
Int J Software Informatics, Volume 5, Issue 3 (2011), pp. 415–433 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2011 by ISCAS. All rights reserved. Tel: +86-10-62661040

Measuring Agility and Architectural Integrity

Walker Royce

(Chief Software Economist, IBM, Boston, Massachusetts, USA)

Abstract Most organizations that depend on software are pursuing more flexible archi-

tectures and more agile life-cycle processes to increase business flexibility. What does agility

look like, and how do we measure it? A truly agile project or organization should experience

changes that are more straightforward and more predictable. Consequently, improvements

are best measured by gauging the change trends in software baselines. A well-accepted tenet

of software engineering states, “The later you are in the life cycle, the more expensive things

are to fix.” This iron law, an artifact of a waterfall culture, should not apply if you have

transformed to agile software delivery with a well-architected system. This bold assertion is

the root of the metric patterns presented in this paper.

Key words: agility; architecture; earned value; econometrics; honest communications;

integration; measured improvement; metrics; steering; software management; software eco-

nomics; trust

Royce W. Measuring agility and architectural integrity. Int J Software Informatics, Vol.5,

No.3 (2011): 415–433. http://www.ijsi.org/1673-7288/5/i92.htm

Three recurring themes are bubbling to the top of business priorities in most
organizations that derive value from their software delivery capability: integration,
agility, and measured improvement.

The integration of systems, products, applications, and organizations provides
most of the differentiated value in today’s competitive information marketplace. In-
tegration challenges also represent the primary sources of uncertainty, complexity,
and cost of developing and maintaining systems. In the systems and software de-
velopment life cycle, resolving the significant uncertainties early through continuous
integration is a well-established best practice that improves economic outcomes. Yet
most organizations still address the easy, unambiguous activities first to show early
progress. To realize breakthrough economic gains, integration must take on a higher
priority. A natural extrapolation of this principle is that integration testing should
precede unit testing. This counterintuitive statement cuts against the grain of con-
ventional software delivery culture. Most “mature” projects and organizations work
in reverse: Unit testing precedes integration testing. Not only is this sort of conven-
tional, waterfall-model thinking mature; in many cases it is geriatric.

Integration testing activities ensure that components, services, and data interop-
erate properly so that a system’s functional behaviors can be assessed in an executable
configuration. In practice, integration has proven to be the most enlightening activity
in exposing the architecturally significant risks in software development. Resolving

Corresponding author: Walker Royce, Email: weroyce@us.ibm.com

Paper received on 2011-01-21; Revised paper received on 2011-03-09; Paper accepted on 2011-03-10;

Published online 2011-03-17.

416 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

requirements and architectural uncertainties earlier is paramount to reducing the bur-
dens of the typical late-in-the-life-cycle rework that stifles agility. Performing integra-
tion testing prior to investing in unit test completion will improve agility by addressing
the far-reaching, potentially malignant, changes earlier. Resolving the more benign,
finer-grained adjustments exposed in unit testing is necessary, but these activities
overemphasize completeness and coverage measurements that should be secondary
concerns until the system composition challenges have been largely resolved. In more
blunt terms: Don’t address precision in the components until you have achieved ac-
curacy in the architecture (composition, relationships, and behavior of components).

Measured improvement is a key theme. Why is measurement so important?
What should we measure and why? Six metric patterns – three progress perspectives
and three quality perspectives – are proposed to measure software outcomes. These six
patterns illustrate the improvement trends possible by transforming from conventional
engineering governance to economic governance. This transformation is enabled by a
“steering” style of leadership focused on measured improvement. Some of the metric
patterns are unorthodox and are best understood when examined from an integration-
first perspective. The resulting change trends show how breakthrough agility can
result in significant business flexibility by allowing more change freedom late in the
life cycle and post-delivery.

When changes are easy to implement, a project is more likely to increase the num-
ber of changes, thereby increasing quality. Organizations and projects can balance
their resources used on defensive necessities (such as defect resolution and meeting
schedule commitments on feature content) with offensive thrusts (such as new integra-
tions, new innovations, improved performance, earlier releases, and higher quality).
More time playing offense offers opportunities for improving economic outcomes and
market differentiation.

1 The Importance of Measurement

Software professionals work in a domain with a high degree of uncertainty and
complexity. So our measurement challenges are severe, but therein is an opportunity
for competitive advantage. How does a systems and software development organi-
zation make improved productivity claims more credible and demonstrable, thereby
earning more trust among their stakeholders?

As more and more businesses differentiate their products, systems, and services
through their software delivery capability, more attention to software economics be-
comes vital. Measured improvement is a best practice for improving software eco-
nomics. This applies to teams, projects, and organizations. In 1981, Barry Boehm
laid the foundations for decades of work on improving the economics of software
development[1,2]. Since then, software economics has evolved in many directions but
has been mostly absorbed in process transformations to new methods[3−6]. Measured
improvement involves four basic steps:

1. Define the current capability: the as-is measures.
2. Propose a target capability improvement: the to-be measures.
3. Develop a roadmap to get from the current capability to the target capability

with measurable, incremental feedback at key checkpoints along the route.
4. Progress toward the targets while steering with real-time gauges of measured

Walker Royce: Measuring agility and architectural integrity 417

progress and quality to adjust and balance the win conditions of all stakeholders.
Scientists define measurement as an observation that reduces uncertainty, where

the result is expressed as a quantity[7]. We use measurement to advance our under-
standing and reduce uncertainties. Any significant reduction in uncertainty is enough
to make a measurement valuable. One of the recurring attributes of most best prac-
tices for software delivery is that they reduce uncertainties earlier in the life cycle and
thereby increase the probability of success, even if success is defined as cancelling a
project earlier so that wasted cost is minimized.

