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Abstract This paper studies some issues related to autopoietic automata, a model of

evolving interactive systems, where the automata produce other automata of the same kind.

It is shown how they relate to interactive Turing machines. All results by Jǐŕı Wiedermann

on nondeterministic autopoietic automata are extended to deterministic computations. In

particular, nondeterminism is not needed for a single autopoietic automaton to generate all

autopoietic automata.
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1 Introduction

In 2001, van Leeuwen and Wiedermann[1] defined evolving interactive systems, in
particular sequences of interactive finite state machines with global states, to model
infinite computations on an ever changing machine or system of machines. The focus
here is not on a single machine solving an instance of a problem and stopping. Instead,
the objective is to model a modern system that potentially runs forever over an
unbounded number of software and hardware changes. Evolving automata have also
been called lineage of automata[3]. For more background information, see Refs. [4, 6].

All results of this paper are related to the paper by Wiedermann[5] studying
autopoietic automata, a special kind of offspring-producing evolving machines. The
offspring relation defines trees of autopoietic automata. Attention is often focused on
a lineage of autopoietic automata, a path in a tree of autopoietic automata.

Finite autopoietic automata as defined in Ref. [5] are (nondeterministic) finite
automata augmented with the following special features. They have two modes and
correspondingly two input options and two output options. The two modes are the
reproducing mode (defined by a subset R of states) and the transducer mode (defined
by the complementary set Q−R of states.

In reproducing mode the automaton uses a finite read-only input tape and a
one-way output tape. The finite automaton operates like a Turing machine. It is a
finite automaton though, because the 2-way read-only input tape is of fixed length
and there are no additional work tapes.
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In transducer mode, the automaton does not change the tapes, but reads from
an infinite input stream of which it can access one symbol of Σ at a time from an
input port, and it writes one symbol of Σ at a time into an output port, producing
an output stream.

In either mode, the input tape of the automaton A actually contains the code of
A, a straightforward description of the transition relation δ. The code is a sequence of
5-tuples in arbitrary order. Each 5-tuple consists of an observed symbol (on the input
tape or in the input port, depending on the mode), a current state, a new symbol or
the empty symbol (to be written onto the tape or into the output port, depending on
the mode), a new state, and a direction (to move on the input tape in reproducing
mode, or a dummy indication of no move in transducer mode). For nondeterministic
automata, δ is an arbitrary relation. We use deterministic automata here, meaning
that δ is a partial function of the first two components (i.e., the observed symbol and
the current state).

Whenever the reproducing mode finishes (by entering a special state q1 ∈ R),
the automaton A splits into 2 automata. One of them is the old A with the same
input tape, but with an empty output tape. The other one is the offspring A′, using
the previous output tape as its input tape, while its new output tape is empty. Both
automata start in the start state q0 ∈ Q − R with either head at the left end on
the respective input tape. Depending on the application, the offspring automaton A′

keeps reading from the original input stream continuing at the current position (in
Theorem 3.1 and Theorem 3.2 below) or both automata receive new input streams
(in Theorem 3.3) as in the corresponding situations in Ref. [5]. At this time, the
offspring automaton should have a proper encoding of a new transition function on
its input tape, otherwise it stops working.

Naturally, the special state q1 ∈ R could be avoided in the definition of
autopoietic automata. The machine could jump directly to the start state
q0 ∈ Q−R in transducer mode. In any case, the effect is that no information can be
carried over directly from reproducing mode to transducer mode, as the latter
always starts with the same state q0. This contrasts the opposite transition from
transducer mode to reproducing mode, where the initial state in reproducing mode
depends on the previous state in transducer mode.

It is possible that the new automaton A′ is able to read from a stream over a
larger alphabet Σ′. The reason is the binary encoding of δ on the input tape. It
allows a potentially infinite alphabet, as the symbol σi is just encoded by i (in unary
representation). Naturally, as the input tape has a finite length, at any time only a
constant number of symbols are allowed in the input stream.

2 The Autopoietic Automaton

Here, we present the computational model in a more formal manner, more or less
as presented in Ref. [5].

