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Abstract Statistical Model Checking (SMC), as a technique to mitigate the issue of

state space explosion in numerical probabilistic model checking, can efficiently obtain an

approximate result with an error bound by statistically analysing the simulation traces.

SMC however may become very time consuming due to the generation of an extremely

large number of traces in some cases. Improving the performance of SMC effectively is still

a challenge. To solve the problem, we propose an optimized SMC approach called AL-SMC

which effectively reduces the required sample traces, thus to improve the performance of

SMC by automatic abstraction and learning. First, we present property-based trace

abstraction for simplifying the cumbersome traces drawn from the original model. Second,

we learn the analysis model called Prefix Frequency Tree (PFT) from the abstracted

traces, and optimize the PFT using the two-phase reduction algorithm. By means of the

optimized PFT, the original probability space is partitioned into several sub-spaces on

which we evaluate the probabilities parallelly in the final phase. Besides, we analyse the

core algorithms in terms of time and space complexity, and implement AL-SMC in our

Modana Platform to support the automatic process. Finally we discuss the experiment

results for the case study :energy-aware building which shows that the number of sample

traces is effectively reduced (by nearly 20% to 50%) while ensuring the accuracy of the

result with an acceptable error.
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1 Introduction

Statistical Model Checking (SMC)[23] is a simulation based efficient technique

to evaluate the probability that a system model satisfies a given property, or to

verify whether a system model satisfies a given property with a specified probability

threshold. The former is known as Quantitative analysis including Simple

Sampling Plan (SSP)[23], Sequence Probability Ratio Test (SPRT)[29,30] and
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Bayesian Hypothesis Testing (BHT)[19], which will give a real-value answer (between

0 and 1), i.e. M |= P=?(ϕ
′). The latter is Qualitative analysis including

Approximate Probabilistic Model Checking (APMC)[15] and Bayesian Interval

Estimation (BIE)[31], which will give a boolean answer, i.e. M |= P>θ(ϕ
′).

Compared to numerical (probabilistic) model checking[1] that obtains an accurate

result by means of exhaustive exploration of the state space, SMC computes an

approximate result as well as an error bound by combining Monte-Carlo simulation

and statistical techniques. The samples used in SMC is called Traces which are

drawn from the system model by simulation tools. It means we need not know more

details of the system than its simulation traces, and some difficulties (e.g. state

space explosion) in verifying complex systems are effectively mitigated. Therefore,

SMC is practically useful in analysing stochastic, hybrid, heterogeneous, even

black-box systems (typically like Cyber-physical Systems (CPS)[22]), and it is also

the only option in most cases.

However, SMC may encounter the performance bottleneck in some cases, for

example, using BIE to check the property of which the satisfaction probability is

close to 0.5, using SPRT/BHT to check the property with a threshold θ close to its

real probability, checking the property of rare event with high precision, etc. The

performance of SMC is mainly affected by two factors: (i) the simulation time of

executing a single trace, which is a quite time-consuming process for most cases; (ii)

the number of traces required for termination of SMC algorithm. The time spent in

statistical process turns out to be a small part of the total time in SMC (i.e. 10%

of the total time[31]). As usual, the simulation time depends upon the efficiency of

the simulation tool and the complexity of the system model. As a result, the key to

improve SMC performance is how to reduce the number of sample traces, which is

still a challenge problem.

To address the challenge, we propose an optimized SMC approach based on

automatic Abstraction and Learning (AL-SMC, for short). The abstraction

technique is used to derive the concise, abstract traces from the cumbersome,

original ones; and the learning technique is used to build a more appropriate

analysis model, namely, Prefix Frequency Tree (PFT), for evaluating the probability

in a more efficient way. Our approach is partially inspired by Ref. [25] but quite

different in nature. The major differences lie in (i) our approach focuses on

abstracting CPS traces that contains both continuous and discrete variables; (ii) our

approach uses PFT as the final analysis model for partitioning the original

probability space into several sub-spaces (instead, PFT is used as an intermediate

model in Ref. [25]); (iii) our approach improves the SMC performance by efficiently

evaluating the probability on each sub-space in parallel (instead, Ref. [25] directly

analyse the abstracted probabilistic finite automata constructed based on PFT).

The main contributions of our work are as follows: (i) we present

property-based trace abstraction to obtain concise traces; (ii) we partition the

probability space into several balanced sub-spaces by learning PFT ; (iii) we present

the core algorithms for abstraction and learning, and also implement the approach

in our Modana platform to facilitate the automatic process.

The rest of this paper is organized as follows. Section 2 presents the preliminaries

and overview including a motivating example, basic idea and the framework of AL-



Kaiqiang Jiang, et al.: AL-SMC: Optimizing statistical model checking by ... 3

SMC. Section 3 discusses the core algorithms of AL-SMC in details. Section 4 presents

our implementation and the experimental results on a case study. Section 5 discusses

related work and in section 6, we conclude the work and discuss the future work.

