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Abstract The ability to perform spatial tasks is crucial for everyday life and of great

importance to cognitive agents such as humans, animals, and autonomous robots. A

common artificial intelligence approach to accomplish spatial tasks is to represent spatial

configurations and tasks in form of detailed knowledge about various aspects of space and

time. Suitable algorithms then use the representations to compute solutions to spatial

problems. In comparison, natural embodied and situated agents often solve spatial tasks

without detailed knowledge about geometric, topological, or mechanical laws; they directly

relate actions to effects that are due to spatio-temporal affordances in their bodies and

environments. Accordingly, we propose a paradigm that makes the spatio-temporal

substrate an integral part of the engine that drives spatial problem solving. We argue that

spatial and temporal structures in body and environment can substantially support (and

even replace) reasoning effort in computational processes: physical manipulation and

perception in spatial environments substitute formal computation. While the approach is

well known – for example, we employ diagrams as spatial substrate for geometric problem

solving and maps for wayfinding – the underlying principle has not been systematically

investigated or formally analyzed as a paradigm of cognitive processing. Topology,

distance, and orientation constraints are all integrated and interdependent in truly 2- or

3-dimensional space. Exploiting this fact may not only help overcome the need for

acquiring detailed knowledge about the interrelationships between different aspects of

space; it also can point to a way of avoiding exploding computational complexity that

occurs when we deal with these aspects of space in complex real-world scenarios. Our

approach employs affordance-based object-level problem solving to complement

knowledge-level formal approaches. We will assess strengths and weaknesses of the new

cognitive systems paradigm.
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1 Introduction

This work focuses on a special class of real-world problems that is of particular

significance for cognitive agents such as humans, animals, and autonomous robots:

spatial and temporal problems in physical environments. Spatio-temporal problems

share basic structural properties that have been intensively studied over the past

twenty years[12] and are quite well understood today on the information processing

level. Despite this similarity, the best solutions to different types of spatio-temporal

problems employ a considerable variety of approaches and tools. These tools include

abstract computational algorithms to solve geometric problems and concrete physical

tools like screwdrivers and pliers that may serve to exploit spatial affordances.

Some of the best approaches for human spatial problem solving make heavy use

of the physical object level rather than solving problems entirely on the abstract

information level. For example, when a cognitive agent instantiates the route

instruction turn left at the next intersection, he, she, or it does not require a detailed

mental representation of the environment; it also does not need to know and specify

a precise turning angle before being able to follow the instruction. Rather, the

instruction provides a coarse guide line and permits the agent to move in an

unfamiliar environment by perception-based route following and to select a ‘left’

route from several alternatives that it may perceive in the vicinity of the

intersection. The information about the turning angle is implicitly present in the

spatial configuration that consists of the pose of the agent in relation to the route;

the instruction can be followed by means of a short perception-action loop; this does

not require that the turning angle ever be made explicit in a cognitive

representation.

In other situations cognitive agents may prefer to have detailed spatial

knowledge before starting a spatial action as it may be easier to solve the problem

by reasoning than by spatial interaction. For example, when I lost my keys that I

last used during a trip some while ago, it may be worthwhile to reconstruct the

preceding sequence of events on the trip mentally; directly exploring the

environment perceptually might also work, but it could be quite difficult or

laborious, in the particular situation. Current robotic approaches predominately

rely on detailed knowledge about environments and their properties represented in

computer memory [e.g. Ref. [35]]. Embodied and situated cognitive agents are

capable of operating both, on the information processing and on the physical object

level and of combining both levels in smart ways. Perception and action operations

serve as interfaces between the two levels; a memory serves to make information

about the environment available to information processing in the absence of

perceptual information and to store results of information processing for carrying

out actions.

The classical model of cognition as an information processing activity that

takes place entirely in the brain (respectively computer) is only one way of

performing cognitive tasks[36]; it presupposes that a real-world problem has been

comprehensively abstracted into a pure information-processing task. This

assumption may be appropriate for routine tasks for which all necessary information

is provided and which can be performed according to pre-existing standard patterns;

for novel problems, however, a considerable part of the problem solving effort goes
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into finding the most appropriate approach, suitable tools, and identifying

the information needed to solve the problems; in many cases, a quite specific

approach may be more appropriate and more efficient than a general approach.

Specific approaches take into account particular features of the problem domain to a

larger extent than general approaches that tend to abstract from specific

characteristics. In general, cognitive agents have a considerable variety of

approaches and tools they can use to attempt solving a given spatial problem. In

real-world cognitive problem solving we are frequently confronted with problems

where the identification of a suitable approach is a far more difficult task than the

computation of a solution on the basis of a given approach; once an appropriate

approach has been selected, the problem solving procedure itself may be

straightforward.