Reducing uncertainty by measuring trends increases trust among stakeholders.
Without quantified backup data, our software estimates, proposals, and plans look like
long-shot propositions with no compelling evidence that we can deliver predictably or
improve the status quo. Trust is earned when we combine integrity and competence.
Measurements have integrity when there is an accepted basis of theory and practice.
They exude competence when we demonstrate a track record of benchmarks (scales for
judging appropriateness) and capture our experience in precedent results, references,
and experience in the field. Since our industry does not have enough accepted theory
and practice, we all suffer from an environment of distrust and skepticism surrounding
our measured improvement claims.

I use the term software econometrics as the measurement foundation underlying
improvements in software delivery productivity. The econo prefix has the right conno-
tation for reinforcing these as measures for modern economic governance as opposed
to traditional engineering governance and corresponding measures. The econometric
patterns asserted here are grounded in successful practice that I have observed across
some of the industry’s most successful projects. They have been demonstrated in some
larger scale, industrial-strength applications, as well as numerous projects at smaller
scale. However, we still lack adequate empirical evidence and well-documented case
studies. My hope is that this paper will provide some target patterns for others to
validate or challenge.

Improving measurement discipline is important because it correlates strongly
with better business performance. The data in Figure 1, compiled from hundreds
of software organizations by Capers Jones[4], provides a compelling basis for three
observations:

1. The difference between projects and organizations with strong measurement
practices and those with weak practices is impressive. Measurement discipline enables
more trustworthy communications among stakeholders. The value of that trust can
only be quantified coarsely, but the impact is eye-opening.

2. The return on investment (ROI) for measurement is significant in the near
term and improves over time.

3. Three of the top five reasons for legal proceedings in software are directly
related to poor measurement practices.

2 Software Metrics History

Measurements in most software organizations are more like the sleight-of-hand
statistics quoted by politicians than the matter-of-fact statistics quoted by engineers
and scientists. Capers Jones and I agree on this harsh assessment. He says, “Soft-
ware has perhaps the worst measurement practices of any ‘engineering’ field in human

418 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

Figure 1. How important is measurement?

history.” Politicians and the software industry have similar track records for under-
delivering on commitments. Most stakeholders in the software business are justifiably
cynical because their experience with software productivity improvement is plagued by
hyperbole and spin. Although many conventional software metrics approaches, such
as earned value management (EVM), are well-founded, they are typically implemented
in a way that is (unintentionally) dishonest. This statement may seem hyperbolic,
but decades of first-hand experience across hundreds of projects have led me to this
provocative conclusion.

A brief review of past measurement approaches, looking at three genres1 of soft-
ware governance, gives context for why transformations to better measurement are
needed.

1. Engineering governance. The waterfall model[8] is still practiced by the ma-
jority of software development teams because it is the predominant legacy culture of
traditional engineering governance. Waterfall management is simple, but it is overly
simplistic for software where uncertainties dominate a project’s timeline.

2. Hybrid governance. About 20 to 30 percent of system and software devel-
opment teams practice iterative development techniques[5], where architectures are
constructed first and evolved through a sequence of executable releases. Although
iterative development is more complex to manage, therefore requiring more project
management savvy, it succeeds more frequently.

3. Economic governance. Perhaps 10 to 20 percent of industry teams prac-
tice agile or lean software delivery techniques[9], where project teams focus on early
reduction of uncertainty, continuous integration, asset-based development, increased
stakeholder interaction, and smarter, collaborative environments. Management savvy,

1 While “genre” might seem like the wrong word, it is used intentionally to signify that software is

much more of a collaborative creation than engineering production.

Walker Royce: Measuring agility and architectural integrity 419

combined with meaningful measurement and instrumentation, results in higher levels
of agility and business flexibility.

Consider the levels of uncertainty shown in Figure 2. Most engineering disciplines
have evolved into the lower three levels, where uncertainty is relatively manageable.
High-uncertainty engineering efforts are still attempted, such as capping the Gulf of
Mexico oil leak in 2010, but these are the exceptions. Software delivery, by com-
parison, is a discipline dominated by human creativity, market forecasting, value
judgments, and uncertainty levels commensurate with other economic endeavors like
movie production and venture capital management. Some of the software develop-
ment life cycle can be managed like engineering endeavors, but most software projects
include higher levels of uncertainty.

Figure 2. Lo and Mueller’s taxonomy of uncertainty[10]

Conventional engineering project management techniques assume little uncer-
tainty in their requirements and exploit mature precedents for production and de-
ployment. Software delivery is much more of a creative economic discipline, akin to
making movies[11,12]. Engineering discipline has its place, but software governance
techniques must steer through far greater levels of uncertainty to deliver better eco-
nomic outcomes. For decades, the software industry has been marching toward better
process models for attacking uncertainty. Barry Boehm’s introduction of the spiral
model[13] in 1988 shone one of the brightest spotlights on the importance of managing
uncertainties better. This theme has dominated the software industry’s evolution of
best practices ever since.