Definition. An autopoietic automaton is a six-tuple A = (Σ, Q, R, q0, q1, δ),
where

– Σ with {0, 1} ⊆ Σ, is the finite or infinite input alphabet. The symbols of Σ are
read from the input port and written to the output port, one symbol at a time.
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The symbols of Σ are represented by binary encodings on the finite length input
and output tapes.

– Q is the finite or infinite set of states.

– R ⊂ Q with Q 6= ∅ is the distinguished finite set of reproducing states.

– q0 ∈ Q − R is the initial state in which the computation of A starts with the
input and output heads on the leftmost cell of their respective tape.

– q1 ∈ R is the final reproducing state. Entering q1 finishes a reproducing mode
of A and starts a transducer stage of A and A’s direct offspring A′.

The offspring A′ starts with the previous output tape of A as its input tape
and with an empty output tape. A continues with its previous input tape as its
current input tape and an empty output tape. Both machines use the transition
relation δ encoded by their current input tape. They start with start state q0

with the head positioned on the leftmost input tape. In general, both machine
receive their own new input stream through their input port.

When focusing on a lineage, we can assume that there is just one input stream
and the successor machine keeps reading where the predecessor machine has
stopped, because each autopoietic automaton in the lineage only reads a finite
string.

– δ ⊆ Σ ∪ {ε} ×Q× (Σ ∪ {ε})×Q×D is the transition relation. The transition
relation determines the possible actions for any given symbol and state. An
action consist of a new symbol, a new state and a direction. In transducer
mode, the given symbol is read from the input port and the new symbol is
written onto the output port. In reproducing mode, the given symbol is read
from the input tape, and the new symbol is added at the right end of the output
tape. The head on the input tape is moved in the given direction of D. Possible
values are d0 (left), d1 (no move), and d2 (right). A further value d3 of D is
not a real direction, but indicates that the current transition belongs to the
transducer mode. The value ε represents an empty word indicating that no
symbol is read or written.

For deterministic machines, the transition relation is a partial transition function
from Σ ∪ {ε} ×Q to (Σ ∪ {ε})×Q×D. Furthermore, if δ(ε, q) is defined, then
δ(σ, q) is undefined for every σ ∈ Σ.

– The inscription of the input tape at any time is a sequence (in any order) of
encodings of the transitions of δ. The transition (σi, qj , σk, q`, dm) is encoded as
10i+110j+110k+110`+110m+11. The empty word is encoded by the empty string.

– We might require states of R to have odd index and states of Q − R to have
even index. Then j being odd would require ` to be odd too.

We also use the notion of an interactive Turing machine, as defined by Refs. [1,
2]. This is a nondeterministic Turing machine with one work tape, reading its input
a symbol at a time from an input port connected to an input stream and writing its
output a symbol at a time onto an output port creating an output stream. Thus the
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input and output mechanisms are the same as for an autopoietic automaton. Hence,
the differences to typical Turing machine definitions are the following.

– Not only is the output produced from left to right (usually referred to as having
a one-way output tape), but also the input is read from left to right (whereas
typically, on a read-only input tape the head can move arbitrarily).

– The input and output streams are of infinite lengths.

– There is just one tape. Typically, in addition to the input and output tapes
(which are here replaced by input and output streams), some finite number of
work tapes is allowed.

– Interactive Turing machines are defined (by default) as nondeterministic.

Here, we actually use deterministic interactive Turing machines. They are
defined exactly as (nondeterministic) interactive Turing machines, except that they
are deterministic, i.e., the transition relation δ is a partial function defined on Σ×Q.

3 The Theorems

Recall that a lineage A = A1, A2, . . . of autopoietic automata is a path in the
tree defined by the offspring of a single autopoietic automaton A1. When talking
about a lineage of automata, we require Ai+1 to be a new offspring of Ai rather than
the replica of Ai for every i. We also assume that there is just one input stream.
The offspring automaton keeps reading from the position reached by the parent, even
though the input stream contains symbols from larger and larger alphabets as it
reaches parts intended for later automata Ai. Thus we have just one such essential
lineage for every input stream, as our automata are deterministic.

Later, we will also consider arbitrary trees obtained even in the deterministic
case, by not focusing on one lineage and considering new input streams after each
branching.

