. The common XML syntax ensures
that the data matching solutions based on WSDL documents will not suffer from
syntactic mismatches.

Figure 8. Entering a Regular Expression for mapping the Location field of the Patient

service

Recall that a semantic mismatch occurs when the same piece of data is referred
using different names or synonyms by the interacting services. To solve this problem,
a universal dictionary has been created that specifies the synonyms, acronyms and
abbreviations for the inputs and outputs for the services, as shown in Table 1. The
data in the universal dictionary is populated by the help of domain experts and service
writers and consumers.

To resolve the structural mismatch between a data field of two interacting
services, first the input field of the subscriber (receiving) service and the output field
of the publisher (sending) service are obtained from their respective WSDL files.
Then the order of the sub-fields of the subscriber service is specified. After that the
sub-fields are checked for the semantic mismatches using the Universal Dictionary.
Finally, sub-fields of the publisher service are traversed to find out if they could form
a combination according to the specified order of the subscriber service.

Special Cases: The information obtained from WSDL files can significantly help
in a data matching solution, provided all the participating web services fully describe
the data fields in their WSDL files, i.e. the complex types are broken down into simple
(primitive) XML types. However in practice, web services usually do not simplify the
data types unless they need to process the data at the primitive level. For example,
Fig. 7(a) shows the well-formed and complex location type from the WSDL model
of the Doctor service because a primitive level (unit, street, postCode etc) matching
is required to find a hospital with an available doctor. However the Patient service
never requires to process locations, and hence just sends out the patient’s location
without breaking it down into pieces, therefore its location field is represented as a
simple string, as shown in Fig. 7(b). This is a special case where the data fields
can not be automatically matched, and we need to transform the data manually,
or semi-automatically to enable the data communication. A straight forward data
transformation solution would be asking the service vendors to re-write the data types
by defining the complex types as a set of XML primitive types. However, modifying
the existing services is neither a trivial task, nor does it conform with the ideal of
composing the existing services, thus it should not be used as a solution.

324 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

An alternative semi-automatic approach, proposed in this paper, is to employ
regular expressions for the representation of complex types. We propose an
optional feature for the users to enter a regular expression to map any of the input
or output ports of the service model, as shown in Fig. 8. The idea is to map the
non-granular data fields only. Regular data types can still be obtained from WSDL
files as normal. This way, the existing code of the web services need not be altered,
and the above solution for structural matching can now be applied to the new,
granulated field. Fig. 7(c) Left shows a regular expression for the location field of
the Vehicle service that maps the string given in Fig. 7(b) in to a granulated
complex XML type, shown in Fig. 7(c) Right. It should be noted that this data
transformation via regular expressions is given as an optional feature in our
solution.

Table 1 The Universal Dictionary - A lexical database for semantic

match-making

Context Synonyms, Acronyms and Abbreviations

Address address location destination

unit house apartment

state province ...

Person CCN creditCardNumber credit card number

surName familyName lastName

5 Composition Framework

5.1 Problem statement

The inputs to the service composition framework are:

Ψ : A set of Computation Tree Logic (CTL) properties that formally describe the
behavioral constraints as temporal properties of the composition.

W : A set of services, where every service is specified in WSDL, from which a
corresponding SKS has been extracted.

The objective is to solve the following problem:

Does there exist a choreographer path (C) in the parallel composition
(PC) of the given set of services (W), and a set of CTL properties (Ψ)
such that all the properties contained in (Ψ) will be satisfied to the
choreographer path (C).

5.2 Algorithm

The procedure is detailed in Algorithm 1. It starts by creating a synchronized
product or parallel composition to expose all possible communication paths among
the web services present in the system. This is done by identifying all the interacting
pairs of services (sending and receiving services are termed as publisher and subscriber
respectively), and then applying data checks on the fields between the services in

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 325

Algorithm 1 Choreographer Synthesis and Verification
1: procedure ChorAndVerif(W , Ψ)
2: PC := ∅
3: for all PubServ ∈ W do . Taking each service as a Publisher
4: for all SubServ ∈ W do . All others as Subscribers
5: if PubServ = SubServ then
6: continue
7: end if
8: for all o ∈ PubServ.O do . Set of outputs of the Publisher
9: for all i ∈ SubServ.I do . Set of inputs of the Subscriber

10: if DataDictionary(o.name, i.name) then . i/o names matched
11: G := getDirectedGraph(i)
12: CG := getConnectedGraph(o)
13: if G is a subgraph of CG then . sub-fields matched
14: PC.Add(o σ−→ i) . Add this transition to the PC

