
Int J Software Informatics, Volume 10, Issue 4 (2016), pp. 000–000 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c⃝2016 by ISCAS. All rights reserved. Tel: +86-10-62661048

DOI: 10.21655/ijsi.1673-7288.00234

Formal Verification of ‘Programming to Interfaces’

Programs

Jianhua Zhao and Xuandong Li

(Department of Computer Science and Technology, Nanjing University, Nanjing 210023,

P.R. China)

Abstract This paper presents a formal approach to specify and verify object-oriented

programs written in the ‘programming to interfaces’ paradigm. In this approach, besides

the methods to be invoked by its clients, an interface also declares a set of abstract and

polymorphic function/predicate symbols, together with a set of constraints about these

symbols. The methods declared in this interface are specified using these abstract symbols.

A class implementing this interface can give its own definitions to the abstract symbols,

as long as all the constraints are satisfied. This class implements all the methods declared in

the interface such that the method specification declared in the interface are satisfied w.r.t.

the function symbol definitions in this class.

Based on the constraints about the abstract symbols, client code using the interfaces can

be specified and verified precisely without knowing what classes implement the interfaces.

Given more information about the implementing classes, the specifications of the client code

can be specialized into more precise ones without re-verifying the client code.

Key words: code verification; object oriented; interface; polymorphism

Zhao JH, Li XD. Formal verification of ‘programming to interfaces’ programs. Int J

Software Informatics, Vol.10, No.4 (2016): 000–000. http://www.ijsi.org/1673-7288/10/

234.htm

1 Introduction

One of the important programming paradigms of OO programming is

‘programming to interfaces’. Programmers can use an interface without knowing the

details of its implementations. This programming paradigm decouples the code

using the interfaces and the implementations of these interfaces. It also makes

programs more flexible, because programmers can make a piece of client code using

an interface fulfill different functional features by implementing the interface

differently, without modifying the client code. So this paradigm is widely used, and

supported by many modern OO programming languages.

There are already a number of research works on how to deal with inheritance

and method overriding. To avoid re-verification of the client code using interfaces,

researchers deal with method dynamic binding based on the Liskov Substitution

Principle (LSP) sub-typing rule[1]. Roughly speaking, the overriding method should

Corresponding author: Jianhua Zhao, Email: zhaojh@nju.edu.cn
Received 2016-07-30; Revised 2016-12-12; Accepted 2017-01-07.



2 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

have a weaker precondition and a stronger post-condition. However, such

approaches are not suitable for the ‘programming to interfaces’ paradigm because of

two reasons.

– An interface declares no member variable. Those approaches can not specify

methods precisely without referring to member variables.

– The behavioral sub-typing is too restrictive for the ‘programming to interfaces’

paradigm. In many cases, different implementations of an interface should

behave differently such that the client code using the interface may have

different functional features as expected.

Now we take the interface java.lang.Comparable in the standard package of

Java as an example to show how ‘programming-to-interface’ paradigm should be

treated. The interface Comparable has one method CompareTo, which compares an

object with this. According to the Java documentation, a class implementing

Comparable must ensure that the following formulas hold for any x, y, z.

sgn(x→compareTo(y)) = −sgn(y→compareTo(x));

(x→compareTo(y) > 0 ∧ y→compareTo(z) > 0)⇒ x→compareTo(z) > 0;

(x→compareTo(y) = 0)⇒ (sgn(x→compareTo(z)) = sgn(y→compareTo(z))).

Here sgn is a function which yields −1, 0 and +1 respectively when the parameter is

less than, equal to or greater than 0. The above requirements mean that the method

compareTo induces a total order over the objects.

The following code assigns the ‘smaller’ one of the objects o1, o2 to s.

if (o1→compareTo(o2)>0) s = o2; else s = o1;

To support the ‘programming to interfaces’ paradigm, this piece of client code using

Comparable must be specified and verified without referring to the classes

implementing Comparable. This is critical because programmers should be able to

add a new implementation of Comparable without having to re-verify the above

client code. Further more, the specification of the client code must be precise and

flexible enough, such that programmers can conclude that their new implementation

makes the client code fulfill the functional features as expected. For example,

suppose that Comparable is implemented by a class Point for points in the X-Y

plate. The method compareTo in Point compares two points by their distances to

the original point (0, 0). Programmers should be able to conclude that if o1 and o2

refer to two Point objects, the above client code assigns s with the one closer to the

original point without re-verifying the code.

In this paper, an approach is presented to specify and verify programs in the

‘programming to interfaces’ paradigm.

– Abstract specifications of interface methods. The interface methods are

specified through a set of polymorphic function/predicate symbols and their

constraints declared in the interface.

– A flexible implementation relation between interfaces and classes.

To implement an interface, a class must define all the function symbols and



Jianhua Zhao, et al.: Formal verification of ... 3

implement all the methods declared in the interface. Two requirements are (1)

the function symbol definitions must satisfy the constraints declared in the

interface; (2) the method implementations must satisfy the specifications

declared in the interface w.r.t. the symbol definitions in this class.