The following two theorems are proved exactly as in the original version[5] where
both the automaton and the Turing machine are nondeterministic.

Theorem 3.1. A lineage A = A1, A2, . . . of deterministic autopoietic
automata can be simulated by a deterministic interactive Turing machine.

Proof.
The interactive Turing machine can easily maintain copies of the input and output

tapes of the simulated autopoietic automaton at all times. Thus it can always consult
the copy of the input tape to determine the next simulation step.

Naturally, the Turing machine has fixed input and output alphabets. Therefore,
for the theorem to hold, we have to use an appropriate notion of simulation. The
interactive Turing machine receives an input stream that consists of a sequence of
binary encodings of the symbols on the input stream of the simulated autopoietic
automaton. Likewise it produces an output stream encoding the output stream of the
simulated automaton. Simulation means step by step modeling of the computation of
the autopoietic automaton by using a special encoding to represent the current state
on a work tape.

Further details of the proof can be copied from the nondeterministic version[5].
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Theorem 3.2. Any deterministic interactive Turing machine M can be
simulated by a lineage of deterministic autopoietic automata.

Proof.
Without loss of generality, we assume that M has just one tape (infinite to the

right only) and uses the alphabet ΣT = {0, 1, b}, since such a machine has the same
computational power as any multi-tape machine. The automaton Ai handles the
simulation as long as the Turing machine M only uses i tape cells. A state of Ai

not only encodes the corresponding state of M , but also the tape inscription (of fixed
length i) and the head position of M .

Whenever the Turing machine uses a new tape cell, the simulating automaton
switches to reproducing mode. It copies the part of the automaton involving the
states of R (handling reproduction). The part involving the states of Q−R (handling
transducer steps) is roughly tripled in length, corresponding to the additional tape
cell containing 0, 1, or b (blank). Also the few additional transitions corresponding
to the head being on the new cell are easily handled.

As the details are tedious, we illustrate the functioning of this simulating lineage
of autopoietic automata by an example. Assume, the simulated interactive Turing
machine seeing an input symbol σ ∈ Σ and a tape symbol τ ∈ ΣT in state q, outputs
σ′, writes τ ′ on the work tape, goes to state q′, and moves the head on the work tape
to the right. Then for every yz ∈ Σi−1

T , there are corresponding states code(y, q, τ, z)
(indicating a tape inscription yτz with the head observing the symbol τ located
between y and z) and transitions δ(σ, code(y, q, τ, z)) = (σ′, code(y, τ ′, q′, z), d2) of
the simulating automaton Ai.

In reproducing mode the corresponding 5-tuple (σ, code(y, q, τ, z), σ′, code(y, τ ′,
q′, z), d2) has to be replaced by the three 5-tuples (σ, code(y, q, τ, zθ), σ′, code(y, τ ′,
q′, zθ), d2) for θ ∈ ΣT = {0, 1, b}. In addition commands for handling an observed
symbol at position i+1 have to be produced. Furthermore, commands for interrupting
the simulation have to be modified by replacing the states code(x, q) with x ∈ Σi

T by
the three options, code(x0, q), code(x1, q), and code(xb, q).

Again, some additional details can be found in the proof for the nondeterministic
version[5].

One important step has been forgotten in Ref. [5]. It could be avoided by omitting
the unmotivated restriction in the definition of autopoietic automata requiring them
to always start the transducer mode with the same state q0 ∈ Q − R. With this
restriction, the simulation of the interactive Turing machine using i + 1 tape cells
by Ai+1 cannot just continue where the simulation of the interactive Turing machine
using i tape cells by Ai has stopped, because the state of the interactive Turing
machine has been lost.

This problem can be solved though, because the simulated state q can be carried
over to the reproducing phase. Then the first thing is to write a transition on the
output tape requiring to jump from state q0 to q without reading or writing anything.
¤

More interesting is the next theorem, again corresponding to the following
nondeterministic version in Ref. [5]. There exists an autopoietic automaton which,
when working in nondeterministic input mode, generates a descendant tree
containing all autopoietic automata. Here, “working in nondeterministic input
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mode” refers to allowing various inputs to create various children of a single
autopoietic automaton.