15: end if
16: else
17: continue . Proceed to the next pair of i/o
18: end if
19: end for
20: end for
21: end for
22: end for
23: Chor := ∅
24: Chor := TableauConstructor(PC, Ψ)
25: if Chor = ∅ then . Desired composition not found
26: return Failure

27: end if
28: return Chor

29: end procedure

each pair. The names of the data fields, with the help of the universal dictionary, are
first checked for the semantic mismatches and simple type conversions like postCode
(string) to zipCode (integer). Once the variable names are semantically matched, the
next step is to check the structures of the pair. This is done by constructing a directed
graph for the input field of the subscriber, and a connected graph (where every node
is connected to all other nodes, and can be traversed in any order) for the output field
of the publisher. The primitive fields of a complex XML type serve as the nodes of
the directed graph while the sequence of the primitives specified in WSDL file defines
the direction in graph. The semantic conflicts among the graph’s nodes are resolved
first using the universal dictionary, then simple graph theory is applied to find out
whether the subscriber’s graph is a sub-graph of the publisher’s (if a graph G’ can
be constructed by removing edges and/or nodes from graph G then we call G’ as a
sub-graph of G). The graphs, representing locations for the CareTaker service and
the Patient service, are shown in Fig. 9(a) and (b) respectively. Figure 9(c) depicts
the successfully matched structure.

The tableau constructor and verifier[35] is adopted for finding the desired

326 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

compositional path with the verification of behavioral constraints. The verifier
performs CTL model checking using a tableau-based algorithm[7]. The algorithm
begins the exploration of the state space from the first state in the parallel
composition. The CTL property to be checked is resolved to obtain current and
future commitments. The current commitment has to be fulfilled by the current
state while the future commitment is evaluated for the successor states. The
algorithm terminates if the complete state-space has been explored or all the
commitments are fulfilled. A successfully generated choreographer path for the
discussed scenario is presented in Fig. 10. For the execution, each transition in the
choreographer path will be translated to the respective service call.

Figure 9. Data-structures for location data fields. (a) Directed Graph for the

Subscriber (Care Taker) service. (b) Connected Graph that connects all the primitives of

the Publisher (Patient) service. (c) Subscriber’s Path is found in the Publisher’s graph

after semantically matching the mismatched fields (nodes)

6 Experimental Results

The technique is evaluated via common use cases. The same use cases,
discussed in Ref. [1] are taken, so that the results can be compared. The first
example is HelpMeOut which is the running example in Ref. [1]. It consists of

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 327

several independently existing web/mobile services: Vehicle, Mechanic, Insurance,
and Workshop services. The HelpMeOut system makes it easier for a vehicle’s driver
to call for assistance in case of an emergency. The second example is a travel
reservation service, modified from Ref. [14], where the aim is to develop a composite
service (a) for reserving transportation (car-rental), (b) for buying the airline
tickets, (c) for booking accommodation (hotel), (d) for credit card payments and (e)
for customer’s details and preferences. The composition is realized from existing
services, one each for car-rental, air-ticket purchase, hotel reservation, payment and
customer. The third example is regarding post surgery monitoring of a
heart-condition patient, and is the running example of this paper. It involves
Patient, Doctor, CareTaker, Emergency and MonitorAndRecorder services. The
composition in this case uses individual services to (i) maintain a regular transfer of
a patient’s vital signals, and to (ii) determine doctor and care-taker availability
in-case of an emergency.

Figure 10. States and Transitions in the Choreographer path. ? shows the input events

while ! depicts the output events

For each of the above examples, Table 2 presents the number of services
involved in the composition, the number of states, transitions along with the time
taken to generate the choreographer in the proposed approach as well as in Ref. [1].
Table 2 also presents the formats of the independent services and the data
mismatches resolved during compositions; where db, csv, s. web and xls stand for
database, comma-separated-values, semantic-web and excel spreadsheet respectively.
100% data matching indicates successful composition for the use-cases HelpMeOut
and MyHeartCare, while 85% of data matching for the use-case Travel Reservation
shows that the data structures of some of the fields could not be matched, and the

328 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

mismatched services are required to be replaced for a successful composition.
The difference between the current approach and the previous one ([1]) can be

determined by noticing the number of states and transitions generated for the
choreographers in each case. It can be seen that the choreographers are identical for
the cases (HelpMeOut and MyHeartCare) where all the data mismatches are
successfully resolved. However, for the case (Travel Reservation) where the data
mismatches could not be resolved, the proposed approach returns an immediate
failure; while the previous approach still generates a choreographer (that’s
behaviorally correct only), and then checks for a data mismatch within the
choreographer path which eventually returns a failure. This difference is also
reflected in the time taken for choreographer synthesis, especially for the failure
cases where the time difference is almost the half of the other. For the successful
compositions, the current algorithm also performs slightly better in terms of
time-taken, as shown in the results.