– Precise specification and verification of client codes under the

open-world assumption. Under the open-world assumption, the verification

of client code using interfaces can not assume what classes implement the

interfaces. The advantage is that programmers can add new implementing

classes without re-verifying the client code. Based on the constraints declared

in the interface, client code using interfaces can be verified without knowledge

about the implementing classes. Furthermore, when more information about

the runtime classes is given, the specifications of the client code can be

specialized to more precise ones without re-verification.

The rest part of this paper is organized as follows. Section 2 describes the syntax

of the small language used in this paper. The semantics of this language is given in

Section 3. The proof rules and the soundness of these rules are also given in this

section. The approach to verify client code using interfaces is presented in Section 4.

Section 5 concludes this paper.

2 The Syntax of the Small Language Used in This Paper

A program of the small language consists of a set of interface declarations and

class definitions. An interface can be implemented by one or more classes, while a

class can implement zero or more interfaces.

An interface declares a set of polymorphic function (predicate) symbols together

with a set of constraints about these function (predicate) symbols. A set of methods

to be invoked by its client code are also declared. For each method, the precondition

and postcondition are given using the function symbols declared in this interface.

A class definition C defines a set of methods and function symbols. For each

interface I implemented by the class C, all the methods and function symbols declared

in I should be defined in C. The definitions of these function symbols should satisfy

the constraints declared in I. For a method m declared in I, the specification of m in

C is just the corresponding specification declared in the interface, w.r.t. the function

symbol definitions given in C.

2.1 Types, expressions and statements

In this subsection, we describe the types, expressions, and statements associated

with interfaces and classes.

2.1.1 Types

Besides the types used in Ref. [2], an interface I or a class C can also be used as

a type. A value of type I is a reference to an object of some class implements I. A

value of type C is a reference to an object of C. C is a subtype of I if C implementing

I.

The memory layout for objects are same as the memory layout for record types

in Ref. [2]: a variable with interface or class type is treated as a reference to a record



4 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

type, and the member variables are treated as fields of the record type. The axioms

for memory layout of record types in Ref. [2] can be adopted.

2.1.2 Expressions associated with interfaces and classes

There are several kinds of expressions associated with interfaces and classes in

programs. The memory scope rules[2] for these expressions are given in Table 1.

– this is a keyword referring to the current object being manipulated.

– theClass is a keyword referring to the runtime class of this object.

– classOf(e) is the runtime class of the expression e.

– Member variables. For simplicity, member variables are always private. A

member variables v of a class C can only occur in the method bodies and

function symbol definitions in C, in the form this→v (or abbreviated as v).

– ret. It represents the return value in the post-condition of methods.

– Applications of function symbol. Interfaces and classes can declare

(define) two kinds of function symbols: object function symbols and class

function symbols (details will be given in Subsection 2.2 and 2.3).

– Let f be an object function symbol declared as T f(x), the expression e→f(y)

applies the definition of f in the class classOf(e) to the real parameters y. We

usually use f(y) as an abbreviation for this→f(y).

– Let f be a class function symbol declared as T f(x), cexp::f(y) applies the

definition of f in the class specified by cexp to the real parameters y. Here

cexp is either a class name, or the keyword theClass, or classOf(e) for some

expression e. We usually use f(y) as an abbreviation for theClass→f(y).

The function symbols and the keyword theClass, ret are used only in the

specification part of programs.

Table 1 The memory scopes of expressions associated with interfaces and

classes

Expression Memory scope Expression Memory scope

a class name ∅ this→v &this→v

theClass, this ∅ e→f(y) M(e) ∪M(y) ∪ e→M(f)(y)

classOf(e) M(e) cexp::f(y) M(cexp) ∪M(y) ∪ cexp::M(f)(y)

2.1.3 Statements associated with interfaces and classes

The following are statements associated with methods, interfaces and classes.

– The block statement. A block statement {vars, stat} first allocates memory

units for the variables in vars, then executes the statement stat, and finally

de-allocates the memory units for vars. The body of each method definition

must be a block statement.



Jianhua Zhao, et al.: Formal verification of ... 5

– The return statements. The return statement can only appear at the end

of a method body. The statement ‘return exp’ first evaluates the value of exp,

and then returns this value.

– Object creation statements. An object creation statement v := new C(y)

creates a new object of the class C using the real parameter y, and then assigns

the object reference to the variable v.

– Method invocation statements.

A method invocation statement e→m(y) invokes the method m defined in the

runtime class of e with the real-parameters y. A method invocation statement

v := e→m(y) invokes the method m and stores the return value into v.

2.2 Interface declarations

An interface declaration declares a list of function/predicate symbol, a set of

constraints about the function symbols, and a set of methods.

2.2.1 Function symbols

For each function symbol, the result type, arity, and parameter types are declared.

These function symbols are polymorphic and will be defined differently in the classes

implementing this interface.

For each symbol f declared, the memory scope function symbol, i.e. denoted as

M(f), is also implicitly declared. M(f) specifies the set of memory units accessed

during the evaluation of f (See Ref. [2] for details).