Naturally, one cannot produce all autopoietic automata on one path, because
many automata (on some or all input streams) never switch to reproducing mode.
Thus, whenever any such automaton is produced, the reproduction stops on that
path.

In the nondeterministic case, there is a trivial proof using the full power of
nondeterminism of an autopoietic automaton to write anything on its output tape
during reproducing mode. Wiedermann[5] does not explain why he chooses a more
explicit construction. In our case, using deterministic autopoietic automata, the
simple construction is not an option, and we have to be much more explicit.

At a first glance, one might want to impose the nice property that all the
automata of the tree only write legal encodings of autopoietic automata onto their
output tape. In particular, one would want to disallow writing an infinite output
sequence. But naturally, such strong requirements cannot be enforced. If we want to
produce all autopoietic automata, we have also to produce those that write various
kinds of garbage onto their output tape, including any computable infinite output
sequence.

What can be obtained is a tree T of autopoietic automata with the following
properties.

– There is an easily identifiable subtree L of the vertices of T such that every
autopoietic automaton is represented by a child of a node of L.

– All the children of nodes of L represent autopoietic automata.

– All the nodes in L are well behaved automata, meaning that for all input
sequences, they only write proper encodings of autopoietic automata onto
their output tapes.

– In particular, the automata in L finish their reproducing mode after finitely
many steps.

Without claiming such properties, Wiedermann’s tree of automata has these
properties and ours will have them too. In addition, we would like our automata in
L to be deterministic. But this seems too difficult a goal.

We slightly stretch the definition of a deterministic automaton by requiring the
partial function property of the transition relation δ not for all states, but only for
those reachable from the start state. An automaton is essentially deterministic if
from all reachable configurations at most one move is possible.

The proof for essentially deterministic automata is much more difficult than the
proof for nondeterministic automata, because the various autopoietic automata have
to be created in a more systematic way. We cannot use nondeterminism to help
producing them. Still, even in our deterministic model, a whole tree of automata is
created depending on the input sequences. Thus, nondeterminism is still present in
some sense through the variation of the input stream. As mentioned above, we refer
to this as working in nondeterministic input mode[5].

But during the reproducing mode, the input stream is not touched, allowing just
one new automaton to be produced during any reproducing phase of a deterministic



Martin Fürer: Deterministic autopoietic automata 611

autopoietic automaton. Nevertheless, different inputs allow to start the reproducing
phase in different states and thus producing different offspring.

A fundamental requirement of autopoietic automata is that they have to act
according to the program stored on their input tape. Actually, the proof of the
nondeterministic case[5] does not explicitly say how this task is handled. But in that
version, nondeterminism (used during the reproducing mode) is very helpful for the
creation of any possible autopoietic automaton as an offspring.

Theorem 3.3. There exists a tree T of autopoietic automata, where all
autopoietic automata occur as children of the nodes of a subtree L consisting of
essentially deterministic autopoietic automata.

Proof.
We describe a type of essentially deterministic autopoietic automaton A,

producing in a systematic way all autopoietic automata. Hereby, the automata of
type A itself evolve over time, while always exhibiting roughly the same
functionality. More precisely, the reachable part of all automata in L are identical
(of type A). In a systematic way, non reachable parts are added in order to make
them reachable later when leaving L.

Every autopoietic automaton acts according to its transition function δ encoded
by a sequence of 5-tuples on its input tape. We want to slowly produce new automata
without yet affecting their operation. For this purpose, we partition the states of A

into active and passive states. Both sets are also partitioned according to transducer
mode and reproducing mode.

The active states govern the operation of A, while the passive states have no
such effect. This can be achieved, by simply making all the passive states inaccessible
from the start state. The 5-tuples representing the transitions of δ with active states
are stored in a block after the block of 5-tuples involving the passive states. The
beginning of the active block is marked by the first transition involving the start
state q0.

The passive states are q3 up to some qk, where k grows over time. The active
states are q0, q1 and a finite set of states with indices greater than k. Only the active
states are reachable from q0. By keeping the indices of the active states hight, they
don’t interfere with a systematic production of the passive part.