Figure 3 shows a project manager’s view of the process transition that the in-
dustry has been marching toward for decades. Project profiles representing each of
the three genres plot development progress versus time, where progress is defined as
percent executable, that is, demonstrable in its target form. Progress correlates to
tangible intermediate outcomes and is measured through executable demonstrations.
The term executable does not imply that a baseline configuration is complete, com-
pliant, nor up to specifications; it does imply that the software is integrated, testable,
and measurable.

The table at the bottom of the figure describes the primary measures used to
govern waterfall projects (right column), the measurement framework best suited
for transforming to iterative development (middle column), and the six econometrics
described later in this paper for measuring agile software delivery (left column).

420 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

Figure 3. Improved project profiles and measures

Waterfall governance typically results in a project profile with protracted inte-
gration activities and excessive late design breakage, as highlighted in the shaded
oval of Figure 3[5]. More agile software delivery approaches look like the middle and
left-hand profiles in Figure 3. These methods start projects with more existing as-
sets, architectures, components, and services. Modern best practices, combined with a
supporting platform, enable earlier integration testing and more effective team collab-
oration. These two goals are tightly coupled. Effective collaboration is a prerequisite
for continuous integration.

Assessing functional integrity is important at all levels of a software system under
development. However, ensuring that all parts interoperate holistically – that they
integrate into executable, testable configurations – is higher priority than making sure
the parts themselves are 100% complete as early as possible. This distinction can be
understood most easily in terms of testing. Features, behaviors, usage models, and
performance of the integrated system or product must be substantially tested prior to
investing in complete unit testing. Otherwise, the project will be exposed to stifling
levels of rework.

The riskiest requirements, design issues, and test issues are attacked and resolved
first, with the malignant (i.e., architecturally significant) changes addressed earlier,
thereby improving agility at each stage in the life cycle. Measurable progress and
quality insight are accelerated, and projects can converge on deliverable products

Walker Royce: Measuring agility and architectural integrity 421

that can be released to users and testers more predictably. Life-cycle scrap and
rework is reduced considerably, and architectural integrity is maintained through early
refactoring and elimination of late, suboptimal fixes made under budget or schedule
duress.

Projects that have transitioned to a more agile “steering” leadership style based
on effective measurement can optimize scope, design, and plans, reducing unneces-
sary scrap and rework. Steering implies active management involvement and frequent
course corrections to produce better results. Effective steering eliminates uncertainties
earlier and significantly improves the probability of win-win outcomes for all stake-
holders. Scrap and rework rates are not driven to zero, but to a level that corresponds
to healthy discovery, experimentation, and production commensurate with resolving
the uncertainty of the product being developed (perhaps 15% of total effort spent in
reworking the code and test base, as opposed to the 40% of effort more typical with
conventional governance.)

To transform successfully from conventional engineering governance to modern
agile governance requires a significant cultural transformation. This is best achieved
through the pursuit of one simple change theme: Integration testing should precede
unit testing. In practice, this theme is overly simplistic: Integration and unit testing
actually proceed in parallel. However, to accelerate the transformation to increased
agility, it is best to simplify and clarify that the highest priority is to achieve inter-
mediate milestones of executable test cases of integrated functionality.

This is not a new idea. The principles of iterative development[5], the spiral
model[13], risk management[14], and the foundations of modern agile methods[9], such
as test-driven development all exemplify a process spirit that emphasizes continuous
and early integration. To translate these principles into better outcomes, project
teams need to plan their activities and early releases to drive integration testing
targets prior to unit testing targets. In the most standout software success stories
that I have observed, where software product releases are straightforward to maintain
over a long period of time, teams prioritize continuous integration testing of the forest
over detailed unit testing of the trees. The two strongest, industrial-strength examples
of integration-first results are well documented[5,15]. This integration-first spirit has
a natural parallel in managing systems and software development teams: Optimizing
collaborative teamwork is more important than optimizing individual productivity.

Keeping this integration-first theme in mind will help increase the agility of the
larger project team, no matter what role you play in a software project.

• Project managers. Lay out plans, resources, and measures that prioritize inte-
gration testing of key usage scenarios in multiple checkpoints for stakeholder steering.

• Analysts. Analyze the business context or system context to define first the
integrated behaviors, qualities, and usage scenarios that represent the holistic value
and whose elaboration will reduce the most uncertainty.

• Architects. Elaborate the architecture of the solution and the evaluation criteria
for incremental demonstration of the most important behaviors and attributes, such
as changeability, performance, integrity, security, usability, and reliability.

• Designers/developers. Develop units, services, and components that are always
executable and testable, evolving from initial versions that permit execution within
their usage context (that is, satisfy their interface) in a trivial way and then progress

422 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

toward more complete components that meet quality expectations across their entire
operational spectrum.

• Testers. Identify testing infrastructure, data sets, sequences, harnesses, drivers,
and test cases that permit automated regression testing and integration testing to
proceed without reliance on completely tested units and components.

Emphasizing integration tests as the intermediate outcomes will lead to more
team collaboration across roles and earlier reconciliation of the significant uncertain-
ties. Better measurement across the industry will provide stronger evidence to back
up that last assertion. Our industry needs more experimental results and measured
case studies.

3 Managing Uncertainty

Successfully delivering software products in a predictable and profitable manner
requires a steering leadership style that expects an evolving mixture of discovery,
production, and assessment. All stakeholders must collaborate to converge on moving
targets and manage uncertainties, as illustrated in Figure 4.