There are two kinds of function symbols: class symbols (declared with the

keyword static) and object symbols. Object function symbols describe properties

about individual objects, while class symbols describe properties about the class.

Besides the explicitly declared function symbols, each interface has three special

object function symbols: SetOf(Ptr) BLOCK(), SetOf(Ptr) pmem(), and bool INV().

Intuitively speaking, BLOCK yields the memory units assigned to the member variables

of the object, pmem() yields the private memory owned by the object, and INV() is the

invariant of the object. It is required that o→INV() holds before/after each method

invocation to o.

A special kind of object symbols are called attribute symbols (declared with the

keyword attrib). An attribute symbol f has no formal parameter and satisfies the

following constraint.

∀o : theClass.(o ̸= nil⇒ (o→INV()⇒ o→M(f)() ⊆ pmem()))

Intuitively speaking, attribute symbols access only the private memory of the object.

The function symbols BLOCK(), pmem() and INV() are attribute symbols.

2.2.2 Constraints about function symbols

The constraints declared in an interface are a set of formulas about the function

symbols. The function symbol definitions in implementing classes must satisfy these

constraints. These constraints make it possible to reason about assertions using these

symbols without referring to the definitions in implementing classes.



6 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

2.2.3 Methods and their specifications

For each method declared, the method name, formal parameters, return type,

preconditon, and postconditoin are given. The function symbols declared in the

interface can be used in preconditions and postconditions. We use I::m(x) :

{P} {Q} to describe that m is a method declared in an intereface I, the formal

parameters, precondition, and post-condition of m are respectively x, P , and Q. In

P and Q, assertion variables ρ, ρ1, ... can be used to represent any assertions without

the occurrence of ret.

Example 1. An interface Comparable is declared in Fig. 1. It declares two function

symbols: an attribute (object) function symbol V and a class function symbol LE.

The memory scope function symbols M(V) and M(LE) are also implicitly declared in

Comparable.

Three constraints are explicitly given in this interface. These constraints specify

that LE is a total order over integers. Together with the attribute function symbol V,

it indirectly induces a total order over the objects. Because V is an attribute symbol,

we have the following implicit constraint.

∀o : theClass.(o ̸= nil⇒ (o→INV()⇒ o→M(V)() ⊆ pmem()))

There are also such implicit constraints about other attribute function symbols.

One method compareTo is declared. The pre-/post-conditions of compareTo

are given using V and LE. Intuitively speaking, compareTo returns negative, zero, or

positive integers respectively when this is less than, equal to, or greater than the

parameter o, according to the total order induced by V and LE. In the specification, ρ

is an assertion variable. It can be substituted with any assertion. Intuitively speaking,

ρ in the specification means that if any assertion holds when compareTo is invoked,

it still holds after the execution of compareTo, i.e. compareTo is a pure method. �

interface Comparable{
funcs: attrib int V();

static bool LE(int v1, int v2);
cons: ∀v : int.theClass :: LE(v, v);

∀v1, v2 : int.(theClass :: LE(v1, v2) ∨ theClass :: LE(v2, v1));
∀v1, v2, v3 : int.(theClass :: LE(v1, v2) ∧ theClass :: LE(v2, v3)⇒ theClass :: LE(v1, v3));

methods:
int compareTo(Comparable o);

pre ρ ∧ o ̸= nil ∧ classOf(o) = theClass
post ρ ∧ (theClass :: LE(V(), o→V())⇔ ret ≤ 0) ∧ (theClass :: LE(o→V(), V())⇔ ret ≥ 0)

}

Figure 1. The interface Comparable.

2.3 Class definitions

A class definition is composed of a list of interface names implemented by this

class, a list of member variables, a list of function symbol definitions, and a list of

method definitions. A class can implement zero or many interfaces.



Jianhua Zhao, et al.: Formal verification of ... 7

2.3.1 Member variable declarations

For each member variable declared in the class, the type and variable name

are given. The member variables are private. They can only be accessed in function

symbol definitions and method definitions of this class. In these definitions, a member

variable v can be accessed as this→v, or just v for abbreviation.

2.3.2 Function symbol definitions

A function symbol definition is composed of the result type T , formal parameters

x and the expression e. A function definition can be written as T f(x) , e. The

definition of M(f) is Setof(Ptr) M(f)(x) , M(e). Please refer to Ref. [2] for the

details of memory scope expressions.

The keyword this and member variables are forbidden in the definitions of class

function symbols, because class function symbols are not about individual objects.

The definition of BLOCK is derived directly from the member variable list.

attrib SetOf(ptr) BLOCK() , {&this→v|v is a member variable}

People can also give their own definitions to pmem() and INV(), or just use the

following default definitions: attrib SetOf(ptr) pmem() , this→BLOCK() and

attrib bool INV() , true.

2.2.3 Method definitions and specifications

Each method definition consists of the signature, method body, and precondition/

postcondition of this method.

The body of a method is a block statement. It is required that the method body

can not assign new values to the formal parameters. For a method with a return type

other than void, the last statement in the method body must be a return statement.

The keyword ret is used in the post-condition to represent the return value.