The systematic composition of new automata stops upon reading a symbol σ0

from the input port. At that time, the automaton switches to reproducing mode in
order to create the automaton encoded by the passive states. For that purpose, the
producing automaton basically copies the passive block to the output tape, but it
decreases every state index by 2. It does not copy the active block, thus stopping
the systematic production of automata. Instead, it just enters state q1 to finish its
reproduction mode.

When reading any symbol other than σ0 the producing autopoietic automaton
enters reproducing mode to continue the systematic production of all possible passive
parts in order to create all automata. The passive part is copied to the output tape
with some minor adjustment. The active part is made more powerful as described
below and all the indices of active states, except 0 and 1 are increased by 1 to create
space for a new passive state.

The minor adjustments to the passive part are as follows. When reading σ1, then
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the new passive instruction (σ0, q2, σ0, q2, 0) is written onto the output tape, before
the other instructions are copied. When reading σj+2 for j > 0, then the j-th index in
the instruction sequence is increased by 1 (or cycled through its finitely many possible
values), while otherwise, the passive part is just copied.

The modification of the active part during the reproduction process is more
complicated. If so far, the active part is able to read symbols σ0, . . . σj+1, then the
ability to read and properly process the symbol σj+2 is added. A constant number of
new instructions containing a fixed number of new states is sufficient to do this goal.

Here are a few more details. The new instructions can be produced, because they
are patterned after the previous such addition. The new commands are for reading
symbol σj+2, entering a new state, walking the head on the input tape to the next
index, and entering a state that had been added in the previous round. From this
state, further head movements are performed, hereby reaching the j-th index in the
sequence of 5-tuples (machine code) in order to increase it during the copying process.

Wiedermann[5] has used the same two operations of increasing the number of
instructions and increasing some indices in the instruction sequence. His
nondeterministic automaton could do such things at any time, while our
deterministic automaton needs the flexibility of the input to do such operations at
input determined locations. In any case, the deterministic autopoietic automaton A

systematically produces all possible autopoietic automata.
The problem of sustainable evolution asks for any autopoietic automaton and

any infinite sequence of inputs whether there is an infinite lineage generated by that
automaton on that input sequence. To have a precise question, one would have to
restrict attention to (in some given system) definable infinite sequences of inputs. But
it is even undecidable for a fixed sequence. Except for avoiding the accidentally wrong
direction, the result is shown the same way as for nondeterministic automata[5].

Theorem 3.4. The problem of sustainable evolution for deterministic
autopoietic automata is undecidable even for the all 0 input stream.

Proof.
By Theorem 3.2, every deterministic interactive Turing machine can be simulated

by a lineage of autopoietic automata. This implies that the halting problem for Turing
machines can be reduced to the question whether an automaton creates an infinite
lineage as follows. A lineage is built that simulates the given Turing machine with
the empty input. Every automaton in the lineage creates a single offspring after a
constant number of simulation steps. This offspring continues the simulation. The
lineage can be defined such that it stops as soon as the simulation stops. This way
the lineage is finite if and only if the Turing machine halts.

4 Conclusion

We have shown that autopoietic automata need not be nondeterministic to
have the nice properties shown in Ref. [5]. Only the construction of an automaton
generating all automata gets significantly more complicated in the deterministic
setting.
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Karhumäki J, Maurer HA, Paun G, Rozenberg G, eds. Theory is Forever, Essays Dedicated to

Arto Salomaa on the Occasion of his 70th Birthday. LNCS 3113, Springer. 2004. 268–281.

http://springerlink.metapress.com/openurl.asp?genre=article&amp;issn=0302-9743&amp;

volume=3113&amp;spage=268.

[4] Verbaan P.R.A. The Computational Complexity of Evolving Systems[Ph.D. thesis].

Proefschrift Universiteit Utrecht. 2006.

http://dspace.library.uu.nl/bitstream/handle/1874/7653/full.pdf?sequence=14.

[5] Wiedermann J. Autopoietic automata: Complexity issues in offspring-producing evolving

processes. Theor. Comput. Sci. 2007, 383(2-3): 260–269.

[6] Wiedermann J, van Leeuwen J. How we think of computing today. In: Beckmann A,
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