Figure 4. Important steering perspectives to manage uncertainty

Uncertainty is best quantified by measuring the reduction in variance in the dis-
tribution of resource estimates to complete. These estimates are random variables and
should be represented by their probability distributions, not just the mean values[16].
In a healthy software project, each phase of development produces an increased level
of understanding by reducing uncertainty in the evolving plans, specifications, and
demonstrable releases. At any point in the life cycle, the precision of the subordinate
artifacts, especially the code and test base, should be in balance with the evolving
precision in understanding and at compatible levels of detail.

Walker Royce: Measuring agility and architectural integrity 423

Iterative and agile development processes have evolved into more successful deliv-
ery processes by improving the navigation through uncertainty. This steering requires
measured improvement with dynamic controls, instrumentation, and intermediate
checkpoints that permit stakeholders to assess what they have achieved so far (their
as-is situation), what perturbations they should make to the target objectives (their
to-be situation), and how to refactor what they have achieved to adjust and deliver
those targets in the most economical way (the roadmap forward). The key outcome
of these modern agile delivery principles is increased flexibility throughout the life
cycle. This flexibility enables the continuous negotiation of scope, plans, and solu-
tions for effective economic governance. Precision in the life-cycle artifacts is added
as uncertainties are resolved.

The difference between precision and accuracy is an enlightening lens for focusing
on the crux of software management. Accuracy is a measure of truth and freedom
from error. Precision identifies the degree of accuracy and implies repeatability or
elimination of uncertainty. Unjustified early precision — in requirements or plans
— has proved to be a substantial, yet subtle, recurring obstacle to success. Most
of the time, the pursuit of early precision is alluring but serves only to provide a
counterproductive façade for portraying illusory progress and quality. Trust among
stakeholders erodes as the divergence between reported progress and true progress
inevitably reveals itself. Unfortunately, many stakeholders demand early precision
and detail because it gives them (false) comfort in the progress achieved. Software
management is full of gray areas, situation dependencies, and ambiguous tradeoffs.
Understanding the difference between precision and accuracy is a fundamental skill
of good software managers, who must accurately forecast resource estimates, risks,
and the effects of change. There are several ways to present estimates, and trust
is established with honest communications. Emphasizing accurate estimates with
honest qualified precision will help stakeholders engage in a more fruitful discussion
of the uncertainties remaining.

The definition of truth by the American justice system provides an illuminating
metaphor for understanding the difference between accuracy and precision. Consider
these three familiar components: the truth (be accurate), the whole truth (be precise
enough and include everything relevant), and nothing but the truth (don’t be overly
precise and add irrelevant detail).

In the software development world, providing an accurate estimate is the main
target dimension of the truth. Providing a credible measure for telling the whole
truth requires backup evidence such as precedent experience, a prototype, or a re-
source estimate from an empirical model. Using honest precision (such as ranges
or probability distributions) ensures that you are focused on nothing but the truth
and are not misleading anyone by implying more certainty than is justified. This is
best accomplished by openly admitting the uncertainties in your forecasts, providing
some quantitative indication of the variance of your estimates. We have all seen pro-
posals for software projects that forecast the cost with incredible precision, such as
$20,320,541. Can we really forecast the cost of a project that we plan to deliver nine
months from now down to the dollar? This is dishonest precision. Although precise
commitments are frequently necessary in the business world, accurate representations
of the uncertainty will establish more trust among stakeholders.

424 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

4 Six Econometric Patterns

IBM’s Rational Division has been compiling best practices and economic im-
provement experiences for decades. We are in the continuing process of synthesizing
this experience into more consumable advice and valuable intellectual property in the
form of value traceability trees, metrics patterns, benchmarks of performance, and
instrumentation tools to provide a closed-loop feedback control system for improved
insight and management. Measurement of software progress and quality is a complex
undertaking, given the large number of product, project, and people contexts that
have an impact on software development efforts. However, several aspects of software
measurement are generally applicable to almost all software projects.

The six metrics patterns are presented here from two perspectives of project
governance. These perspectives illustrate the difference in outcomes between a con-
ventional governance approach (waterfall model management using traditional plan-
and-track project management techniques) and an economic governance approach
(the measure-and-steer leadership style more pervasive in modern software delivery
approaches).

I could provide hundreds of examples that support the patterns presented as
typical of conventional governance. They are all too common. However, I can only
provide about 10 projects that have demonstrated the measured patterns presented
as the modern economic governance targets. These standout project successes all
had a recurring attribute: They all implemented a process that drove integration
testing earlier in the life cycle to assess the architecturally significant design and
requirements tradeoffs. In other words, they attacked the larger uncertainties first,
and they achieved cost-of-change trends that were counter to conventional wisdom.
In most organizations, including IBM, these economic governance patterns are still
aspirations more than expectations.

Reasoning through these metric patterns and reflecting on the impact of integra-
tion testing preceding unit testing will help to explain why the target metric patterns
are so strikingly different from conventional wisdom.

There are two dimensions of metrics needed for effective steering: progress and
quality. Progress metrics are indicators of how much work has been accomplished.
Quality metrics provide indicators of how well that work has been accomplished. With
these two perspectives, stakeholders can more accurately assess whether a project is
likely to deliver successfully and predictably.