A class must define one and only one constructor used to create new objects of

this class. The constructor shares the same name with the class. The object has not

been created yet when a constructor is invoked, so the keyword this can not occur in

the precondition of a constructor. In the post-condition, the keyword this refers to

the object created by the constructor.

For each interface I implemented by a class C, all the methods declared in I

should be implemented in C. The pre-/post-condition of such a method are derived

by substituting theClass with C in the corresponding pre-/post-conditions declared

in the interface.

Example 2. The class Point given in Fig. 2 implements the interface Comparable.

Two member variables x and y are declared in Point.

Both the function symbols V and LE declared in Comparable are defined in Point.

This class also defines two attribute functions FldX() and FldY(), which yields the

value of the member variables x and y. The function symbols pmem and INV are not

explicitly defined in Point, so the default definitions are used.

The constructor of Point creates a new object with x and y set to 0.

The method compareTo declared in Comparable is defined in Point. The

precondition and postcondition of compareTo are derived from the corresponding

specification in Comparable by substituting theClass with Point.



8 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

Three other methods (Set, getX and getY) are defined in this class. The assertion

variable ρ in the specification of Set means that if an assertion holds when Set is

invoked, and its memory scope is disjoint with the private memory of the object, this

assertion still holds after the invocation.

Substituting theClass with Point in the constraints explicitly declared in

Comparable, we have the following three constraints.

∀v : int.Point::LE(v, v), ∀v1, v2 : int.(Point::LE(v1, v2) ∨ Point::LE(v2, v1)),
and ∀v1, v2, v3 : int.(Point::LE(v1, v2) ∧ Point::LE(v2, v3) ⇒ Point::LE(v1, v3)). It

can be checked that the definition of Point::LE satisfies all these constraints.

Because V is an attribute symbol, the constraint ∀o : Point.(o ̸= nil⇒ (o→INV()

⇒ (o→M(V)() ⊆ o→pmem()))) must be satisfied. According to the rules given in

Ref. [2], M(V) is defined as {&this→x,&this→y}. It can be checked that the above

constraint is satisfied. All the constraints about other attribute function symbols are

also satisfied. �

class Point impl Comparable {
var: int x, y;

funcs: attrib int V() , x ∗ x + y ∗ y; static bool LE(v1, v2) , v1 ≤ v2;

attrib int FldX() , x; attrib int FldY() , y;
method:

Point() pre ρ post ρ ∧ (M(ρ) ∩ BLOCK() = ∅)∧ FldX()=0 ∧ FldY()=0 {x = 0; y = 0;};
void Set(int x1, int y1) pre ρ ∧ (M(ρ) ∩ pmem() = ∅) post ρ ∧ FldX()=x1 ∧ FldY()=y1
{x:=x1; y:=y1;};

int getX() pre ρ post ρ ∧ (ret = FldX()) {return x;};
int getY() pre ρ post ρ ∧ (ret = FldY()) {return y;};
int compareTo(Comparable* o)

pre {ρ ∧ o ̸= nil ∧ classOf(o) = Point}
post {ρ ∧ (Point::LE(V(), o→V())⇔ ret <= 0) ∧ (Point::LE(o→V(), V())⇔ ret ≥ 0)}
{ int tmp1, tmp2;

tmp1 = o→getX(); tmp2 = o→getY();
return x*x + y*y - tmp1*tmp1 - tmp2*tmp2;

}
}

Figure 2. The class Point implementing the interface Comparable.

2.4 Proof obligations of programs

There are two kinds of proof obligations of programs.

– The function symbol definitions in a class should satisfying the constraints

declared in the interfaces implemented by this class.

– The method definitions in a class C should satisfy their specifications.

Specifically, if a method m is declared in an interface I implemented by C, the

specification of m in C is derived by substituting theClass with C.

The proof rules used to verify method definitions w.r.t. their specifications are given

in the next section.



Jianhua Zhao, et al.: Formal verification of ... 9

3 The Semantics and the Proof Rules for Statements

3.1 The program states

We first define some sets used to model program states. Classes is the set of

classes defined in a program. We use Flds(C) to denote the set of member variable

names of the class C. ObjRefs is the unbounded set of object references of some

classes in Classes. Addresses is the set of addresses of the memory units. Each

memory unit can store an integer, boolean, or object reference in ObjRefs. The

following two maps relating the elements in the above three sets.

1. ClsOf : ObjRefs→ Classes. For each object reference r in ObjRefs, ClsOf(r)

is the class of the object referred by r.

2. FldAddr : ObjRefs× Name→ Addresses. For an object reference r in ObjRefs

and a member variable name fn in Flds(ClsOf(r)), FldAddr(r, fn) is the

address of the member variable fn of the object referred by r. It is required

that FldAddr(r1, fn1) = FldAddr(r2, fn2) ⇒ (r1 = r2) ∧ (fn1 = fn2) and

r ̸= nil ∧ fn ∈ Flds(ClassOf(r))⇒ FldAddr(r, fn) ̸= nil.