2 Preliminaries and Overview

In this section, we briefly introduce Stochastic Hybrid Automata (SHA)[8] and

Probabilistic Bounded Linear Temporal Logic (PBLTL)[7] used in this paper by a

motivating example. And then, we verify the motivating example with SMC to

introduce the problem. Then we present the basic idea of our optimized approach as

well as the framework of AL-SMC to solve the problem.

(a) SHA template for room (b) SHA template for heater

Figure 1. Modeling of motivating example.

Motivating example. A simple 2-room example will be introduced for illustration

of SHA as well as AL-SMC later. Given that there are two rooms sharing one

heater. Without considering other factors (e.g. environment temperature), the room

temperature changes with the equation T ′ = K − T
10 . T ′ is the change rate of room

temperature; K = 9+ random(3) represents a random heating capacity, so K equals

a real value between 9 and 12 when the room gains the heater and otherwise K = 0.

The time delays at the locations ON 0, ON 1 follow exponential distribution exp(λ)

(λ = 2 for ON 0, λ = 1 for ON 1). And the strategy for deciding which room to be

heated is described by a discrete probabilistic branch (p0, p1 as the weights of

room0, room1). The probability that the heater chooses ith room is pi/
∑

pi. The

SHA models of the 2-room example are shown in Fig. 1.

Definition 1. Probabilistic Bounded LTL (PBLTL) The requirement constraints

of the system are specified with the property PBLTL P=?(ϕ
′) where ϕ′ is a BLTL

property. The syntax of BLTL is given by the following grammar:

φ ::= y ∼ v | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 | ϕ1U
6tϕ2

where ∼∈ {>,6,=}, y ∈ SV (SV is set of all variables), v ∈ Q, t ∈ Q>0. As usual,

we define additional temporal operators such as the operator “eventually within time

t” which is defined as F6tϕ = True U6tϕ, or the operator “always up to time t”

which is defined as G6tϕ = ¬F6t¬ϕ. More details about PBLTL can be found in

Ref. [31].
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For example, we can evaluate the probability that the temperature difference

between two rooms is too large, using the following PBLTL property ϕ = P=?(ϕ
′)

P=?(F
648 T0 > 31 ∧ T1 < 4)

ϕ′ indicates that the temperature of room0 exceeds 31 meanwhile the temperature

of room1 declines below 4. Next, we will present the basic idea of our AL-SMC

optimization with the motivating example.

2.1 Basic idea

We apply the state-of-the-art quantitative SMC algorithm - BIE[31,20] to evaluate

the probability for a quantitative property ϕ. Figure 2 shows an overall estimation

on the number of sample traces generated by the BIE algorithm.
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Figure 2. Simulation traces for different probabilities using BIE.

We found that it needs the most traces when the probability is close to 0.5,

while, the traces are drastically reduced when the probability approaches to 0 or 1.

So, we can evaluate the probabilities on several sub-spaces instead of the original

space. Given that the original probability space Ω is partitioned into m sub-spaces

Ω1, · · · , Ωm with the probabilities: p1, · · · , pm; Trs(pi) represents the number of

sample traces required for evaluating pi. From Fig. 2, it is derived that Trs(P )

< Trs(P ′) if P < P ′ < 0.5. Consequently for m sub-spaces, Trs(pi) < Trs(p)

such that p =
∑m

i=1 pi (if the original probability p 6 0.5). As the evaluation on

m sub-spaces are performed in parallel, the actual number of traces is Trs(p′) =

max(Trs(p1), · · · , T rs(pm)) < Trs(p). That is, the number of traces for evaluating

p will be decreased and depends on the maximum of trace number for pi of each

sub-space theoretically.

We check the illustrative property ϕ using BIE (δ = 0.02, c = 0.95) algorithm.

And the experimental results show that its satisfaction probability is 0.465 and the

number of sample traces is 2885. The probability is close to 0.5, which means the

number of sample traces can be theoretically reduced according to the above idea.

However, the main difficulty is how to find a set of appropriate probability sub-

spaces. As shown in Fig. 3, the probability distribution is not balanced in most cases.

To solve the problem, we have to rebuild an equivalent model in another dimensional
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space instead of directly partitioning the space in temporal dimension. According to

the basic idea of our approach, we present the framework AL-SMC which mainly

focuses on how to rebuild an abstract analysis model (i.e. PFT) probabilistically

equivalent to the original SHA models by means of trace abstraction.

Figure 3. The probability density distribution for motivating example satisfies ϕ′.

Figure 4. Framework of AL-SMC.

2.2 Framework of AL-SMC

The AL-SMC framework is depicted in Fig. 4. Initially, the original traces are

obtained by the simulator of UPPAAL-SMC which supports to model the system

based on SHA. Next, Trace Translator is employed to translate the original traces

to normal traces which is the input of AL-SMC. The abstract process is performed

by three components: Property-based Projection, PCA-based Dimension

Reduction and Key States Extraction which are employed to obtain more

abstract traces (from σ0 to σ3). By this way, the sample traces are reduced to some

extent. Next, PCA-based Dimension Reduction is employed to partition the

probabilistically equivalent model based on the abstract traces, which adopts a
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classic machine learning method called Principal Component Analysis (PCA)[10].