Although financial metrics are also needed, financial status is well understood.
We know exactly how much money has been spent and how much time has elapsed.
The challenge with earned value management (EVM) systems is to assess how much
technical progress has been accomplished so that it can be compared with cost ex-
pended and time expended2.[5] A reliable measure of earned value (or percent com-
plete) is necessary to forecast accurately the estimates to complete. Traditional EVM
methods measure against static targets. However, there is no reason EVM cannot be
used with dynamically changing targets, which would result in more honest assess-
ments of software delivery. I have only seen such EVM practices in a few industrial
software projects where there was very high trust among stakeholders. The metric

2Wikipedia also has a concise summary of earned value management.

Walker Royce: Measuring agility and architectural integrity 425

patterns that follow need to be combined with conventional cost and schedule tracking
to provide more insightful EVM.

Conventional projects whose intermediate products were mostly paper documents
relied on subjective assessments of technical progress or measured the number of
documents completed and their level of detail. While these documents did reflect
progress in expending energy, they were not very indicative of useful work being
accomplished. Hence my assertion that such activity-based EVM techniques were
inaccurate. They do not provide metrics that correlate with true progress.

Each proposed metric has two dimensions: the static value and the dynamic
trend. While a discrete value provides one dimension of insight, how these values
change over time provides the important perspective for assessing the current situ-
ation, forecasting expectations, and steering a project or organization. The change
trends provide insight into how the products are evolving, whether situations are
getting better or worse, and by how much. Agile software delivery and a steering
management style are focused on managing change. Measuring change is therefore a
necessity.

In modern software delivery projects or organizations focused on a software line
of business, the historical values of previous iterations and projects provide precedent
data for planning subsequent iterations and projects. Consequently, once metrics col-
lection is ingrained, a project or organization can measurably improve its ability to
predict the cost, schedule, or quality performance of future work activities. With the
agile framework known as “Scrum,” for example, estimation revolves around the prod-
uct backlog. If the team velocity is well understood from previous sprints, and even
if there are no significant impediments in sight, Scrum estimation still involves some
guesswork. However, planning and expected timeframes become more trustworthy
over time since they have a defendable, measurable basis of estimate.

4.1 Progress econometrics

Progress metrics are indicators of how much work has been accomplished. Figure
5 illustrates three core metrics for measuring progress. The presentation format for
each metric provides two perspectives. The left-hand graphics are the anti-pattern,
namely the metric trends expected if you follow conventional waterfall model processes
and use engineering governance. The right-hand graphics are the target pattern of
outcomes you would expect from healthy projects with true agility and robust archi-
tectural solutions.

4.1.1 Planning progress: demonstrable capability over time

Planning progress with conventional engineering governance (Figure 5, upper
left) is measured through milestone achievement and earned value by producing all
supporting artifacts, mostly documents. Planning progress is better measured with an
anatomy of planned features, user stories, and capabilities for demonstrating progress
to the user community (Figure 5, upper right). Reasoning about how you will demon-
strate product or system features to your users will change the focus of planning and
scope management from precise documents and models (namely, the anti-pattern of
getting all the requirements right up front) to the important and incremental sequence
of executable results needed to best resolve uncertainties. Planning progress is defined

426 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

here as the key measure of requirements management and keeps the team focused on
user-perceived quality and progress.

Figure 5. Progress metrics for better economic governance

An initial vision statement evolves into interim evaluation criteria for early demon-
strable releases, which evolve into test cases for later release baselines and finally
detailed acceptance criteria for releases to the user community. Scope evolves from
abstract and accurate representations into precise and detailed representations as
stakeholder understanding evolves (that is, uncertainty is reduced).

In modern economic governance, scope management is a discipline of asset-based
development, where solutions evolve from stakeholder needs and stakeholder needs
evolve from available solution assets. This equal and opposite interaction between the
requirements space (user need) and solution space (assets, architectural patterns, and
design efforts) is the engine for iteration. We don’t build many applications dominated
by custom code development anymore; they are neither economically feasible nor
competitive.

Many organizations have adopted some form of measuring the burn-down rate
and project “velocity” as a more agile measure of progress. Especially as projects
get into the production stages of executable releases, the rate of change of remaining
release content in units of user visible capabilities (features, user stories, scenarios,
functions, services, or whatever you call them) becomes important. The big difference
here is that you are measuring executable results rather than expended effort.

4.1.2 Technical progress: executable code and test base over time

The conventional profile for technical progress (Figure 5, middle left) is all too

Walker Royce: Measuring agility and architectural integrity 427

familiar to most software development organizations. With few exceptions, waterfall-
managed projects are mired in inefficient integration and late discovery of substantial
design issues. They expend roughly 40% or more of their total resources in integration
and test activities, with much of this effort consumed in excessive scrap and rework
during the late stages of the planned project. By following a linear sequence of activi-
ties from requirements to design to code, to unit test and then to integration and test,
projects effectively delay their tangible understanding of the significant uncertainties.
The early false precision built into requirements documents, design documents, and
project plans translates into late scrap and rework. Project management typically
reports a linear progression of earned value up to 90% complete before reporting a
major increase in the estimated cost of completion as they suffer through late inte-
gration testing where the real need to resolve architecturally significant uncertainties
manifests itself.

Software earned value systems based on conventional activity, document com-
pletion, and milestone completion are not credible. They ignore integrated progress
and quality of the evolving system architecture, where the value and uncertainties
dominate, and focus instead on measuring piecemeal progress of activities and the
quality of intermediate artifacts and components (the easy parts). The result of con-
ventional engineering governance applied to software projects is that the end-game
of most software projects is consumed completely in playing defense and fighting off
excessive scrap and rework to avoid over-running cost and schedule targets.