Definition 1. A program state s is a tuple (en, st), where

– en is called the environment, which is a partial map from variable names to

addresses. Given a variable name v, en(v) is the address for v. It is required

that this and ret are always in the domain of en,

– st is called the store, which is a partial map from Addresses to boolean ∪
integers ∪ ObjRefs.

Given a program state (en, st), we use refst to denotes all the object references

in the co-domain of st. For each object reference r in refst and a member variable

fn of ClsOf(r), it is required that FldAddr(r, fn) is in Dom(st).

Given two maps m1 and m2, m1 †m2 is the map satisfying (m1 †m2)(x) = m2(x)

if x ∈ Dom(m2), (m1 †m2)(x) = m1(x) otherwise. Given a map m and a set s, s▹m

denotes the map {d 7→ m(d)|d ∈ (Dom(m) ∩ s}. Given two vectors v1, v2 of same

length n, {v1 7→ v2} denotes the map {v1[i] 7→ v2[i]|i = 1, . . . , n}.
Given a program state (en, st) and a vector names of names, and a vector values

of values corresponding to names, (en, st) ⊎ (v, values) denotes the program state

(en † {names 7→ addr}, st † {addr 7→ values}), where addr is a vector of addresses

satisfying addr ∩ Dom(st) = ∅. Intuitively speaking, (en, st) ⊎ (names, values) is the

program state after a set of memory units are allocated for the variables in names,

and assigned the values in values.

3.2 Semantics of expressions

The semantic of expressions are maps from program states to values. Given a

program state (en, st), we write [e]sten to denote the value of an expression e at (en, st).

Because of space limitation, we just give the semantics of expressions associated with

interfaces and classes in Table 2.



10 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

The semantics of e→f(y) and cexp::f(y) shows that function symbols are

polymorphic, i.e. different definitions of f are referred according to the runt-time

class of e and cexp.

The semantics of the special operator & is also given here. It yields the left value

(i.e. address) of its operand. This operator is only used in specifications.

Table 2 The semantics of some expressions

e [e]sten e [e]sten

ret st(en(ret)) e→f(y)

[edef ]
st′
en′ , where

edef is the definition of f in ClsOf([e]sten)

(en′, st′) = (en, st) ⊎ (this, [e]sten) ⊎ (x, y)

x is the formal parameters of f

this st(en(this)) cexp::f(y)

[edef ]
st′
en′ where

edef is the definition of f in [cexp]sten

(en′, st′) = (en, st) ⊎ (x, y)

x is the formal parameters of f

theClass ClsOf([this]sten) this → v st(FldAddr([this]sten, v))

ClassOf(e) ClsOf([e]sten)

&v en(v) &(e→n) FldAddr([e]sten, n)

3.3 Semantics and proof rules of program statements

The semantics of of a statement stat, denoted as [stat], is a partial map from

program states to program states.

Statements are specified using Hoare’s Triples of the form {P} stat {Q}, which
means that if P holds at a program state s, s′ = [stat](s), then Q holds at s′. In the

post-condition Q, ←−e is used to denote the value of e evaluated at the pre-state s. So

e in P and ←−e in Q denote the same value. Because of space limitation, we only give

the semantics and proof rules (depicted in Figure 3) of statements associated with

interfaces or classes.

3.3.1 The return statements

The statement ‘return e’ evaluates the value of exp and then returns this value.

The semantic of ‘return e’ is formally defined as

[return e](en, st) , (en, st † {en(ret) 7→ [e]sten})

It can be checked that the axiom RETURN-ST in Fig 3 is sound.

3.3.2 Block statement

A block statement is of the form {vars, stat}, where vars is a list of variables,

and stat is a statement. When such a block is executed, the memory units for

variables in vars are firstly allocated, then stat is executed, finally the memory

units for vars are de-allocated. The semantic of this block is formally defined as

[{vars, stat}](en, st) , (en, st′′) where (en′, st′) = [stat]((en, st) ⊎ (vars,−)) and

st′′ = (Dom(st′′)− en′[vars])▹ st′.



Jianhua Zhao, et al.: Formal verification of ... 11

The soundness of the rule BLOCK-ST. Let LocMem be the expression

{&v|v is a variable in vars}. Suppose that an assertion P holds at (en, st), P∧
(M(P ) ∩ LocMem = ∅) holds at the state (en, st) ⊎ (vars,−) because LocMem are not

in Dom(st) and no variable in vars occurs in P . If the premises of BLOCK-ST holds,

Q ∧ (M(Q) ∩ LocMem = ∅) holds at (en′, st′). So Q holds at (en, st′′) because no

variable in vars occurs in Q and M(Q) ∩ LocMem = ∅.