Thus, we need to address the question of how to find a suitable approach to

solve a given spatial problem. In general, finding a suitable approach to solve a

novel problem is one of the most interesting and challenging problems for cognitive

agents. For the specific domain of spatio-temporal problems, we have reasons to

believe that the time is ripe to tackle this challenge; our belief is rooted in the fact

that today we have a much better understanding of the properties of spatial and

temporal relations and structures than twenty years ago. There is even hope that

once the spatio-temporal reasoning challenges are tackled, we will be able to use

the resulting approaches for dealing with non-spatial problems as well; this hope is

rooted in the insight that human cognitive agents understand many problems through

analogies[17] and metaphors[22]; thus, non-spatial problems may be solved by mapping

them onto spatially constrained structures which may be easier to solve; this would

be in contrast to generalizing spatial approaches to unconstrained domains where we

would employ highly general approaches.

The spatial (and to a lesser extent the temporal) domain is particularly well

accessible to autonomous mobile agents with visual, haptic, and auditory perception

and memory as well as with moving, turning, and grasping capabilities. These

capabilities enable the agents to flexibly interact with their environments;

specifically, they can modify the parts and aspects of the environment they perceive

and they can modify spatial configurations in the environment through their

actions. In robotics, sensory capabilities have been successfully employed to avoid

obstacles in similar ways as animals by implementing reflexes that do not require

representations in the brain[7,33]. These capabilities have not been systematically

investigated and exploited for cognitive systems architectures beyond obstacle

avoidance, so far. In our research, we develop proof of concept implementations and

demonstrations for solving spatio-temporal problems strategically by making use of

spatio-temporal affordances.

A main research hypothesis for studying physical operations and processes in

spatial and temporal form in comparison to formal or computational structures is

that spatial and temporal structures in the body and the environment can

substantially support (and even replace) reasoning effort in computational

processes. A major observation we can make when we compare the use of different

forms of representation is that the processing structures of problem solving processes

differ see Ref. [23] and facilitate different processing mechanisms[32]. Structures that
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resemble the problem domain may result in a lower complexity class than structurally

deviating representations as they can make direct use of the structural properties

without a need for describing them[25].

A main objective of our work is to explore the scope of application of this

principle. This will involve a representation-theoretic assessment of representational

equivalence and similarity, both on the level of result and process equivalence (or

similarity). We develop a framework to relate physical actions and perception

activities to information processing activities, in order to assess the trade-off

between physical and mental operations. Such a framework has long been missing in

the debate surrounding diagrammatic vs. analytic reasoning. Our approach builds

on well-established paradigms from cognitive science (e.g. ‘knowledge representation

theory’[28], ‘affordances’[18], ‘knowledge in the world’[27], ‘conceptual

neighborhood’[10]) and on research carried out in the collaborative research center

SFB/TR 8 Spatial Cognition at the University of Bremen over the past twelve years.

2 Background and Motivation

AI research initially was concerned exclusively with mental aspects of cognitive

systems, specifically with operations and processes that take place in the brain

(respectively computer)[9]. Advances in robotics and knowledge representation have

extended the scope of AI research to model perception and action processes, the

(physical) bodies of agents, and the agents’ spatial environments [e.g. Ref. [8]]. The

rather general structures of abstract formalisms used for knowledge representation

in computers allow describing arbitrary aspects of bodies and environments in detail

and to reason about them, including spatial and temporal aspects.

While abstract reasoning about the world can be considered the most advanced

level of cognitive ability, this ability requires a comprehensive understanding of

mechanisms responsible for the behavior of bodies and environments. But many

natural cognitive agents (including adults, children, and animals) lack a detailed

understanding of their environments and still are able to interact with them rather

intelligently. For example, they may be able to open and close doors in a

goal-directed fashion without understanding the mechanisms of doors or locks on a

functional level. This suggests that knowledge-based reasoning may not be the only

way to implementing problem solving in cognitive systems.

In fact, alternative models of perceiving and moving goal-oriented autonomous

systems have been proposed in biocybernetics and AI research to model aspects of

cognitive agents e.g. Refs. [4,5,29]. These models implement perceptual and

cognitive mechanisms that follow physical laws rather than formal representations

that follow the laws of logics. Such systems are capable of reacting to their

environments intelligently without encoding knowledge about the mechanisms

behind the actions and without the associated computational cost.