The target profile for technical progress in agile software delivery (Figure 5, mid-
dle right) is a result of performing integration testing earlier through a progression
of demonstrable releases, thereby exposing the architecturally significant uncertain-
ties to be addressed earlier where they can be resolved efficiently in the context of
life-cycle goals. A greater reliance on more standardized architectures and reuse of
commercial components and other middleware are equally important. This reuse and
architectural conformity contribute significantly to reducing uncertainty through less
custom development and precedent patterns of construction. The downstream scrap
and rework tar pit is avoidable, along with late shoe-horned fixes that degrade system
changeability. Architectural changes are addressed earlier, resulting in a significant re-
duction in late, malignant changes. When software changes are more benign, projects
have increased flexibility and can play offense in the later phases: adding features,
adding quality, or delivering earlier.

A demonstration-driven life cycle where integration test coverage precedes unit
test coverage results in a different project profile. Rather than a linear progression of
earned value (which is usually inaccurate and misleading), a healthy project will ex-
hibit an honest sequence of progressions and digressions as they resolve uncertainties,
refactor architectures and scope, and converge on an economically governed solution.
This technical progress metric becomes the key measure of architecture management,
helping you to reason about how you will elaborate the architecture and refactor it
as you flesh it out.

4.1.3 Economic progress: uncertainty in estimates-to-complete over time

The last progress metric is a measure of the variance in the cost- or time-to-
complete estimate. This is a measure of the uncertainty remaining and requires

428 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

that project management periodically quantify an estimate-to-complete and explicitly
address the error sources in that evolving sequence of estimates.

The conventional profile for economic progress (Figure 5, lower left) is charac-
terized by optimistic early assessments of low uncertainty as stakeholders enjoy false
comfort in the façade of detailed artifacts, plans, models, and early coded units.
Relatively few design flaws and requirements tradeoffs are uncovered by the quality
assurance techniques of human inspection, design review meetings, and requirements
traceability analyses. Documents, models, and even source code are “speculative” rep-
resentations: They are guesses. Only executable code provides tangible facts about
behavior, performance, and quality. Although unit testing provides factual feedback
on components, this only resolves the simpler bugs and local fixes. Once integra-
tion testing starts making the integrated software qualities tangible, we can move
from speculative adjustments to factual steering on the most important (and usually
most uncertain) system-level requirements tradeoffs and architectural behaviors and
attributes. As these integration tests are executed later in the life cycle, the real
uncertainties in the estimate-to-complete start to emerge.

The target profile for economic progress (Figure 5, lower right) illustrates the
outcome of honest communications among stakeholders, where the uncertainties (and
hence the variance in the estimates-to-complete) start off higher and the project lead-
ership prioritizes activities, artifacts, demonstrations, and releases to steer the project
systematically toward reduced uncertainty. Projects can be much more effective at
steering toward better outcomes by prioritizing integration testing and the most chal-
lenging design tradeoffs ahead of unit test coverage, completeness of requirements,
and completeness of design details in (falsely) precise artifacts. In the worst case,
stakeholders realize that projects should be cancelled earlier because they are not
converging on success. In the best case, stakeholders can make tradeoffs continuously
among cost, value, and time. Both of these situations represent positive economic
governance outcomes.

Modern agile governance of software delivery means managing uncertainty through
steering. In a healthy software project, each successive phase of development pro-
duces an increased level of understanding in the evolving plans, specifications, and
completed solution, because each phase furthers a sequence of executable capabilities
and the team’s knowledge of competing objectives. At any point in the life cycle, the
precision of the subordinate artifacts should be in balance with the evolving preci-
sion in understanding, at compatible levels of detail and reasonably traceable to each
other.

4.2 Quality econometrics

The defining characteristic of software is that it is “soft”: The easier the software
is to change, the easier it is to achieve any of its other required characteristics. The
most important quality metrics are therefore centered on measurements of change
trends (defects, scrap and rework) in the software release baselines throughout the
life cycle.

The three progress metrics in Figure 5 help to quantify how much has been
accomplished, but this is not enough information to steer systems and products to a
state where they are suitable for release to their users. You need insight into how close

Walker Royce: Measuring agility and architectural integrity 429

the current release is to meeting user expectations of both quality and content. You
also need insight into the agility of your process and architecture in accommodating
changes in the future if you are going to improve your economic forecasting.

Once software is placed in a controlled baseline, all changes can be instrumented.
A distinction must be made for the cause of change. Change categories typically
include:

• Critical failures, which are defects that are nearly always fixed prior to any
external release. In general, these sorts of changes represent show-stoppers that have
an impact on the usability of the software in its primary use cases.

• Non-critical failures, which are bugs or defects that either do not impair the
utility of the system or can be worked around. Such errors tend to correlate to
nuisances in primary use cases or serious defects in secondary use cases.

• A change that is an enhancement rather than a response to a defect. Its purpose
is typically to improve performance, testability, usability, or some other aspect of
quality that represents good value engineering.

• A change caused by an update to the current system or product, including new
features or capabilities that are outside the scope of the current business case.