RETURN-ST:{Q[e/ret]} return e {Q}

BLOCK-ST1 {P ∧ (M(P ) ∩ LocMem = ∅)} stat {Q ∧ (M(Q) ∩ LocMem = ∅)}
{P} {vars; stat} {Q}

CSTOR-SPEC2

{P ∧ this ̸= nil ∧ classOf(this) = C ∧ (this→BLOCK() ∩M(P ) = ∅)}
Block {Q}

C::C(x) : {P} {Q}

OBJ-CREATION
C::C(x) : {P} {Q}

{P [y/x]} v = new C(y) {(M(Q[
←−
y /x]) ∩ {&v} = ∅)⇒ Q[

←−
y /x][v/this]}

METHOD-SPEC2
{P ∧ this ̸= nil ∧ classOf(this) = C} Block {Q}

C::m(x) : {P} {Q}

INVOC-13
I::m(x) : {P} {Q}

{(e ̸= nil) ∧ P ′} v = e→m(y) {(M(Q′) ∩ {&v} = ∅)⇒ Q′[v/ret]}

INVOC-23
I::m(x) : {P} {Q}

{(e1 ̸= nil) ∧ P ′} e→m(y) {Q′}

Notes:
1. No variable in vars occurs in P,Q. LocMem is the abbreviation for {&v|v is a variable in vars}.
2. Block is the body of the constructor of C.
3. I is the static type of e, P ′ is an abbreviation for P [classOf(e)/theClass][y/x][e/this], Q′ is an

abbreviation for Q[classOf(←−e )/theClass][
←−
y /x][←−e /this]

Figure 3. The axioms and proof rules for some program statements.

3.3.3 Rules for specification and invocation of object constructors

A constructor specification C::C(x) : {P} {Q} means that if this constructor

is invoked with real parameters x0 at a state satisfying P [x0/x], a new C object is

created, and the state after the invocation satisfying Q[x0/x].

The soundness of the rule CSTOR-SPEC. Suppose that the constructor

C::C is invoked at a program state (en, st). Firstly, the memory units for this and

the formal parameters are allocated, a new object r (clsOf(r) = C and r ̸∈ refst)

and the corresponding real parameters x0 are assigned to these memory units. Now

the program state is (en′, st′) = (en, st) ⊎ (x, x0) ⊎ (this, r), where r ̸∈ refst ∧
(r→BLOCK() ∩ Dom(st) = ∅). The execution of the constructor body Block changes

the program state to [Block](en′, st′). The memory units for formal parameters is

finally de-allocated.

If P [x0/x] holds at (en, st), it still holds at (en
′, st′) because x and this do not

occur in P [x0/x]. At the state (en′, st′), the values of x are just x0, so P holds at



12 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

(en′, st′). Further more, this ̸= nil∧classOf(this) = C∧(this→BLOCK()∩M(P ) = ∅)
also holds at this state. If the premise of CSTOR-SPEC holds, the assertion Q holds

at [Block](en′, st′). Because the values of formal parameters x are not modified by

Block, Q[x0/x] also holds at [Block](en′, st′). Q[x0/x] still holds after the memory

units for formal parameters are de-allocated because no formal parameter in x occurs

in Q[x0/x].

The soundness of the rule OBJ-CREATION. The execution of an object

creation statement v := new C(y) is as follows. It first invokes the constructor with

the value of y evaluated at a state (en, st) as real parameters, resulting in a program

state (en′, st′), then assigns the new object reference (this) to v, and de-allocates the

memory unit for this, resulting in a state (en, st′′). Suppose that C::C(x) : {P} {Q}
and P [y/x] holds at (en, st), Q[

←−
y /x] holds at (en′, st′). Because v does not occur in

Q[
←−
y /x] and this does not occur in Q[

←−
y /x][v/this], Q[

←−
y /x][v/this] holds at (en, st′′)

if (M(Q[
←−
y /x]) ∩ {&v} = ∅) holds at (en′, st′).

3.3.4 Rules for specifications and invocations of methods

A method specification C::m(x) : {P} {Q} means that if C::m is invoked at a

program state satisfying P [this0/this][x0/x], it results in a program state

Q[this0/this][x0/x].

The soundness of the rule METHOD-SPEC. Suppose that the method

C::m is invoked with real parameters x0 to an object this0 (this0 ̸= nil ∧
classOf(this0) = C) at a program state (en, st) satisfying P [this0/this][x0/x].

First, the memory units for this and the formal parameters x is allocated and

assigned corresponding values, resulting in a program state (en′, st′) = (en, st) ⊎
(x, x0) ⊎ (this, this0). Because the values of x and this are respectively x0 and

this0 at (en′, st′), P ∧ this ̸= nil ∧ classOf(this) = C holds at (en′, st′). Then the

body Block of C::m is executed, resulting in (en′′, st′′) = [Block](en′, st′). Q holds

at (en′′, st′′) if the premise of METHOD-SPEC holds. Because the values of x and

this are still x0 and this0 at (en′′, st′′), Q[this0/this][x0/x] holds at (en
′′, st′′). The

memory units for this and formal parameters are finally de-allocated.

Q[this0/this][x0/x] still holds at the final state.

The soundness of INVOC-1 and INVOC-2. Let e be an expression with

static type I, v = e→m(y) invokes the method m defined in the run-time class of e

with the real parameters y, and assign the return value to the variables v.