With the help of PCA-based dimension reduction, the more abstract traces (σ3) are

generated. Subsequently, the key part of AL-SMC Building and Optimization of

PFT adopts the learning technique to build and optimize PFT models. Once the

PFT models are obtained, the Probability Evaluation via Multi-BIEs invokes

several BIE analysers to evaluate the probability in parallel.

3 Abstraction and Learning-based SMC (AL-SMC)

In this section, we first discuss core algorithms for property-based trace

abstraction, construction and optimization of PFT and probability

evaluation via multi-BIEs. Further, we briefly discuss the time and space

complexity of each algorithm.

3.1 Property-based trace abstraction

Property-based trace abstraction is composed of three phases: (i) dispersing

continuous variables with property-based projection; (ii) dimension reduction for

states with the PCA-based dimension reduction technique; (iii) extracting key states

with two parameters. The aim of property-based trace abstraction is to simplify the

traces by projection and abstraction techniques.

3.1.1 Property-based projection

As we known, each trace generated by UPPAAL-SMC simulator contains many

states which is composed of discrete and continuous variables. The discrete variables

denote locations and the continuous variables denote continuous behavior of the

system, such as energy consumption, temperature change, etc. However, only the

states with discrete variables changing have significantly influences on continuous

behavior of the system. For this kind of states, we call it discrete states. Besides, we

find the number of simulation traces will reduce when the probability of the original

model is less than 0.5. But if the probability of original model is bigger than 0.5, the

probability of sub-model may approximate to 0.5. Therefore, a small number of

traces is needed to estimate the probability of original spaces.

Before using Algorithm 1, we should determine the BLTL ϕ′. Algorithm 1

performs projection on the original traces σ0 according the property BLTL ϕ′. The

preprocess of the algorithm is to determine the form of ϕ′ with the following

equation:

ϕ′
smc =

{
ϕ′, ptest 6 0.5

¬(ϕ′), ptest > 0.5
ptest =

( 100∑
i=1

bi

)
/100 (1)

where bi denotes whether the ith trace satisfies property ϕ′, ptest is the probability of

original space evaluated with AL-SMC. We can ensure ptest less than 0.5 using this

estimation.

In Algorithm 1, SV = L ∪X denotes the set of discrete variables of states, and

σ0 denotes an original trace which consists of k dimensional states (k = #(SV )).

First, discrete states are only kept in each trace to simplify the cumbersome original

traces. Then, we add two dimensions sChk, tChk to each state of the trace. sChk
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Algorithm 1 Property-based projection

Require: BLTL property ϕ′, Original trace σ0

Ensure: New trace σ1 after projection

1: T := {0} //the set of discrete states

2: σ1 := ∅
3: for all νi ∈ σ0 do

4: if πL(νi) ̸= πL(νi−1) then

5: T := T ∪ {t(νi)} //πL(νi) is the set of discrete variables of state

6: for all tj ∈ T do

7: (sChkj , tChkj) := (0, 0)

8: if σ0(ti−1, ti) |= ϕ′ then

9: sChkj := 1 //whether statei satisfies ϕ
′

10: if tChkj−1 = 1 or sChkj = 1 then

11: tChkj := 1

12: ν′j := πL(νj) on (sChkj , tChkj) //adding two dimensions to compose new

state

13: σ1 := σ1 ∪ {ν′j} //adding new state to new trace

14: return σ1

denotes whether the state satisfies ϕ′ and tChk denotes whether the trace satisfies

ϕ′. Finally, all continuous variables are projected to sChk and tChk, and then new

states with k+2 dimensions are obtained to compose the new trace σ1. By this way,

the property-based projection technique is employed to abstract the traces.

Figure 5 shows the trace σ1 generated with property-based projection, which is

more concise compared to the original one. Whereas the number of states is still

large, so it is difficult to analyse the essential behaviour of the system. To reduce

the number of states, we will further abstract σ1 to get the trace with only discrete

states.
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sCheck

tCheck

Figure 5. Trace σ1 generated by property-based projection.

3.1.2 PCA-based dimension reduction

PCA[10] is proposed by Pearson[27] to analyse and simplify the data set for

multivariate statistical analysis. The main idea of PCA is projecting the feature
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vectors from k0-dimensions to k1-dimensions (k0 ≫ k1). By this way, PCA keeps the

significant features of original set which make great contribution to the feature

analysis. To further abstract the trace σ1, we analyse the discrete variables of each

state, and find a lot of variables are positively correlated, i.e. the combination of

variables can be used to represent the key behavior of the system. Inspired by the

PCA technique, we propose the PCA-based dimension reduction to observe the

main behaviour of the system.

In this phase, each state can be treated as a sample of PCA, and the variables of

each state can be treated as the feature of a sample. After the PCA-based dimension

reduction, the dimension of feature is greatly reduced as shown in Fig. 6. We can

find that each state only contains two features, which are the combination of discrete

variables. So, it facilitates to extract the key states in next stage.
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Figure 6. Trace σ2 generated by PCA-based dimension reduction.