Table 2 Results - Identical experiments are performed to compare with the

results of Ref. [1]

No. of C [proposed] C[1]

Use Case Services States Tran Time(s) States Tran Time(s)

HelpMeOut[1] 4 8 9 1.25 8 9 1.41

Travel Res.[14] 5 Not found 0.67 18 19 1.19

MyHeartCare[39] 5 12 13 1.51 12 13 1.72

Service Data Format Data Matches(%)

Use Case 1 2 3 4 5 semantic structural syntactic

HelpMeOut[1] xml xml csv s. web - 100 100 100

Travel Res.[14] db db db db db 100 85 85

MyHeartCare [39] csv xml xls db db 100 100 100

7 Conclusions

In this paper we presented a formal approach, based on model checking, for web
service composition. The objectives are to integrate independently existing web
services to get the desired compositional behavior, and to resolve the data
mismatches among the participating services at different levels. These objectives
have been achieved using a tableau based algorithm to realize compositions in a
goal-directed fashion, and using WSDL and regular expressions to generate data
models to detect and resolve data mismatches. Experiments show that the
technique is promising and can be applied practically. Currently, we are working on
multiple extensions of the current approach - mainly on the automatic generation of
a finite state machine for a web service from its WSDL document. Secondly, we are
looking for a composition solution to address functional requirements, low-level
behavioral constraints, and preferences for non-functional properties, all in a single
unified framework. Other probable avenues of research include investigating the

Syed Adeel Ali, et al.: Web service choreography: Unanimous handling of ... 329

feasibility of the approach for other service oriented architectures such as mobile
services and cloud computing, and to extend the data matching solution by
employing semantic web techniques.

References

[1] Ali S, Roop P, Warren I, Bhatti Z. Unified management of control flow and data mismatches

in web service composition. Service Oriented System Engineering (SOSE), 2011 IEEE 6th

International Symposium on (dec. 2011). 93 –101.

[2] Alur R, Dill DL. A theory of timed automata. Theor. Comput. Sci. 126 (April 1994). 183–235.

[3] Andrews T, Curbera F, Dholakia H, Goland Y, Klein J, Leymann F, Liu K, Roller D, Smith D,

Thatte S, Trickovic I, Weerawarana S. BPEL4WS, Business Process Execution Language for

Web Services Version 1.1. IBM. 2003.

[4] Barker A, Walton CD, Robertson D. Choreographing web services. IEEE Transactions on

Services Computing 2. 2009. 152–166.

[5] Berardi D, Calvanese D, Giacomo GD, Lenzerini M, Mecella M. Automatic composition of

e-services that export their behavior. Proc. 1st Int. Conf. on Service Oriented Computing

(ICSOC), volume 2910 of LNCS. Springer. 2003. 43–58.

[6] Berners-Lee T, Hendler J, Lassila O. The semantic web. http://www.scientificamerican.

comarticle.cfm?id=the-semantic-web. 20 May 2009. 2001.

[7] Cleaveland R. Tableau-based model checking in the propositional mu-calculus. Acta Inf. 27.

August 1990. 725–747.

[8] Creager D, Simpson AC. A fully generic, graph-based approach to data transformation discovery.

Proc. of GMC (Graph Computation Models) 2006. 2006.

[9] Creager D, Simpson AC. Towards a fully generic theory of data. Proc. of ICFEM 2006 2006.

Springer-Verlag Lecture Notes in Computer Science, volume 4260: 304–323.

[10] Di Pietro I, Pagliarecci F, Spalazzi L. Model checking semantically annotated services. Software

Engineering, IEEE Transactions on PP, 2011, 99(1).

[11] Doan A, Madhavan J, Domingos P, Halevy A. Learning to map between ontologies on the

semantic web. Proc. of the 11th international conference on World Wide Web. (New York,

NY, USA). WWW ’02. ACM. 2002. 662–673.

[12] Emerson EA, Halpern JY. Decision procedures and expressiveness in the temporal logic of

branching time. J. Comput. Syst. Sci. 30. February 1985. 1–24.

[13] Fu X, Bultan T, Su J. Formal verification of e-services and workflows. CAiSE ’02/ WES

’02: Revised Papers from the International Workshop on Web Services, E-Business, and the

Semantic Web. London, UK. Springer-Verlag. 2002. 188–202.

[14] Haas H. “web service use case: travel reservation”. May 2002.

[15] Jay. Choreography and orchestration : A software perspective. November 2009.