• Some other change, such as a version upgrade to a commercial component.
With the conventional process and custom architectures, change was more ex-

pensive to incorporate later in the life cycle. With waterfall projects that measured
such trends, the cost of change tended to increase as they transitioned from testing
individual units of software to testing the larger, integrated system. This is intuitively
easy to understand, since unit changes, typically related to implementation issues or
coding errors, were relatively easy to debug and resolve, and integration changes such
as design issues, interface errors, or performance issues were relatively complicated to
resolve. Furthermore, unit changes tend to be the responsibility of a single person,
whereas integration changes required collaboration among multiple people.

A discriminating result of modern economic governance is that the more expen-
sive changes are discovered earlier, when they can be efficiently resolved. Changes get
simpler and more predictable later in the life cycle. This is the result of attacking the
uncertainties in architecturally significant requirements tradeoffs and design decisions
earlier in the life cycle. The big process change required is that integration activities
mostly precede unit test activities, thereby resolving the riskier architectural and de-
sign challenges prior to investing in unit test coverage and complete implementations.

Quality metrics are indicators of how well work has been accomplished. Figure 6
illustrates three core metrics for measuring quality. The presentation format for each
metric provides two perspectives. The left-hand graphics are the anti-pattern, namely,
the metric trends expected if you follow conventional waterfall model processes and use
engineering governance. The right-hand graphics are the target pattern of outcomes
you would expect from healthy projects with true agility and robust architectural
solutions.

4.2.1 Defects and maturity

Defects are software errors logged against a change-controlled baseline release.
Maturity is a context-specific measure of the suitability for a system or software base-
line to be released to its user community. Tracking defect statistics and backlogs are

430 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

well-understood best practices in most organizations. There are usually multiple lev-
els of defect classification, and while implementations vary across the broad spectrum
of software contexts, the principles and patterns are well established.

Figure 6. Quality metrics for better economic governance

4.2.2 Scrap and modularity

Scrap is a measure of the average breakage per software change. The units of
measurement for scrap can be source lines of code, function points, object points, files,
components, or some other measure of software size. Source-line-of-code (SLOC)
metrics are probably the easiest measure to automate, but without savvy tooling
and context-dependent insight, they can also lead to overly simplistic conclusions.
Tacking the average scrap per change over time gives you a measure of modularity.
This indicator provides insight into the benign or malignant character of software
change.

4.2.3 Rework and adaptability

Rework is defined as the average cost of change, which is the effort to analyze,
resolve, and retest all changes to software baselines. The units of measurement for
rework are staff-hours per change. Adaptability is defined as the rework trend over
time. Not all changes are created equal. Some changes can be made in a staff-hour,
while others take staff-weeks. The overall trends in effort per change provide the most
valuable insight into process effectiveness (that is, agility) and architecture qualities
(such as changeability, resilience, and modularity).

Discrete change traffic needs to be tracked. This is simply a measure of the num-
ber of software change orders opened and closed over the life cycle. This metric can be
collected by change type, by release, across all releases, or by team, by components,
by subsystem, and so forth. Coupled with other progress and quality metrics, discrete
change traffic provides insight into the stability of the software and its convergence
towards stability (or divergence towards instability)[5].

Walker Royce: Measuring agility and architectural integrity 431

Consistency of application is important for accurate interpretation, just as it
is with cost estimation techniques. Software cost estimation has mostly subjective
inputs and objective outputs. These three quality metrics are objective indicators
that require subjective interpretation by stakeholders within the context of a specific
project situation. For example, the amount of rework following the first configu-
ration baseline during development is an ambiguous value without further context.
Zero rework might be interpreted as a perfect baseline (unlikely), an inadequate test
program, or an unambitious first build.

In general, being “mature enough to release” is a judgment call that requires a
fair amount of history and context. Most organizations understand how to do this,
but their processes and architectures develop, test, and mature software in a very
suboptimal manner that wastes tremendous amounts of resources. The conventional
profile for defect rates (Figure 6, upper left) typically rises as more software is tested
and testing covers more of the usage models. Resolution of defects keeps up with
defects identified for the early phases of unit testing, where most of the changes are
relatively benign. But as integration testing ramps up, the errors uncovered tend
to affect many units and be much more difficult to resolve. Escalating scrap rates
(Figure 6, middle left) and escalating rework rates (Figure 6, lower left) compel the
entire project team to play defense and struggle to keep up.

With such late discovery of requirements and design issues in waterfall model
governance, there is no time to redesign or renegotiate requirements. Consequently,
project teams tend to shoehorn in suboptimal fixes, resulting in malignant changes
and further introduction of defects. As these software releases are transitioned to
users, the defect rate remains high, architectural integrity suffers, and the iron law
of software development becomes inevitable: The later you are in the life cycle, the
more expensive things are to fix.

The profiles for defect rate and maturity can be very different if you can drive
integration testing earlier (Figure 6, upper right). Initial defect rates may start off
rather low. The scrap rate (modularity, Figure 6, middle right) and the rework rate
(adaptability, Figure 6, lower right) will start off relatively high. As the architecture is
prototyped, demonstrated, tested, and refactored across the significant usage models,
behaviors, and performance scenarios, these early changes will resolve the significant
uncertainties and accelerate stakeholder understanding of the requirements and design
tradeoffs. As the defect rate drops in integration testing, stakeholders can be more
confident that the architecture baseline is mature, that further malignant changes
will be less likely, and that future changes will be mostly benign. When early and
continuous integration is executed effectively, the later you are in the life cycle, the
more predictable and straightforward things are to change.