3.1.3 Key states extraction

Through the analysis of trace σ2, we find that few states are useful to evaluate the

probability of property ϕ. Key states should be extracted from trace σ2 to compose

a concise trace. The main purpose of key states extraction is to find key states which

have great influence for evaluating the probability. The following are the main steps

of key states extraction:

1. Identifying the key states where tChk equals to 1. These key states directly

influence the evaluation of probability.

2. Extracting the states whose features occur frequently. We define two thresholds

to denote the number of extracting states: 1) the maximal number of extracting

states 2) the maximal percent of extracting states in total states.

After key states extraction, we obtain the trace σ3 as shown in Fig. 7. The

behaviour of the system can be described with two key states which are two

compositions of discrete variables (1001010 and 0100110) in the original traces. The

first composition denotes one heater is OFF , the second one denotes the heater is

ON and room0 is heated. The analysis results show that our evaluation is correct:

the heating time of room0 is longer and dominant during the heating process

because the weight of room0 is higher (shown in Fig. 1).
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Figure 7. Trace σ3 generated by key states extraction.

3.2 Construction and optimization of PFT

The aim of construction and optimization of PFT is to partition the original

probability space into several relatively balanced sub-spaces by learning a PFT. First,

a PFT is constructed based on the state set of σ3, and then the PFT is optimized by

two-phase reduction.

Definition 2. Prefix Frequency Tree (PFT) A PFT (multi-branch tree) T is a tuple

(D,R, d0) where

– D denotes the set of tree nodes. Each tree node contains three key variables

(id, f, n) : id denotes a unique state, f denotes the number of traces which

terminate at this node, n denotes the number of traces passing the node, and

each node satisfies f 6 n.

– R denotes the relation between nodes, and each node has one parent node and

many children nodes except the root node.

– d0 ∈ D is the root of the tree which has no parent.

PFT is inspired by the Prefix Tree Acceptor in Ref. [6] which presented the

methods of stochastic grammar inference to derive grammar automata from a set of

sentences. Actually, learning the probabilistic automata is equivalent to infer

stochastic grammar if we deal with each concise trace as a sentence. We take the

negative trace as a null sentence, i.e. the negative trace terminate at the root of

PFT, and the positive trace terminates at a non-root node. By this way, we

construct an abstract model PFT which is probabilistic equivalent to the original

SHA model. For PFT, we suppose that:

1. n(dleaf ) = f(dleaf ), i.e. f and n of all the leaf nodes are equal.

2. n(di) − f(di) =
∑

dt∈child(di)
n(dt), i.e. the difference between n and f of any

non-leaf nodes equals to the sum of n of all the child nodes.

3. n(d0) − f(d0) =
∑

i>0 f(di), i.e. the difference between n and f of root node

equals to the sum of f of all the non-root nodes.

For the motivating example, we found that the PFT is built with 250 traces. The

total number of nodes is 1025 and the number of end nodes is 46, but the number

of positive traces in σ3 is only 121. There must be some end nodes which accepts

seldom traces when the positive traces are dispersed in 46 nodes (f is too small). It

means the probability of the branches satisfying the property is also small.
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Algorithm 2 Constructing prefix frequency tree

Require: The set of σ3

Ensure: Prefix frequency tree T
1: dtemp := d0 //dtemp is the current node

2: for all σ3
i ∈ Σ3 do

3: n(d0) := n(d0) + 1

4: if tChklast = 0 of σ3
i then

5: f(d0) := f(d0) + 1 //terminating at d0 if the trace is not satisfied

6: else

7: for all νj ∈ σ3
i do

8: if id(dtemp) = id(νj) then

9: n(dtemp) := n(dtemp) + 1 //merging the duplicate states

10: else if child(dtemp) contains id(νj) then

11: n(did) := n(did) + 1 //did represents the child node of dtemp whose id

equals to id(νj)

12: dtemp := did //updating the current node

13: else

14: add νj to child(dtemp)

15: dtemp := did
16: if tChkj = 1 then

17: f(dtemp) := f(dtemp) + 1 //the value of f of the current node plus 1 if

reaching the last state of the trace

18: return T with d0

To avoid the small probability and reduce the error of the algorithm, the PFT

is reduced with two phases reduction. First, we horizontally merge (reduction

phase I) the branches whose value of n is low, then we vertically merge (reduction

phase II) the paths whose value of f is low.

By this way, the number of positive samples in each end node is within a suitable

range (fmin, fmax) which is computed with equation (2). The input parameter r

denotes the reduction degree of PFT. Algorithm 2, 3 and 4 are the pseudo-codes for

constructing and optimization of PFT, respectively.

fmin = ⌊(r − 0.05) · (n(d0)− f(d0))⌋
fmax = ⌊(r + 0.05) · (n(d0)− f(d0))⌋

(2)

Figure 8(a) illustrates the reduction phase I. As we can see, on the left is the

original tree, and the nodes marked with n = 4, 6, 3, 10 (less than fmin) can be merged.