In our spatial cognition research we have investigated the potential of

qualitative spatial relations, of structure-preserving schematic maps, and of the role

of intrinsically spatial structures for spatial reasoning and spatial problem

solving[11,13,31]. A main result of this work is that structure-preserving

representations can make direct use of spatial relations (e.g. spatial neighborhood,

conceptual neighborhood, spatial order, and spatial orientation); without
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structure-preservation, these relations would have to be derived through

knowledge-based processes in more abstract formal representations. Thus, spatial

calculi that exploit structure-preserving representations can avoid the necessity of

performing certain computational derivations.

Spatial cognition research also has been concerned with issues of resolution and

granularity, both on a physical and on a conceptual level[20,15,26,30]. In knowledge

representation, we must deal with the issue of level of detail on which we represent

objects and configurations in order to solve certain problems. The finer the level

of representation, the more problems we will be able to solve, in principle. But this

comes at a cost: the more details we have to deal with, the more computation we have

to invest. The corresponding problem spaces often suffer from combinatorial explosion

that prevents tractability. Cognitive processes frequently process information from

coarse to fine rather than from fine to coarse. These processes are directly supported

by physical and spatial properties of their environments. For example, in vision, coarse

corresponds to distant and fine corresponds to close-up; the same sensor adapts its

‘representation’ of the world simply by physically moving towards an object or away

from it.

The field of diagrammatic reasoning [2,6,19] is concerned with problem solving by

means of diagrams, a special form of spatial representations. A key issue here is the

comparison between formal and diagrammatic representations and reasoning

processes for the same underlying problems. Of particular interest is the equivalence

/ similarity between the reasoning procedure operating on the corresponding formal

structure and the reasoning procedure operating on the spatial structure. Process

equivalence has been mainly studied in comparing different formal systems[1].

Comparing processes operating on physical spatial structures with processes

operating on formal structures poses an interesting challenge, as we will require a

reference framework that includes information processing and re-configuration of

spatial configurations.

The background of this work has been discussed in more detail in Ref. [13].

3 Approach

In our present research, we go an important step beyond previous work and

introduce a paradigm shift: we do not only aim at preserving spatial structure in

representations, but we also make use of identity preservation; in other words, we

represent spatial objects and configurations by themselves or by physical spatial

models of themselves, rather than by abstract representations. This has a number of

advantages: we can avoid loss of information due to early representational

commitments and may be able to integrate several representations in the course of

the problem solving process: we do not have to decide beforehand which aspects of

the world to represent in a certain way and which aspects to abstract from; this can

be decided partly during the problem solving process. During this process,

additional contextual information may become available that can guide the choice of

the specific representation to be used.

Perhaps more importantly, objects and configurations frequently are aggregated

in a natural and meaningful way; for example, a chair may consist of a seat, several

legs, and a back; if I move one component of a chair, I automatically (and
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simultaneously!) move the connected components and the entire chair, and vice

versa. Thus, physical as well as conceptual relations can be manipulated by physical

actions of a cognitive agent. This feature is not intrinsically available in abstract

representations where computational derivations are required to infer such relations.

Thus, manipulability of spatial structures is not merely a property of physical

objects; it is an important feature of cognitive processing. Therefore we will include

manipulation of spatial relations as a central component of our cognitive

architecture.

Spatial manipulation is important for cognitive agents in at least two ways: (1)

for active perception[3] and (2) for spatial problem solving. Active perception refers

to attention processes and to perceptual response patterns in response to physical

stimulation of the environment[23]. It also can be used to change an agent’s egocentric

spatial reference frame in order to obtain a more suitable perspective on a given spatial

configuration for solving a problem. The following example presents the basic idea.

4. Example

4.1 Creating a suitable spatial reference frame

Suppose an agent’s task is to determine visually (without a depth sensor) whether

a tree is on its side of a fence or on the other side (Fig. 1(a)); a classical image analysis

approach could use depth clues in the 2D projection of the 3D configuration to infer

whether fence or tree is closer to the agent. Problem: the essential depth dimension

is only weakly represented in this 2D projection. Spatial approach: Select a spatial

reference frame that highlights the essential dimension; this is achieved by relocating

the agent such that the essential dimension is projected prominently onto the image

of the configuration (Fig. 1(b)); now the task can be solved by considering only

one dimension on the image, as the previous depth dimension has been mapped to

the perceptually better accessible width dimension by spatial transformation in the

problem domain.

Figure 1. (a) Hard visuo-spatial decision problem, (b) The same problem presented in a

suitable spatial reference frame.