5 Conclusions

True agility with a track record of measured improvement is the aspiration of
every business that depends on software delivery capability. To accelerate this im-
provement, projects and organizations should set tangible, measureable targets for
becoming more agile and channel that agility into business flexibility:

1. True agility means that life-cycle changes become more predictable and
straightforward over time.

432 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

2. To achieve true agility, the completion and coverage of integration tests must
take precedence over the completeness and coverage within unit tests.

3. Measurement is a cornerstone of agility, and measuring trends in executable
software baselines illuminates the progress and quality indicators needed to steer
projects with economic governance to more successful outcomes.

A strong foundation for measurable improvement is a powerful by-product of
agile methods and metrics extraction from the release baselines undergoing continuous
integration testing. This is the basis for honest reduction of uncertainty and honest
assessment of progress and quality.

The six econometrics described here are based on field experience with both
successful and unsuccessful metrics programs. Their attributes include the following:

• They are simple, objective, easy to collect, easy to interpret, and hard to
misinterpret.

• Collection can be automated and nonintrusive.
• They provide for consistent assessments throughout the life cycle and are de-

rived from the evolving product baselines rather than some subjective assessment.
• They are useful by both management and engineering personnel in communi-

cating progress and quality.
• They accurately portray the agility of a process and architecture with precision

that improves across the life cycle commensurate with the understanding of the user
need, design solution, and forecasted plans.

The last attribute needs some emphasis. Metrics applied to early life-cycle phases,
dominated by high-variance human creativity and risk resolution, should be accurate
but far less precise than those applied to the later phases in the life cycle, dominated
by low variance production activities and rigorous change management.

True agility translates into business flexibility. Organizations and projects that
can transform to truly agile development with economic governance and strong mea-
surement disciplines have a huge advantage. When changes are easy to implement, a
project is more likely to increase the number of changes, thereby increasing quality.
When architectures are resilient, processes embrace change, and platforms support
change automation and measurement, then projects can balance their resource in-
vestments between defensive efforts (such as bug fixes, feature commitments, and
schedule commitments) and offensive efforts (such as new integrations, new innova-
tions, improved performance, earlier releases, and higher quality).

Well-executed measured improvement efforts will speed up a sales cycle or a deliv-
ery cycle because they establish more trust among stakeholders. More trust translates
directly into less overhead and less waste – key themes within lean management prin-
ciples and agile methods. Measured improvement in software delivery is still far from
a mature discipline. We have plenty of anecdotal experience, expert opinions on best
practices, and subjective judgments on patterns of success. We have relatively few
objective case studies, benchmarks, and quantified experience reports. The software
industry needs to strengthen the credibility of measured improvement benchmarks
and guidance.

Acknowledgments

Scott Ambler, Dave Bernstein, Murray Cantor, Capers Jones, Joe Marasco, Mar-

Walker Royce: Measuring agility and architectural integrity 433

tin Nally, Mike Perrow, Mirek Rzadkowski, Danny Sabbah, and Richard Solely re-
viewed and improved early drafts of this paper. Karen Ailor helped sharpen the
presentation and content.

Finally, my academic and professional interests in improving software economics
were enabled significantly by Barry Boehm. His insight and guidance helped shape
my perspective and values. Barry stands out as one of the pre-eminent contributors to
one of the world’s most powerful and useful endeavors: software development. We all
owe him our gratitude, and I would like to express my thanks for his vast contributions
and mentorship over the past three decades.

References

[1] Boehm BW. Software engineering economics. IEEE Trans. on Software Engineering, SE-10,

January 1984, 4–21.

[2] Boehm BW. Software Engineering Economics. Englewood Cliffs, New Jersey: Prentice-Hall Inc,

1981.

[3] Boehm BW. Software Cost Estimation with COCOMO II. Upper Saddle River, New Jersey:

Prentice Hall PTR, 2000.

[4] Jones C. Software Engineering Best Practices. McGraw Hill, 2010.

[5] Royce WE. Software Project Management. Addison-Wesley, 1998.

[6] Royce WE, Kurt B, Michael P. The Economics of Software Development. Reading, Mas-

sachusetts: Addison-Wesley, 2009.

[7] Hubbard D. How to Measure Anything: Finding the Value of Intangibles in Business. Hoboken,

New Jersey: Wiley, 2010.

[8] Royce WW. Managing the Development of Large Software Systems. Proc. of IEEE Wescon,

August 1970: 1–9.

[9] Kennaley M. SDLC 3.0, Beyond a Tacit Understanding of Agile. Fourth Medium Press, 2010.

[10] Lo A, Mark M. Moody’s/NYU 6th Annual Credit Risk Conference. New York, March 2010.

[11] Austin R, Lee D. Artful Making. Prentice Hall, 2003.

[12] Royce W. Successful software management style: steering and balance. IEEE Software, Septem-

ber/October 2005, 22(5): 40–47.

[13] Boehm B. A spiral model of software development and enhancement. IEEE Computer, May

1988, 21(5): 61–72.

[14] Boehm B. Software Risk Management. IEEE Computer Society Press, 1989.

[15] Berggren C, Jack J, Jonas S. Lagomizing, organic integration, and systems emergency wards:

innovative practices in managing complex systems development projects. Project Management

Journal, 2008, 39 (Supplement): S111–S122.

[16] Cantor M. Estimation Variance and Governance. The Rational Edge, March 2006.