First, we merge the nodes marked with n = 3 and n = 10 (the maximum and minimum

value, respectively) to compose a new node marked with n = 13. Next, the nodes

marked with n = 4 and n = 6 are merged to compose a new node marked with n=10,

and this node still need to be merged because the value of n is less than fmin. Next,

the node marked with n = 10 and n = 13 are merged, due to n:10 + 13 < fmax.

Finally, the reduction tree is generated with nodes merging, as shown in the right

figure.
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Algorithm 3 The recursive function of PFT reduction phase I reduce recur()

Require: The current node d

Ensure: Whether n(d) is smaller than fmin

1: if n(d) < fmin then

2: return true

3: Dneed := ∅ //the set of nodes needed mergence

4: for all di ∈ child(d) do

5: if reduce recur(di) then

6: add di to Dneed

7: loop

8: if size(Dneed) = 0 then

9: break //terminating the mergence

10: if size(Dneed) = 1 then

11: if d ̸= d0 and size(child(d)) = 1 and f(d) + f(di) < fmax then

12: merge di ∈ Dneed to d //di is the child node of d

13: else if size(child(d)) > 1

and f(min child(d)) + f(di) < fmax then

14: merge di ∈ Dneed to min child(d) //min child(d) is the node with

minimum f value of the child nodes of d

15: break

16: merge dnMax, dnMin in Dneed

17: delete dnMax, dnMin from Dneed //dnMax is the node with maximum n

value in Dneed

18: if n(dmerged) < fmin then

19: add dmerged to Dneed //dmerged is the node through the mergence of

dnMax and dnMin

20: return false

(a) PFT reduction phase I

(b) PFT reduction phase II

Figure 8. Illustration of two-phase PFT reduction.
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Figure 8(b) illustrates the reduction phase II. As we can see, the PFT reduced

by reduction phase I is shown in the left. There are some end nodes with f 6 fmin.

First, the starting nodes in left and right branches with f = 3 and f = 8 (less than

fmin) are merged. At this time, we find that the left branch is still need to be merged

(where f : 6+ 1 < fmin), so nodes in the left branch are merged until f :7+ 23 > fmax

is satisfied. After the reduction, the number of end nodes is smaller and the values of

f for each nodes are much more balanced, and it is suitable for Multi-BIEs statistical

analysis in next stage.
Algorithm 4 The recursive function of PFT reduction phase II reduce2 recur()

Require: The current node d

1: needRecur := false //whether recursive

2: dtemp := d

3: if size(child(d)) > 1 then

4: needRecur := true

5: else if size(child(d)) = 1 then

6: repeat

7: dtemp := the only child of dtemp

8: if size(child(dtemp)) > 1 then

9: needRecur := true

10: break

11: else

12: if f(d) < fmin and f(d) + f(dtemp) < fmax then

13: f(d) := f(d) + f(dtemp) //merge dtemp and d

14: merge dtemp to d

15: else

16: if size(child(dtemp)) = 1 then

17: d := dtemp //update initial node d

18: else

19: break //terminating mergence if reach the leaf node

20: until size(child(dtemp)) = 0

21: if needRecur then

22: for all di ∈ child(dtemp) do

23: reducetree2 recur(di) //recursive child nodes of dtemp

Table 1 The comparison of PFT sizes in different phases.

PFT phase Total nodes End nodes Reduction rate of nodes

PFT Construction 1025 46 4.5%

PFT Reduction I 48 24 50.0%

PFT Reduction II 12 10 83.3%

Table 1 shows that the number of nodes in the original PFT is large, but after

the reduction phase I, the number of total nodes is reduced a lot and the number

of end nodes is reduced a half; further, after the reduction phase II, the number of

total nodes and end nodes is small enough(12 and 10, respectively). Suppose the

number of end nodes divide the number of total nodes denotes reduction rate of
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nodes. With the help of two-phases reduction, the reduction rate of nodes in PFT

is improved from 4.5% to 83.3%.

3.3 Probability evaluation via multi-BIEs

T′ denotes the PFT after reduction, which is the abstract model obtained by the

probability space partition of the original model. The node with f > 0 is called end

node. And suppose that some positive traces may not be accepted by T′, there should

be m + 1 BIE analysers. m denotes the number of end nodes of T′. For each trace,

the corresponding BIE analyser is executed. And the SMC algorithm will terminate

until all BIE analysers terminate. The process is implemented with Algorithm 5.