This specific example employs physical action only to modify perceptual

acquisition of information from the environment without changing the 3-dimensional
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scene of interest. Note, however, that the 2-dimensional projection of the scene

(that is typically the only information available for visual scene analysis) has

considerably changed. Other kinds of manipulations would actually change the

physical scene of interest in order to simplify or solve the spatial problem at hand.

We focus on spatial and spatio-temporal tasks that are directly accessible by

perception and allow for manipulation by physical action. This is the domain we

understand best in terms of computational structures; we have well established and

universally accepted reference systems to describe and compute spatial and

temporal relations. The limitation to spatial tasks may turn out less severe as it

may seem initially: numerous non-spatial problems can be transformed into

equivalent spatial problems where the spatial structure may support the problem

solving process. Human problem solvers make use of problem spatialization for

example when visualizing a linguistically specified problem in form of a diagram in

order to better grasp the problem and/or to be better able to formalize it for formal

problem solving. Depending on the spatial representation chosen for the diagram, it

may be easier or harder to grasp or formalize the problem.

The main hypothesis of our approach is that the ‘intelligence’ of cognitive

systems is grounded not only in specific abstract problem solving approaches, but

also – and perhaps more importantly – in the capability of recognizing characteristic

problem structures and of selecting particularly promising problem solving

approaches for given tasks. Formal representations generally do not facilitate the

recognition of such structures due to a bias inherent in the abstraction. This is

where mild abstraction can help as it abstracts only from few aspects while

preserving important structural properties.

The insight that spatial relations and physical operations are strongly

connected to cognitive processing will lead to a different division of labor between

the perceptual, the representational, the computational, and the locomotive parts of

cognitive interaction than the one we have been pursuing in artificial intelligence:

rather than putting all the ‘intelligence’ of the system into the computer, the

proposed approach aims at putting more intelligence into the interactions between

components and structures of a cognitive system as well as into the structure of the

problem representation. More specifically, we aim at exploiting intrinsic structures

of space and time to reduce the complexity of computation.

We argue that a flexible assignment of physical and computational resources for

cognitive problem solving is closer to natural cognitive systems than the almost

exclusively computational approach; for example, when we as cognitive agents

search for certain objects in our environment, we have at least two different

strategies at our disposal: we can represent the object in our mind and try to

imagine and mentally reconstruct where it could or should be – this would

correspond to the classical AI approach; or we can visually search for the object in

our spatial environment. Which approach is better (or more promising) depends on

a variety of factors including memory and physical effort required; frequently a

clever combination of both approaches will be best.

We plan to develop and implement a proof of concept for the proposed

approach to spatial problem solving through simulations of the perception and

manipulation processes as well as through physical agent models, e.g. as generated
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by a 3D printer[14]. The research is primarily conceived as basic research in

cognitive systems engineering: we want to identify and relate an inventory of

cognitive principles and ways of combining them to obtain cognitive performance in

spatio-temporal domains.

This project brings together perspectives from a variety of disciplines: (1) the

cognitive systems perspective, which addresses the cognitive architecture and

trade-offs between properties of physical structures and properties of their

descriptions; (2) the formal perspective, which characterizes and analyzes the

resulting structures and operations; (3) the engineering perspective, which

constructs and explores varieties of cognitive system configurations; and (4) the

psychological-empirical perspective, which relates the effects of different system

behaviors to those of natural agents. In the long term, we see potential technical

applications of physically supported cognitive configurations for example in the

development of future intelligent materials (e.g. ‘smart skin’ where spatially

distributed computation is required that needs to be minimized with respect to

computation cycles and energy consumption and more robust and adaptable

artificial agents, which can deal with unknown environments)[21,34].

For this project, we can build on extensive research on spatial and temporal

relations, their representation in memory, and with qualitative spatial reasoning in the

framework of international interdisciplinary spatial cognition research. Naturally, the

proposed approach will not be as broadly applicable as some of the approaches we have

pursued in classical AI research as it focuses on spatial and temporal structures; but

the approach promises to discover broadly applicable cognitive engineering principles

for the design of tomorrow’s intelligent agents. Our philosophy is to understand

and exploit pertinent features of space and time as modality-specific properties of

cognitive systems that enable powerful specialized approaches in the specific domain

of space and time. Since space and time are most basic for perception and action and

ubiquitous in cognitive processing, we believe that understanding and utilizing their

specific structures will be particularly beneficial.

Foundations of the approach have been outlined in more detail in Ref. [16]. A

substantially extended description of this work with numerous examples has been

published as Strong spatial cognition in the Conference on Spatial Information Theory

2015[37].
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