[16] Kavantzas N, Burdett D, Ritzinger G, Fletcher T, Lafon Y, Barreto C. Web Services

Choreography Description Language Version 1.0. November 2005.

[17] Kazhamiakin R, Pistore M. Static verification of control and data inweb service compositions.

Proc. of the IEEE International Conference on Web Services. IEEE Computer Society.

Washington, DC, USA. 2006. 83–90.

[18] Kleinpell R, Avitall B. Integrating telehealth as a strategy for patient management after

discharge for cardiac surgery: Results of a pilot study. J Cardiovasc Nurs 22, 2007, 1: 38–42.

[19] Marconi A, Pistore M. Synthesis and composition of web services. In Bernardo M, Padovani

L, Zavattaro G, eds. Lecture Notes in Computer Science. SFM, Springer. 2009, 5569: 89–157.

[20] Mcguinness DL, van Harmelen F. OWL web ontology language overview. W3C

recommendation. W3C. Feb. 2004.

[21] McIlraith SA, Son TC, Zeng H. Semantic web services. 2001. Intelligent Systems, IEEE.

[22] Milanovic N, Malek M. Current solutions for web service composition. Internet Computing,

IEEE 8. (nov.-dec. 2004), 6: 51–59.

[23] Mitra S, Basu S, Kumar R. Local and on-the-fly choreography-based web service composition.

Proc. IEEE/WIC/ACM Int Web Intelligence Conf. 2007. 521–527.

330 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

[24] Mitra S, Kumar R, Basu S. Automated choreographer synthesis for web services composition

using i/o automata. Web Services, 2007. ICWS 2007. IEEE International Conference on. July

2007. 364 –371.

[25] Mitra S, Kumar R, Basu S. Optimum decentralized choreography for web services composition.

Services Computing, 2008. SCC ’08. IEEE International Conference on. July 2008, 2: 395–402.

[26] Mitra S, Kumar R, Basu S. A framework for optimal decentralized service-choreography. Proc.

IEEE Int. Conf. Web Services ICWS 2009. 2009. 493–500.

[27] Mocan A, Cimpian E. D13.3v0.2 wsmx data mediation. 2005.

[28] Moreau A, Malenfant J, Dao M. Data flow repair in web service orchestration at runtime. Proc.

of the 2009 Fourth International Conference on Internet and Web Applications and Services.

IEEE Computer Society. Washington, DC, USA. 2009. 43–48.

[29] Moreau JJ, Chinnici R, Ryman A, Weerawarana S. Web services description language (WSDL)

version 2.0 part 1: Core language. Candidate recommendation, W3C. Mar. 2006.

[30] Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T, Glover K, Pocock

MR, Wipat A, Li P. Taverna: A tool for the composition and enactment of bioinformatics

workflows. Bioinformatics 20, 2004, 17: 3045–3054.

[31] Ouksel AM, Sheth A. Semantic interoperability in global information systems. SIGMOD Rec.

28. (March 1999). 5–12.

[32] Pathak J, Basu S, Lutz R, Honavar V. Parallel web service composition in MoSCoE: A

choreography-based approach. Web Services, 2006. ECOWS ’06. 4th European Conference

on. Dec. 2006. 3–12.

[33] Rahm E, Bernstein PA. A survey of approaches to automatic schema matching. The VLDB

Journal 10. Dec. 2001. 334–350.

[34] Roman D, Keller U, Lausen H, de Bruijn J, Lara R, Stollberg M, Polleres A, Feier C, Bussler

C, Fensel D. Web service modeling ontology. Applied Ontology 1, 2005, 1: 77–106.

[35] Sinha R. Automated Techniques for Formal Verification of SoCs. [PhD thesis]. The University

of Auckland. Feb 2009.

[36] Sinha R, Roop P, Basu S, Salcic Z. Multi-clock SoC design using protocol conversion. Design,

Automation Test in Europe Conference Exhibition, 2009. DATE ’09. April 2009. 123–128.

[37] ter Beek M, Bucchiarone A, Gnesi S. Web service composition approaches: From industrial

standards to formal methods. Proc. of the Second International Conference on Internet and

Web Applications and Services. IEEE Computer Society. Washington, DC, USA. 2007. 15.

[38] Ter Beek MH, Ellis CA, Kleijn J, Rozenberg G. Synchronizations in team automata for

groupware systems. Comput. Supported Coop. Work 12. Feb. 2003. 21–69.

[39] Warren I, Weerasinghe T, Maddison R, Wang, Y. Odintelehealth: A mobile service platform

for telehealth. Procedia Computer Science 5. 2011. 681–688.