With AL-SMC analyzing the motivating example, the evaluation results show

that the probability is 0.478 and the number of simulated traces is 819. Compared

with the UPPAAL-SMC verifier, the number of simulated traces reduces obviously

and the probability error is higher. But, it is still less than the half-interval coefficient

δ = 0.02. When the interval coverage coefficient c is increased to 0.99, the probability

is 0.461 and the probability error is less than that of UPPAAL-SMC, but the number

of simulated traces merely increases to 1589.
Algorithm 5 Probability evaluation via Multi-BIEs

Require: The prefix frequency tree after optimization T′, BLTL property ϕ′, half-

interval δ, the number of end nodes m

Ensure: Probability p

1: I := {(x1, γ1, end1), . . . , (xm+1, γm+1, endm+1)} //the set of BIE analysers

2: N := 0 //number of traces

3: while ∃ i ∈ I that endi = false do

4: σ := generateSampleTrace() //generate one trace

5: σ′ := preprocess(σ) //obtain abstraction trace σ3

6: if correctσ′ |= ϕ′ then

7: i := findEndNode(T′, σ′) //find the end node

8: if i 6 0 then

9: i := m+ 1 //add trace to (m+ 1)th analyser

10: xi := xi + 1

11: N := N + 1

12: if endi then

13: i := min(1, . . . ,m + 1) that endi = false //find an non-terminated

analyser

14: pi, γi := computeStatisticalParameteri(xi, N) //compute the probability

and ratio for ith analyser

15: if checkEndConditioni(γi) then

16: endi := true //terminate the ith analyser

17: for all i ∈ I do

18: pi, γi := computeStatisticalParameteri(xi, N) {execute the last calculation}
19: if pi 6 δ then

20: pi := xi/N //pi is too small and modify it

21: return p :=
m+1∑
i=1

pi //compute the final probability
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3.4 Algorithm discussion

The models or traces in each phase (σ0 to σ3, T, T′) is probabilistically equivalent

in terms of a certain property. i.e.

PM (σ0) = PM (σ1) = PM (σ2) = PM (σ3) = PM (T) = PM (T′)

So the correctness of probability evaluation on the final abstract model T′ is

guaranteed. The evaluation error is affected by the multi-BIE statistical analysis.

The time and space complexity of core algorithms in AL-SMC are shown in

Table 2. 1) The main function of property-based projection is to abstract traces

preliminarily and its time complexity is O(mn), where m denotes the length of the

trace and n denotes the number of the training set. 2) The time complexity of

PCA-based dimension reduction depends on the PCA algorithm. k denotes the

dimensions of feature, the time complexity approximates to a constant. 3) The key

states extraction only compares the frequency of features, so the time complexity is

also a constant. 4) The algorithm of building PFT traverses every state of the trace,

thus the time complexity is also O(mn). 5) The PFT reduction algorithm I and the

PFT reduction algorithm II are both recursive procedures based on multi-branch

tree, so the time complexity is less than O(d log d) and the space complexity is

O(log d), where d denotes the number of nodes in PFT. 6) Since the number of

iterations of the probability evaluation via Multi-BIEs algorithm is unknown, we

only measure the time complexity with a single iteration which mainly contains two

parts: (i) the time of searching terminal node is log d; (ii) the time of statistical

analysis with BIE is O(i), so the total time of this algorithm (one iteration) is

O(log d+ i) and i depends on the integration steps in BIE algorithm.

Analysis results show that the procedure of trace generating consumes more

time than BIE statistical analysis, while the property-based projection and the

establishment, optimization of PFT only consume small number of traces. So, the

procedure of abstraction and learning have few effects on the efficiency of AL-SMC.

In short, our AL-SMC is more efficient than classic BIE algorithm.

Table 2 The time and space complexity of the algorithms in AL-SMC.

Algorithm phase Time Space

Property-based projection O(mn) O(1)

PCA-based dimension reduction O(min(k3, n3)) O(k2)

Key states extraction O(1) O(1)

PFT constructing O(mn) O(1)

PFT Reduction I O(d log d)) O(log d)

PFT Reduction II O(d log d) O(log d)

Probability evaluation

(Single iteration process)
O(log d+ i) O(1)

4 Implementation and Case Study

The AL-SMC framework has been implemented in our Modana platform[3]

(https://github.com/ECNU-MODANA/AL-Modana.git) which is a modeling and
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analysis platform for CPS. Further, the core algorithms of AL-SMC are employed to

analyse several experiments. In this section, we compare the efficiency and accuracy

between AL-SMC verifier and UPPAAL-SMC verifier with a CPS benchmark:

energy-aware building[7]. Besides, the probability error of AL-SMC is also

discussed and a feasible solution to reduce probability error is proposed.

4.1 AL-SMC implementation

In our previous work, we have implemented Modana platform which supports

an integrated modeling and verifying environment for CPS. Figure 9 shows the user

interface of AL-SMC verifier which facilicates an automatic process of abstraction and

learning.

User should customize three input parameters (ν, ω, r), where

1. ν denotes the size of the training set.

2. ω determines the degree of trace abstraction which contains three thresholds: (i)

the threshold in PCA-based dimension reduction; (ii) the number of extracted

states during key states extraction process; (iii) the sum of probabilities of the

extracted states.

3. r denotes the reduction degree of PFT and determines fmin and fmax used in

Algorithm 3 and 4.

With different parameter settings, the different PFT are builded. For example, if

it needs more traces for learning and abstraction, the value of ν should be increased,

or the thresholds of ω is increased to remain more states in each trace. By these

ways, a more complex PFT can be obtained. In addition, increasing the value of r

leads to decrease the number of end nodes of PFT, which is crucial for the probability

evaluation phase.