Suppose that the specification of I::m is I::m(x) : {P} {Q}. The pre-/post-

condition of m defined in classOf(e) are respectively P [classOf(e)/theClass] and

Q[classOf(←−e )/theClass]. If v = e→m(y) executes at a program state (en, st)

satisfying {(e ̸= nil) ∧ P [classOf(e)/theClass][e/this][y/x]}, the state (en′, st′)

after the invocation of the method m in classOf(e) should satisfy Q[classOf(←−e )/
theClass][←−e /this][←−y /x]. After the value of ret is assigned to v, we have

Q[classOf(←−e )/theClass][←−e /this][←−y /x][v/ret] holds at at (en′, st′) if

M(Q[classOf(←−e )/theClass][←−e /this][←−y /x]) ∩ {&v} = ∅. So INVOC-1 is sound.

Similarly, the proof rule INVOC-2 is sound.

These two rules can still be applied if the static type of e is a class C, because

theClass in the specification of C::m is just C.



Jianhua Zhao, et al.: Formal verification of ... 13

4 Code Verification under the Open-world Assumption

Using the proof rules INVOC-1 and INVOC-2, the specifications of method

invocation statements can be derived without knowing the exact dynamic class of

the receiving objects. Though the function symbols in these specifications are

polymorphic and defined differently in different implementing classes, the definitions

must satisfy the constraints declared in interfaces. Suppose that the static type of e

is an interface I, and constr is a constraint in I, we have

(e ̸= nil)⇒ constr[classOf(e)/theClass]

Using such properties and the specifications derived using INVOC-1 and INVC-2,

we can verify client code using interfaces under the open-world assumption.

Example 3. Part of the class arrayList is given in Fig. 4. An arrayList object

stores some Comparable objects in the array-typed member variable a. The

specification of the method sort says that if all the elements of a are not nil and

refer to objects of the same class, sort can sort these objects w.r.t. the order

induced by LE and V defined in the class classOf(a[0]).

The predicate MemLayout specify that the private memory of each Comparable

object is disjoint with the array a. So assignments to a do not modified the attribute

V() of objects because V is an attribute symbol of Comparable.

Because of the space limitation, we just briefly show how to prove that the

following formula is an invariant of the inner while-statement.

∀x ∈ (0..j).(CLS::LE(a[x]→V(), a[j]→V())) ∧ MemLayout()∧
∀x ∈ (0..9).(a[x] ̸= nil) ∧ ∀x ∈ (0..9).(classOf(a[x]) = CLS)

(1)

where CLS is the abbreviation for classOf(a[0]@1), and a[0]@1 is the value of a[0]

evaluated when the program begins.

Formula 1 still holds after the assignment to cR (line 18). From Formula 1,

classOf(a[j]) and classOf(a[j + 1]) are both CLS. Based on the specification of

compareTo and the rule INVOC-1, the following formula also holds after line 18.

(CLS::LE(a[j]→V(), a[j+1]→V())⇔ cR ≤ 0)∧
(CLS::LE(a[j+1]→V(), a[j]→V())⇔ cR ≥ 0)

(2)

Because a[0]@1 is not nil, and CLS is a class implementing Comparable, substituting

theClass with CLS in the constraints in Comparable, we have

∀v1, v2, v3 : int.(CLS::LE(v1, v2) ∧CLS::LE(v2, v3)⇒ CLS::LE(v1, v3))

∀v1, v2 : int.(CLS::LE(v1, v2) ∨CLS::LE(v2, v1)).

From these constraints, Formula 1 and 2, it holds that

(cR ≤ 0)? ∀x ∈ (0..j + 1)CLS::LE(a[x]→V(), a[j + 1]→V())

: ∀x ∈ (0..j + 1)(CLS::LE(a[x]→V(), a[j]→V()))

After line (19) swaps a[j] and a[j+1] if a[j+1] is ‘less’ than a[j], all the objects from

a[0] to a[j] is less than or equal to a[j + 1]. So the first conjunct of Formula 1 holds

after j is increased by line (20).



14 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

It can also be verified that the other conjuncts of Formula 1 hold after line (20).

So Formula 1 is an invariant of the inner loop. �

After a piece of client code using interfaces is verified, more precise specifications

can be derived without re-verification when more knowledge about context of the

client code is known. Specifically, if we know that the runtime class of an expression

e is a class C, we can substitute classOf(e) with C in the client code specification.

We also know that the function symbol f in e→f refers to the definition of f in C.

1) class arrayList{
2) var: Comparable a[10];

3) funcs: SetOf(Ptr) pmem() , λx.(&a[x])[0..9];

4) Comparable get(int i) , a[i];

5) bool MemLayOut() , ∀i∈(0..9)(∀j∈(0..9)(&a[j] ̸∈ get(i)→pmem()))
6) method:
7) . . .
8) void Sort()
9) Pre ρ ∧ (M(ρ) ∩ pmem() = ∅) ∧ MemLayout() ∧ (∀x ∈ (0..9)(get(i) ̸= nil))
10) ∧(∀x ∈ (0..9)(classOf(get(i)) = classOf(get(0))))

11) Post ρ ∧ (classOf(get(0)) = classOf(
←−−−−
get(0)))

12) ∧∀i ∈ (0..8)(classOf(get(0)) :: LE(get(i)→V(), get(i + 1)→V()))
13) { int i,j,cR; Points tmp;
14) i = 9;
15) while(i>0){
16) j = 0;
17) while (j<i-1)
18) { cR = a[j]→compareTo(a[j+1]);
19) if(cR > 0){temp = a[j]; a[j]=a[j+1]; a[j+1]=temp;} else skip;
20) j = j+1;
21) }
22) i = i-1;
23) }
24) }
25) }

Figure 4. The sort algorithm for Comparable objects.