Figure 9. The user interface of Al-SMC verifier.
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(a) Template for Room temperature (b) Template for Heater control

(c) Template for Strategy

Figure 10. The main stochastic hybrid automata templates used in energy-aware building.

4.2 Evaluating energy-aware building with AL-SMC

UPPAAL-SMC[5] is a new version of UPPAAL which supports statistical model

checking and adopts BIE algorithm. We compare the UPPAAL-SMC verifier with

our AL-SMC verifier with the model of energy-aware building[7] which we have

implemented in UPPAAL-SMC Model Checker. The goal of this model is to

evaluate the comfort and energy consumption of various control strategies with

varying environmental settings. The complete model consists of five SHA templates

in parallel: rooms, heaters, central controller, weather, and a user profile for each

room. Figure 10 shows main SHA templates in our model, in which each heater

heats more than one room, and the room needs to be heated when the temperature

is lower than a threshold. The controller decides how to move the heaters from one

room to another. If one heater is needed by more than one room at the same time,

the controller will choose a certain room according to the importance of each room.

In this experiment, we use three properties to compare the efficiency and accuracy

of UPPAAL-SMC verifier with AL-SMC verifier. The properties are as follows:

Table 3 Verified properties.

PID Property

ϕ1

ϕ2

ϕ3

P=?(F
648 energy > 210)

P=?(F
648 discomfort > 15)

P=?(F
648 discomfort 6 15 ∧ energy > 170)
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Table 4 Comparing traces number of AL-SMC with UPPAAL-SMC.

PID & Params

(δ, c)

Min trace number

(AL-SMC/

UPPAAL-SMC)

Max trace number

(AL-SMC/

UPPAAL-SMC)

Mean trace number

(AL-SMC/

UPPAAL-SMC)

ϕ1(0.05,0.99)

ϕ1(0.02,0.9)

ϕ2(0.05,0.99)

ϕ2(0.02,0.9)

ϕ3(0.05,0.99)

ϕ3(0.02,0.9)

250/578

842/1546

350/645

927/1677

363/662

861/1722

353/647

965/1644

367/659

935/1690

412/684

954/1810

350/625

959/1603

353/655

929/1685

387/672

882/1765

Table 5 Comparing time consumption of AL-SMC with UPPAAL-SMC.

PID & Params

(δ, c)

Min time

(AL-SMC/

UPPAAL-SMC)

Max time

(AL-SMC/

UPPAAL-SMC)

Mean time

(AL-SMC/

UPPAAL-SMC)

ϕ1(0.05,0.99)

ϕ1(0.02,0.9)

ϕ2(0.05,0.99)

ϕ2(0.02,0.9)

ϕ3(0.05,0.99)

ϕ3(0.02,0.9)

144/144

293/375

112/161

304/421

115/165

308/430

123/161

337/411

137/164

522/623

135/171

509/626

131/146

314/401

122/162

493/593

124/168

315/442

Table 6 Comparing probability of AL-SMC with UPPAAL-SMC.

PID & Params

(δ, c)

Min probability

(AL-SMC/

UPPAAL-SMC)

Max probability

(AL-SMC/

UPPAAL-SMC)

Mean probability

(AL-SMC/

UPPAAL-SMC)

ϕ1(0.05,0.99)

ϕ1(0.02,0.9)

ϕ2(0.05,0.99)

ϕ2(0.02,0.9)

ϕ3(0.05,0.99)

ϕ3(0.02,0.9)

0.33402/0.32759

0.34755/0.3553

0.42612/0.42813

0.44511/0.46099

0.44631/0.44823

0.45322/0.46721

0.48486/0.43914

0.46737/0.41981

0.56874/0.54116

0.54631/0.51391

0.53623/0.53821

0.53136/0.54817

0.41046/0.39084

0.40536/0.3909

0.50363/0.48225

0.49826/0.48473

0.48941/0.49633

0.48063/0.49312

We execute each verifier many times, and compare these two verifiers with three

aspects: required trace number, time consumption and probability, respectively.

Table 4 shows the number of required traces of two verifiers. It shows that AL-SMC

verifier reduces the number of required traces more effectively, and the number of

traces is reduced about 20% to 50% compared to UPPAAL-SMC verifier. Table 5

shows the comparison of time consumption of these two verifiers. It shows that

AL-SMC verifier also reduces the time consumption, but the reduction is less

obvious than that of the number of traces. The main reason is that AL-SMC

simulates more variables for each state than UPPAAL-SMC does, so it consumes

more time to simulate one trace. Table 6 shows the comparison of probability. In

order to analysis the error between AL-SMC and UPPAAL-SMC, we estimate the
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real probabilty with a great many experiments, threrefore, the error of AL-SMC is

the difference between the probabilty of AL-SMC and real probabilty, and the error

of UPPAAL-SMC is obtained in the same way. We find that the probability error

between UPPAAL-SMC and AL-SMC is acceptable within the error bound δ. To

further estimate the error, we give the probability distribution of probability error

for both UPPAAL-SMC and AL-SMC verifier which is shown in Fig. 12(a). The

distribution of error approximates to the Student-T distribution[11]. To show the

difference between UPPAAL-SMC verifier and AL-SMC verifier more intuitively, we

test them under different probabilities and then record the time consumption and

required traces as shown in Fig. 11. As we can see, the efficiency of AL-SMC verifier

is enhanced obviously compared to UPPAAL-SMC verifier.
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Figure 11. Comparing trace number and time consumption of UPPAAL-SMC with

AL-SMC.

(a) r = 0.15. (b) r = 0.25.

Figure 12. Error estimation with different reduction degrees (r).

It is obvious that the less the number of simulated traces is, the greater the

probability error is. It may be problematic when the number of traces for SMC is

reduced too much, e.g. the case of ϕ3(0.02, 0.9) whose number of simulated traces is

reduced by nearly 50%. The reduction rate is actually determined by the number of

end nodes in PFT. To decrease the number of end nodes can help increase that of

simulated traces. As a result, we increase the parameter r to decrease the number of

end nodes. As shown in Fig. 12(b), the error distribution can be effectively

corrected by increasing r. By this way, we can balance the number of simulated

traces (representing the efficiency of AL-SMC) and the error bound (representing

the accuracy of AL-SMC) with r.
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5 Related Works

We focus on the statistical model checking techniques which was first proposed

by R.Grosu[12]. Based on the basic SMC, some variations have been proposed the

past years[23,29,30,19,15,31]. Some related work are summarized as follows:

Performance of basic SMC. Kim et al.[20] give an empirical evaluation of the

above algorithms except APMC, and the experimental result turns out that the four

algorithms are practically useful to safety critical hybrid systems. For qualitative

SMC, SSP is less effective than SPRT and BHT; BHT is faster than SPRT when

checking the property whose the probability threshold is far away from its real

probability, otherwise BHT is obviously less efficient than SPRT. Zuliani et al.[31]

compare the number of traces analyzed by APMC and BIE; they conclude that BIE

excels remarkably in performance. Our approach uses BIE algorithm to accomplish

the probability estimation in the final phase.

Learning-based SMC. Our approach uses abstraction and learning techniques.

Therefore we discuss the significantly related previous works which can be divided

into three categories: (i) learning a prediction model for verification by means of

predicting the possible result or occurrence of event[9,21]. This kind of methods can

directly apply existing Machine Learning techniques, but hardly get a precise

evaluation of error. (ii) learning probability distribution functions by statistical

abstraction to simplify the original model without changing the probability

distribution in the overall view[2]. It can give us an insight into the core behavior of

a system, and may improve the performance as well as accuracy. (iii) learning

probabilistic automata to build an abstract model with fewer states and transitions.

Ref. [28] presented a wavelet-based approach to learning hybrid automata from a

black-box system. Ref. [25] is aimed to improve the performance of SMC via

verifying the learned abstract probabilistic automata (based on ALERGIA[24] as an

extended grammar inference algorithm ALERGIA[6]). Ref. [26] abstracted the

original probabilistic automata by invariant inference and effectively improved the

SMC performance with an acceptable error. In fact, our approach can be treated as

a combination of the 2nd and 3rd categories.

Advanced Topics of SMC. To further explore SMC technology, some advanced

topics have been studied. Numerical and statistical methods are combined to

improve the performance of SMC or to address the nuts like non-determinism[4,26].

Henriques et al. presented an approximate approach to non-determinism issue of

SMC in a probabilistic way[14]. SMC is usually good at checking a time-bounded

property, so how to check an unbounded property remains a hot topic. He, Jennings

et al. presented a method for transforming an unbounded “Until” issue to bounded

one[13,18]. Another topic of SMC is checking the property containing rare event

because the extremely low occurrence of rare event always requires a large number

of simulations, leading to unacceptable low efficiency. Jegourel, Legay et al.

presented improved approach oriented to rare event based on the efficient simulation

techniques (Importance Sampling and Importance Splitting)[16,17], which effectively

reduce the number of traces required by SMC.
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6 Conclusion

In this paper, we focus on improving the performance of SMC with automatic

abstraction and learning techniques. SMC may encounter the performance bottleneck

when it evaluates probability using BIE algorithm in some cases. To solve the problem,

we propose an optimized approach for SMC based on abstraction and learning called

AL-SMC. The novelty of our approach are: (i) simplifying the traces by projection

and abstraction techniques; (ii) partitioning the original probability space into several

relatively balanced sub-spaces by learning a PFT; (iii) evaluating the probability of

each sub-space in parallel. Besides, we analyse the time and space complexity of

some core algorithms, and have also implemented AL-SMC in our Modana Platform

to support the automatic abstraction and learning. Experimental results show that

the optimized AL-SMC can effectively improve the performance of SMC and ensure

the accuracy of the result with an acceptable range.

As part of future work, in addition to focusing on the efficiency of our

implementation, we plan to use a heuristic method to optimize AL-SMC by

automatically adjusting the parameter setting. Furthermore, we will improve our

tool to make it more user-friendly.
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