Example 4. Suppose that al is non-nil and refers to an arrayList object.

According to the specification of arrayList::Sort(), the following formula holds

after a statement al→Sort().

∀i ∈ (0..8)(classOf(
←−−−−−−−−
al→get(0)) :: LE(al→get(i)→V(), al→get(i+ 1)→V()))

If all the objects in al are Point objects, we can have the following precise post-

condition without re-verifying arrayList::Sort.

∀i ∈ (0..8)(Point :: LE(al→get(i)→V(), al→get(i+ 1)→V()))

That is, the Point objects in the list al are sorted according to their distance from

the original point.

5 Related Works and Conclusions

The main challenge to specify ‘programming to interface’ code is to deal with

the polymorphism caused by dynamic-binding and avoid re-verification of client



Jianhua Zhao, et al.: Formal verification of ... 15

code using interfaces. It is also important to make client code using interfaces fulfill

different function features using different implementations of the interfaces.

Many research works[3,4,5,6] have been proposed to deal with the polymorphism

caused by inheritance and method overriding. Most of the works use the LSP

(Liskov Substitution Principle) subtyping rule[1] to avoid re-verification of the client

code. Once a method has committed to a pre-conditoin/post-condition contract,

any redefinition of this method through overriding must preserve to this

commitment. As we discussed before, such approaches are not suitable for the

‘programming to interfaces’ paradigm.

In Refs. [7,8], a lazy form of behavioral sub-typing is presented. The behaviors

of the overriding methods are only required to preserve the ‘part’ of the specifications

that actually used to verify the client codes. This approach is not suitable for the

situations where programmers make a piece of client code fulfill different functional

features using different implementations of an interface.

In Ref. [9], abstract attribute symbols are also used in method specifications.

Because no constraint about these attributes is given, their method has a weaker

capability to verify client codes using interfaces under the open-world assumption.

In this paper, we present a flexible and precise approach to specify and verify

code written in the ‘programming to interfaces’ paradigm. An interface can be

specified by a set of abstract and polymorphic function/predicate symbols together

with a set of constraints. A class implementing an interface can give its own

definitions to the function/predicate symbols declared in the interface, as long as the

constraints declared in the interface are satisfied. The method definitions in this

class must satisfy the specification given in the interface. Based on the above

class-interface-implementation relations, the client code using interfaces can be

verified without knowing the implementing classes of the interfaces. Furthermore,

when more information about the dynamic classes of expressions are known, the

client code specifications can be specialized to more precise ones without

re-verification. So the approach presented in this paper can take the advantages of

the ‘programming-to-interfaces’ paradigm.

Though class inheritance is not directly discussed in this paper, polymorphism

caused by class inheritance can also be dealt with by the approach in this paper. The

super-class can be viewed as an interface together with an implementation, and the

sub-class viewed as another implementation of the interface.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] Liskov BH, Wing JM. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst.,

November 1994, 16(6): 1811–1841.

[2] Zhao JH, Li XD. Scope logic: An extension to hoare logic for pointers and recursive data

structures. In Liu ZM, Woodcock J, Zhu HB, eds. ICTAC, volume 8049 of Lecture Notes in

Computer Science. Springer, 2013. 409–426.

[3] Poetzsch-Heffter A, Müller P. A programming logic for sequential java. In Swierstra SD, ed.

ESOP, volume 1576 of Lecture Notes in Computer Science. Springer, 1999. 162–176.

[4] Chin W-N, David C, Nguyen HH, Qin SH. Enhancing modular oo verification with separation



16 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

logic. In Necula GC, Wadler P, eds. POPL. ACM. 2008. 87–99.

[5] Parkinson MJ, Bierman GM. Separation logic, abstraction and inheritance. Proc. of the 35th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’08. New York, NY, USA. ACM. 2008. 75–86.

[6] Smans J, Jacobs B, Piessens F, Schulte W. Automatic verification of java programs with dynamic

frames. Formal Asp. Comput., 2010, 22(3-4): 423–457.

[7] Dovland J, Johnsen EB, Owe O, Steffen M. Lazy behavioral subtyping. J. Log. Algebr.

Program., 2010, 79(7): 578–607.

[8] Dovland J, Johnsen EB, Owe O, Steffen M. Incremental reasoning with lazy behavioral subtyping

for multiple inheritance. Sci. Comput. Program., 2011, 76(10): 915–941.

[9] Liu YJ, Qiu ZY. A Separation Logic for OO Programs. Proc. of the 7th International

Conference on Formal Aspects of Component Software. FACS10. Berlin, Heidelberg. 2012.

88–105.


